INTRODUCTION TO NANOMEDICINE AND NANOBIOENGINEERING

Paras N. Prasad

WILEY
INTRODUCTION TO
NANOMEDICINE AND
NANOBIOENGINEERING
WILEY SERIES IN BIOMEDICAL ENGINEERING AND MULTIDISCIPLINARY INTEGRATED SYSTEMS

KAI CHANG, SERIES EDITOR

Advances in Optical Imaging for Clinical Medicine
Nicusor Iftimia, William R. Brugge, and Daniel X. Hammer (Editors)

Antigen Retrieval Immunohistochemistry Based Research and Diagnostics
Shan-Rong Shi and Clive R. Taylor

Introduction to Nanomedicine and Nanobioengineering
Paras N. Prasad
INTRODUCTION TO
NANOMEDICINE AND
NANOBIOENGINEERING

PARAS N. PRASAD
CONTENTS

PREFACE xiii
ACKNOWLEDGMENTS xv

1 INTRODUCTION 1
1.1. Nanomedicine: A Global Vision / 1
1.2. The Nanotechnology Revolution: Realization of Asimov’s Fiction / 3
1.3. Nanomedicine: A New Era in Personalized Medicine / 7
1.4. Nanomedicine: A Promise or Reality? / 9
1.5. A New Frontier: Multidisciplinary Challenges and Opportunities / 10
1.6. Scope of the Book: Multidisciplinary Education, Training, and Research / 12
References / 13

2 THE HUMAN BODY 15
2.1. Introductory Concepts / 16
2.2. Cellular Structure / 18
2.3. Various Types of Cells / 23
2.4. Biochemical Makeup of Cells / 25
2.5. Other Important Cellular Components / 29
2.6. Cellular Processes / 30
2.7. Organization of Cells into Tissues / 37
2.8. Types of Tissues and Their Functions / 39
2.9. Various Organs and Organ Systems in the Body / 40
2.10. Tumors and Cancers / 45
Highlights of the Chapter / 46
Exercises / 48
References / 49

3 NANOCARRIERS 51
3.1. Nanocarriers: Delivering Payloads to Needed Sites / 52
3.2. The Various Nanoformulations for Nanomedicine / 53
3.3. Viruses as Nanocarriers / 55
3.4. Polymeric Nanocarriers / 56
3.5. Lipid-Based Nanocarriers / 58
3.6. Dendrimers / 59
3.7. Carbon Nanostructures / 61
3.8. Inorganic Nanoparticles / 63
3.9. PEBBLE / 65
3.10. Nanoclinics / 66
3.11. Nanoplexes / 68
3.12. New-Generation Nanocarriers / 69
Highlights of the Chapter / 70
Exercises / 72
References / 73

4 NANO CHEMISTRY OF NANOCARRIERS 77
4.1. Nanochemistry and Nanomedicine / 78
4.2. Top-Down Approaches / 78
 4.2.1. Mechanical Milling / 79
 4.2.2. Dip-Pen Nanolithography / 79
 4.2.3. PRINT Process / 81
 4.2.4. Laser Ablation / 81
4.3. Bottom-Up Approaches / 83
 4.3.1. Dendrimers / 83
 4.3.2. Microemulsion Chemistry / 86
 4.3.3. Hot-Colloidal Synthesis / 87
 4.3.4. Seed-Mediated Synthesis of Anisotropic Metallic
 Nanostructures / 90
 4.3.5. Reprecipitation Method / 90
4.4. Combination of Bottom-Up and Top-Down Approaches / 92
4.5. Nanoparticle Surface Modification / 93
4.6. Functionalization and Bioconjugation / 95
Highlights of the Chapter / 97
Exercises / 99
References / 100

5 MULTIFUNCTIONALITIES FOR DIAGNOSTICS AND THERAPY / 103
5.1. The Various Functionalities / 104
5.2. Optical Functionalities / 105
5.3. Optical Nanoprobes / 110
5.4. Magnetic Functionality / 116
5.5. Thermal Functionality / 120
5.6. Radioactive Functionality / 121
5.7. Biological Functionality / 124
5.8. Multifunctionality / 125
Highlights of the Chapter / 128
Exercises / 130
References / 131

6 CROSSING THE BIOLOGICAL BARRIERS / 135
6.1. Various Delivery Pathways / 135
6.2. Various Biological Barriers / 137
6.3. Stealth Nanoparticles / 140
6.4. The Various In Vitro Barrier Models / 141
Highlights of the Chapter / 144
Exercises / 145
References / 146

7 BIOTARGETING / 149
7.1. Biotargeting: Why We Need It / 149
7.2. Targeted Biological Sites / 150
7.3. Intracellular Uptake / 151
7.4. Targeting Strategies / 153
7.5. Targeting Groups / 155
Highlights of the Chapter / 159
Exercises / 160
References / 161
8 MULTIMODAL BIOMEDICAL IMAGING

8.1. Biomedical Imaging Techniques / 164
8.2. Optical Bioimaging / 170
 8.2.1. Fluorescence Microscopy / 170
 8.2.2. Quantitative FRET Microscopy / 172
 8.2.3. Technical Challenges for In Vitro Imaging / 175
 8.2.4. In Vivo Optical Imaging / 177
 8.2.5. Optical Coherence Tomography / 177
 8.2.6. Super-Resolution Fluorescence Microscopy / 181
8.3. Magnetic Resonance Imaging / 185
8.4. X-Ray CT Imaging / 188
8.5. Radio Imaging / 190
8.6. Ultrasound Imaging / 190
8.7. Photoacoustic Imaging / 191
8.8. Multimodal Imaging / 192
Highlights of the Chapter / 193
Exercises / 200
References / 201

9 BIOSENSING

9.1. Principles of Biosensing / 208
9.2. Optical Biosensors / 211
 9.2.1. Fluorescence Sensors / 211
 9.2.2. Plasmonic Sensors / 218
 9.2.3. Photonic Crystal Sensors / 227
9.3. Magnetic Biosensors / 228
9.4. Electrical Biosensing / 234
9.5. Electrochemical Biosensing / 236
9.6. Electrochemiluminescence Biosensing / 238
9.7. In Vivo Bioelectronic Sensors / 239
Highlights of the Chapter / 241
Exercises / 245
References / 247

10 HIGH-THROUGHPUT MULTIPLEXED DIAGNOSTICS

10.1. Comprehensive Diagnostic Strategy / 254
10.2. Flow Cytometry / 255
10.3. Enzyme-Linked Immunosorbent Assay (ELISA) / 264
10.4. Microarrays Technology / 269
10.5. Suspension Bead Assay / 277
Highlights of the Chapter / 281
Exercises / 285
References / 286

11 NANOPHARMACOTHERAPY 291
11.1. Nanopharmacotherapy: An Overview / 292
11.2. Modes of Nanoformulation for Nanopharmacotherapy / 294
11.3. Pharmacokinetics / 296
11.4. Biodistribution / 297
11.5. Pharmacodynamics / 298
11.6. Controlled Release by External Activation / 299
Highlights of the Chapter / 300
Exercises / 302
References / 303

12 THE HUMAN CIRCULATORY SYSTEM AND THERANOSTICS 305
12.1. Blood Fluidics and Cardiovascular System / 306
12.2. Circulatory-System-Based Disease Profiling / 309
12.3. Methods to Monitor Blood Flow / 312
12.4. Therapeutic Approaches Utilizing Manipulation of Blood Flow / 318
12.5. Lymph Node Mapping / 320
12.6. Lymphatic Drug Delivery / 322
Highlights of the Chapter / 322
Exercises / 326
References / 327

13 NANOTECHNOLOGY FOR CANCER 331
13.2. Chemotherapy / 335
13.4. Photodynamic Therapy / 340
13.5. Magnetic Therapy / 349
13.6. Photothermal Therapy / 353
13.7. Neutron Capture Therapy / 357
13.8. Circulating Tumor Cells / 359
13.9. NCI Alliance for Cancer Nanotechnology / 360
Highlights of the Chapter / 360
Exercises / 362
References / 364

14 GENE THERAPY 371
14.2. Methods of Gene Delivery / 374
14.3. Gene Augmentation Therapy / 381
14.4. Gene Silencing Therapy / 381
14.5. Indirect Gene Therapy Modulating Innate Immune Response / 384
14.6. Transmucosal Gene Delivery / 385
Highlights of the Chapter / 386
Exercises / 388
References / 390

15 NANOTECHNOLOGY FOR INFECTIOUS DISEASES 393
15.1. Pathogen Infections and Nanoparticle-Based Approaches / 394
15.2. HIV / 401
 15.2.1. Diagnosis / 402
 15.2.2. Vaccines and Antimicrobial Drugs / 404
 15.2.3. Therapy / 405
15.3. Influenza / 408
 15.3.1. Diagnosis / 408
 15.3.2. Vaccines / 409
 15.3.3. Therapy / 409
15.4. Tuberculosis / 410
 15.4.1. Diagnosis / 410
 15.4.2. TB Vaccine / 412
 15.4.3. Therapy / 412
15.5. Malaria / 416
 15.5.1. Vaccines / 418
 15.5.2. Therapy / 420
Highlights of the Chapter / 422
Exercises / 424
References / 426
16 REJUVENATION THERAPY

16.1. Rejuvenation Therapy: Fantasy or Reality? / 433
16.2. Free Radical Scavenging / 436
16.3. Chelation Therapy / 439
16.4. Hormone Therapy / 441
Highlights of the Chapter / 442
Exercises / 443
References / 444

17 STEM CELL BIOTECHNOLOGY

17.1. Stem Cell Biotechnology: Overview / 448
17.2. Cell Reprogramming / 449
17.3. Gene Transfection / 452
17.4. Somatic Cell Transdifferentiation / 453
17.5. Stem Cell Sorting / 454
17.6. Stem Cell Tracking / 454
Highlights of the Chapter / 456
Exercises / 456
References / 457

18 TISSUE ENGINEERING

18.1. Tissue Engineering: Overview / 462
18.2. Tissue Regeneration / 464
18.3. Nanotechnology in Tissue Engineering / 467
18.4. Nanofibers for Tissue Engineering / 472
18.5. Nanoparticle Delivery of Biomolecules / 473
18.6. Magnetically Assisted Tissue Engineering / 474
18.7. Tissue/Organ Printing / 475
18.8. Tissue Bonding / 477
Highlights of the Chapter / 479
Exercises / 482
References / 484

19 NANODERMATOLOGY AND NANOCOSMETICS

19.1. Delivery Through Skin / 487
19.2. Skin Care and Nanotechnology / 488
19.3. Various Nanoparticles for Dermatology and Cosmetics / 491
19.4. Nanodermatology / 492
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.5</td>
<td>Nanocosmetics</td>
<td>494</td>
</tr>
<tr>
<td>19.6</td>
<td>Nanotoxicology of the Skin</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Highlights of the Chapter</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>499</td>
</tr>
</tbody>
</table>

20 | NANODENTISTRY | 503 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20.1</td>
<td>Nanotechnology for Dental Care</td>
<td>504</td>
</tr>
<tr>
<td>20.2</td>
<td>Nanoparticles for Preventive Dentistry</td>
<td>507</td>
</tr>
<tr>
<td>20.3</td>
<td>Nanomaterials for Restorative Dentistry</td>
<td>509</td>
</tr>
<tr>
<td>20.4</td>
<td>Regenerative Dentistry</td>
<td>516</td>
</tr>
<tr>
<td>20.5</td>
<td>Nanoparticle-Enhanced Dental Imaging and Oral Diagnostics</td>
<td>519</td>
</tr>
<tr>
<td>20.6</td>
<td>Nanorobotics for Dentistry</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>Highlights of the Chapter</td>
<td>522</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>524</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>525</td>
</tr>
</tbody>
</table>

21 | NANOTOXICITY | 529 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>Toxicity of Nanoparticles</td>
<td>529</td>
</tr>
<tr>
<td>21.2</td>
<td>Cytotoxicity</td>
<td>533</td>
</tr>
<tr>
<td>21.3</td>
<td>In Vitro Cytotoxicity Assays</td>
<td>535</td>
</tr>
<tr>
<td>21.4</td>
<td>In Vivo Toxicity</td>
<td>539</td>
</tr>
<tr>
<td>21.5</td>
<td>In Vivo Toxicity Evaluation</td>
<td>542</td>
</tr>
<tr>
<td>21.6</td>
<td>Nanotoxicity Studies on Selected Nanoparticles</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>Highlights of the Chapter</td>
<td>547</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>551</td>
</tr>
</tbody>
</table>

INDEX | 555 |
PREFACE

Nanomedicine and nanobioengineering, defined respectively by the fusion of nanotechnology with medicine and bioengineering, are emerging new frontiers, providing challenges for fundamental research and opportunities for new biotechnologies. These fields promise to make a major impact on healthcare worldwide. They are multidisciplinary fields, creating opportunities in physics, chemistry, applied sciences, engineering, and biology, as well as in biomedical technology and drug development.

A good number of books and reviews discuss selective aspects of nanomedicine and nanobioengineering. However, there is a need for a comprehensive monograph that provides a unified synthesis of these two fields and their joint impact on global healthcare. This book fills this need, by providing an integrated description of nanomedicine and nanobioengineering for new-generation diagnostics and therapy. The comprehensive, multidisciplinary program at our Institute in this integrated field of nanomedicine received early, generous funding from the John R. Oishei Foundation in Buffalo, New York; and the resulting work provided the inspiration and much of the impetus to undertake this writing.

The objective of this book is to provide a basic knowledge of a broad range of topics in an integrated manner so that individuals in all disciplines can rapidly acquire the minimal necessary background for research and development in this field. The author intends this monograph to serve both as a textbook for education and training and as a reference book that aids research and development in areas integrating nanotechnology with medicine and bioengineering. Another aim of the book is to stimulate the interest of researchers, industries, and businesses, as well as to foster collaboration...
through multidisciplinary programs in these emerging frontiers of bioscience and biotechnology to yield a new dimension for healthcare.

This book encompasses the fundamentals of nanomaterials design, bioengineering, nanodiagnostics, and nanotherapy. Each chapter begins with an introduction describing what a reader will find in that chapter. Each chapter ends with highlights that are basically the “take-home message” and may serve as a review of the materials presented. In addition, exercises are provided to assist in teaching. Throughout the book, examples are given from our research work wherever possible, merely because of convenience; this should be considered supplemental to the excellent work being conducted at various institutions worldwide.

In writing this book, which covers a very broad range of topics, I received help from a large number of individuals at the Institute of Lasers, Photonics, and Biophotonics at the University at Buffalo, State University of New York, as well as from elsewhere. This help has consisted of furnishing technical information, creating illustrations, providing critiques, and preparing the manuscript. A separate Acknowledgments section recognizes these individuals.

Here I would like to acknowledge the individuals whose broad-based support has been of paramount value in completing the book. I express my sincere appreciation to my colleague Professor Paul Knight, M.D., for his endless help and encouragement. I thank Dr. Indrajit Roy, Dr. Andrey Kuzmin, Dr. Wing Cheung Law, and Dr. Artem Pliss for their valuable support and technical help throughout the book. I owe thanks to my administrative assistant, Ms. Margie Weber, for her encouragement and for assuming responsibility of many of the noncritical administrative issues at the Institute, in order to free up my time for writing this monograph. I thank Ms. Barbara Raff, whose clerical help in manuscript preparation was invaluable.

Finally, I am indebted to my daughters, my princesses, Natasha and Melanie, for showing their love, understanding, and encouragement.

Buffalo, New York

Paras N. Prasad
ACKNOWLEDGMENTS

Technical Contents
Professor Stephen Arnold, Dr. Ana Karla Braz, Professor Edward Furlani, Professor Indrajit Roy, Professor Paul Knight, Dr. Rajiv Kumar, Dr. Andrey Kuzmin, Dr. Wing Cheung Law, Dr. Supriya Mahajan, Professor Gene Morse, Dr. Tymish Ohulchanskyy, Dr. Artem Pliss, Dr. Haridas Pudavar, Dr. Yudhisthira Sahoo, Professor Mark Swihart.

Technical Illustrations and References
Dr. Adela Bonoui, Dr. Ana Karla Braz, Dr. Folarin Erogboogo, Professor Edward Furlani, Professor Indrajit Roy, Dr. Rajiv Kumar, Dr. Andrey Kuzmin, Dr. Wing Cheung Law, Dr. Supriya Mahajan, Dr. Tymish Ohulchanskyy, Dr. Artem Pliss.

Chapter Critiques
Professor Stelios Andreadis, Professor Robert Baier, Ms. Cathy Carfagna, Professor Heather Clark, Professor Howard Gendelman, Dr. Piotr Grodzinski, Professor Jiang Feng, Dr. George Hinkal, Dr. Aliaksandr Kachynski, Ms. Dana Knight, Professor Raoul Kopelman, Dr. Ewa Anna Kucz, Dr. Howard Lippes, Professor Mona Marei, Dr. Anil Patri, Ms. Melanie Prasad, Professor Marek Samoc, Dr. Stanley Schwartz, Dr. Hulda Swai, Professor Kenneth Tramposch, Dr. Paul Wallace, Ms. Hendriette Van der Walt.

Manuscript Preparation
Dr. Andrey Kuzmin, Ms. Barbara Raff, Ms. Margie Weber.
INTRODUCTION

1.1. NANOMEDICINE: A GLOBAL VISION

This monograph describes emerging interdisciplinary frontiers created by the fusion of nanotechnology, engineering, and medicine that provide a global vision to produce breakthrough approaches for meeting our current and future healthcare challenges. Traditionally, nanomedicine is defined as the application of nanotechnology to medicine; nanobioengineering is often used to describe nanotechnology applied to bioengineering, which includes imaging, sensing, diagnostics, blood fluids, and tissue engineering. This book brings a much-needed integration of nanomedicine and nanobioengineering to produce a broadened nanomedicine platform that utilizes nanotechnology to generate exciting new approaches for diagnostics, bioengineering, and targeted therapy. Such an integration could lead to multifunctional nanomedicines that can, as a single formulation, be used to diagnose, treat, and evaluate treatment effectiveness in real time. Collectively, these agents are termed nanotheranostics.

We live in a complex world where our health is determined by an interplay of our genetic inheritance, the environment we live in, and the lifestyle we choose. As the barriers between social, ethnic, religious, regional, and national divides come down and the world becomes a melting pot for the human race, healthcare issues (whether genetic, environmental, or lifestyle originated) do not remain localized. Today these issues are not the problems of a specific
INTRODUCTION

society or a specific nation, but a global concern and global priority. As technological advances facilitate rapid travel through geographic variation, different time zones, and diverse climates, infections are no longer confined to their old boundaries and instead travel all over the globe, spreading like wildfire. Thus, as new healthcare challenges emerge in the future, we must face them together as a single global community and find effective solutions for them collectively.

The healthcare challenges that we now face and can anticipate for the future are many, and they pose an almost insurmountable task for us. Figure 1.1 lists some major challenges that our global community faces. Despite tremendous progress in winning some cancer battles, cancer remains a major healthcare challenge. Take, for example, pancreatic cancer, the survival rate for which beyond five years after detection using the current diagnostics is only 4%. Consequently, there is a need for early diagnosis, preferably at a precancerous stage when many options to treat may be available, as well as for a more effective treatment. Some treatments for cancer can be very harsh, where the patient’s quality of life is seriously compromised. A more effective treatment or an alternative gentler therapy would be of significant value to such patients. New strains of infectious diseases, as well as existing ones, are another major challenge we face. New infections such as the bird flu or swine flu may originate in one small region, but it does not take long for them to

Figure 1.1. Current and future healthcare challenges.
spread around the world and become a pandemic. Infections such as tuberculosis and malaria, often referred to as poverty-related diseases (PRDs), are on the rise and spreading worldwide. Diseases that are manifestations of genetic disorder are again on the rise worldwide, as a result of a complex interplay of our genes, the environment, and our dietary intake. Depression and chronic pain are other healthcare problems what are highly detrimental to the quality of life that we wish to have.

Then there are healthcare issues that we create by the lifestyle we choose. The examples given in Figure 1.1 are obesity and addiction. Obesity rates are rapidly rising, and of particular concern is child obesity. Obesity creates not only physical handicap, but also a cascade of other disease manifestations, such as diabetes and cardiovascular diseases. While obesity may start in many cases from a lifestyle of eating unhealthy and fattening food, it soon becomes a biochemical addiction in which overactive bad genes in the brain create a constant need to eat. Similarly, addictions to medication, drugs, and alcohol are biochemical in nature, generating specific biochemical signatures in the brain—again, produced by the lifestyle we choose. Such addictions have now become major health issues worldwide.

Aging is not a disease, but it does affect quality of life and increases an individual’s vulnerability to various diseases and infections. The world’s population is aging. Accordingly, more people are suffering from neurological disorders such as Alzheimer’s disease, impairment of body functions, chronic pain in joints, loss of hearing, and a reduction in eyesight. While we cannot permanently reverse aging (for which we must wait for rejuvenation therapy, discussed in Chapter 16, to develop), we can certainly use new medical advances in utilizing stem cells (discussed in Chapter 17) to replenish nonfunctioning cells, and tissue engineering (presented in Chapter 18) to replace nonfunctioning organs. We can also explore the promise of gene therapy (covered in Chapter 14) and stem cell therapy to treat neurological diseases, as well as to effectively boost the immunity to fight infections (discussed in Chapter 15). This book will address how an integrated nanomedicine platform provides new, revolutionary approaches to tackle these major healthcare issues.

1.2. THE NANOTECHNOLOGY REVOLUTION: REALIZATION OF ASIMOV’S FICTION

Nanotechnology is an emerging discipline of science and technology that has captured the imaginations of the world. Many countries have recognized nanotechnology as a national priority and allocated major resources to develop this area. It has a high societal impact, because it provides promising new solutions to numerous technical needs that the world faces (subject of global priorities), some of which are listed in Figure 1.2. In commonly adopted definitions, nanotechnology deals with materials, structures, and devices that are of dimensions in the range of 1–100 nanometers (1 nanometer is one billionth of a meter;
Introduction

Figure 1.2. Examples of global priorities on which nanotechnology has made an impact.

nanometer abbreviated as nm) and thus are so ultrasmall that they cannot even be seen under a normal optical microscope. In reality, nanotechnology is not so new. Although it is hard to place an exact period when it was introduced, there are plenty of examples of their use in the production of tinted glass widely used in cathedrals and churches from the medieval period onwards. A beautiful example is shown in Figure 1.3, which is from the cathedral of Notre Dame in Paris. It was not until 1860 that Michael Faraday actually recognized that these bright colors in the glass were imparted by metallic gold or silver nanoparticle inclusions formed during glass processing. However, many consider Feynman as the father of modern nanotechnology when he stated in his famous lecture of 1970, “There is plenty of room at the bottom...” This referred to the fact that many, many objects (particles or structures) of nanometer dimensions can be packed even in a small volume.

A major impact area for nanotechnology is healthcare. A nanoscale object (such as a nanoparticle) can provide new approaches to diagnostics and therapy, which constitutes the field of nanomedicine. Such developments demonstrate a realization of the fiction novel Fantastic Voyage by Isaac Asimov in 1966, which was later dramatized in a film by Richard Fleischer. These works presented a visionary fiction in which a submarine carrying a crew and a medical team was reduced to microscopic size and injected into the bloodstream of a diplomat. As depicted in Figure 1.4, the submarine navigated to a blood clot, which was then zapped with a laser beam to remove it and thus save the diplomat. In 2002, we used the term “nanoclinics” to describe the modern approach of using nanoparticles as carriers for targeting and circulating agents that can be directed to a desired biological site in a body. These nanoparticles can be armed with various diagnostic probes to provide on-site diagnosis and then treat and/or repair a disease manifestation. (For a more
detailed discussion, please see Chapter 3.) This approach is an excellent example of how the imagination of yesterday can become a reality today, and it can be further refined to produce high societal impact in the future. As shown in Figure 1.4, our nanoclinic concept licensed by the company Nanobiotix has just entered a clinical trial for X-ray nanotherapy.
The possible impacts of nanotechnology on healthcare and society are tremendous. Some of the features offered by nanotechnology for healthcare are illustrated in Figure 1.5. First, materials, when reduced to nanometer size, exhibit physical properties that can be different from their bulk form. Furthermore, this property may become size-dependent on nanoscale. An example discussed in detail in Chapter 5 is the light absorption and emission by nanoparticles of inorganic semiconductors, such as CdSe or Si. Once their size becomes smaller than a certain length, the wavelength of light they absorb and the resulting emission color (the emission wavelength) become size-dependent. These semiconductor nanomaterials are quantum dots and quantum rods, which are presented in Chapter 5. This size dependence can be utilized for multiplexed optical bioimaging using quantum dots or quantum rods of various sizes. Another example is metallic nanoparticles, which on nanoscale are not reflective. As shown in Figure 1.3, the metallic nanoparticles exhibit bright colors derived from new optical absorptions called surface plasmon resonance bands (also discussed in Chapter 5) that do not exist in the bulk metal form. The other feature is building multifunctionality onto a nanostructure/nanoparticle platform. For example, a nanoparticle can be loaded with a number of imaging agents for multimodal medical imaging such as optical bioimaging, magnetic resonance imaging (MRI), and positron emission tomography (PET) which are covered in Chapter 8. Even in optical imaging, one can use different dyes or quantum dots combinations, and thus multiple color staining (labeling) for multiplexed optical imaging can be realized to enhance detection specificity. The nanostructured materials are promising scaffolds for tissue regeneration, an evolving field also known as tissue engineering (Chapter 18). For therapy, one can introduce a combination of therapeutic modalities such
as light-induced therapy, magnetic therapy, thermal therapy, radiotherapy, and chemotherapy into a simple nanoparticle. Nanotechnology also holds promise for stem cell biotechnology, which is discussed in Chapter 17 (“Stem Cell Biotechnology”).

Targeted delivery is another important feature whereby one can introduce biorecognition (by antibody or other biospecific units) on a nanoparticle to identify a specific biomarker (signature) of a disease and thus target the disease site. One can build multiple targeting ability on the nanoparticle to enhance its specificity and thus increase its targeting ability.

Controlled release of a drug or therapeutic payload carried by a nanostructure or nanoparticle is another important feature offered by the nanotechnology approach. A nanoparticle offers tremendous structural flexibility for inclusion of various payloads and their controlled release. First, the volume of the nanoparticle can itself serve as a diagnostic or therapeutic agent (pure nanoformulation). Second, a diagnostic or therapeutic agent can be attached on the surface or included in the interior of a nanoparticle. The release can be controlled in a number of ways. First, one can introduce external control by using a magnetic, optical, or radio-frequency (rf) field to break a nanoparticle or cleave a labile chemical linkage in order to release the payload. Second, one can manipulate the pores on the nanoparticle, either by enzymatic activities or by local heating using light or magnetic field, to control the release kinetics. Finally, one can take advantage of the enzymatic activities in the targeted cells to break down the nanoparticle to make the payload active.

While nanotechnology can offer many benefits to healthcare, there is also a growing concern about potential health hazards that may be caused by nanoparticles. The short- and the long-term toxicity of nanoparticles in the body must be thoroughly investigated. With the growing euphoria about the vast potential of nanotechnology in so many industrial sectors, there is also a concern that airborne nanoparticles in a workplace can lead to organ damage and health problems. Thus, nanotoxicity (discussed in Chapter 21) is an integral factor in developing nanomedicine. Therefore, for each nanomedicine application we must weigh the benefits versus the risks.

1.3. NANOMEDICINE: A NEW ERA IN PERSONALIZED MEDICINE

Nanomedicine, inclusive of nanobioengineering in its broad scope, is a nanobioengineering utilizing a specifically engineered nanoplatform to carry various payloads for new, minimally invasive diagnosis, targeted delivery of therapeutics, enhanced efficacy of an existing therapy/treatment, and real-time monitoring of a treatment.

The scope and applications of nanomedicine, together with nanobioengineering, are highlighted in Figure 1.6. First, in vitro diagnosis in a laboratory to profile a disease can utilize various body fluids/excretions such as blood,
INTRODUCTION

urine, saliva, sputum, and feces. Some studies even focus on using the exhaled breath for analysis of diseases. These body fluids can interact with specially designed nanoparticles to create biological responses for identifying diseases, even at the molecular and cellular levels. This can lead ultimately to a molecular understanding of disease mechanism and sensitivity of detection at single cell levels, which can be key to early detection and personalized molecular medicine. The *in vitro* diagnosis, using a multipronged detection and quantification enabled by a nanoparticle platform, will be able to elucidate drug intake, its biodistribution, its cellular pathway, and subsequent intracellular interactions. This information can be tremendously effective in drug development and screening of various possible therapies for a given disease. Since the testing is *in vitro*, nanotoxicity is not of concern in such a scenario. For this reason, I envision that a full implementation of nanoparticle-based *in vitro* diagnosis is the first realized application of nanomedicine.

In vivo diagnosis with a nanomedicine approach offers the benefit of combining the various diagnostic modalities in a single nanoplatform (e.g., nanoparticles). For example, one can combine optical imaging and spectrometry with MRI and PET imaging to do a more thorough disease profiling based on molecular, structural, and morphological changes as a result of disease manifestations. Also, packaging them in the small nanovolume of a biocompatible nanoparticle with the ability to localize (due to the presence of targeting
group) at the disease site enhances the sensitivity of detection and minimizes the potential for systemic toxicity of the imaging agent. The simultaneous presence of various diagnostic agents in the same nanoformulation also allows a medical facility to use them at the same time, without requiring separate preparation for each modality.

Of course, a major function of nanomedicine is to provide a nanoformulation that opens new modality of therapy or increases the effectiveness of an existing therapy, as well as to create the prospect of using more than one therapeutic approach in tandem. Examples of new approaches include (a) magnetic therapy using magnetic nanoparticles and (b) photothermal therapy using metallic nanoparticles. An example of improving the efficacy of an existing therapy can be demonstrated by (a) enhancing the biodistribution and circulation of a hydrophobic drug by using a nanoparticle carrier with hydrophilic surface and (b) targeting the carrier to localize a large concentration of the drug at the diseased site. Additional merits offered by nanotherapeutics include controlled and sustained release of a drug. One can control the release by manipulation of pores in the nanoparticle or external stimulation using light, magnetic field, heat, or radio-frequency field.

Finally, the biggest payoff of nanomedicine lies in the realization of theranostics, the combined function of therapy and diagnostics. In other words, the functions of targeting, effective biodistribution, multiple diagnostics, and multimodal therapy can be combined in a single nanoformulation. This allows one to follow the process of therapy to see (and monitor) a therapeutic process at work and to assess its effectiveness in real time. Real-time monitoring of therapeutic action will be of tremendous value to a patient, because one does not have to wait post treatment to determine the outcome.

1.4. NANOMEDICINE: A PROMISE OR REALITY?

In any emerging field showing great promise (and often generating considerable hype), expectations generally run ahead of the real progress. Naturally, the question may arise whether the field of nanomedicine is only a promise for the future (which may or may not materialize) or if there is evidence that nanomedicine is already impacting healthcare. This section provides a very brief account of what has been already achieved in nanomedicine.

Within the realm of in vitro diagnostics, in which tests are conducted in the laboratory on biological fluids outside of the body, nanotechnology is well poised to make a significant, immediate impact. There are already examples of nanoparticle-based colorimetric detection modalities, such as those used for home pregnancy kits, in which color changes are introduced by aggregation of metallic nanoparticles caused by the biomarker signature (expressions) of pregnancy. The surface plasmon resonance (SPR) biosensors discussed in Chapter 9 are widely used in biological laboratories and biomedical research worldwide.
In vivo diagnostics, nanocarrier drug delivery, tissue regeneration, and organ replacement require introduction of a foreign nanostructure in the body. The procedure for regulatory clearance [such as by the Food and Drug Administration (FDA) in the United States] is quite complex, as illustrated by Figure 1.7, and requires several steps of clinical trials.

However, several nanoformulations of drugs—such as for cancer therapy—are already FDA approved and are being used. In addition, many nanoformulations are undergoing different stages of clinical trial. Chapter 13 provides examples of nanoformulations of chemotherapy drugs for cancer treatment. Two examples are Doxil® (a nanoparticle formulation of the drug Doxorubicin, FDA approved in 1995) and Abraxane® (a nanoparticle formulation of the drug Paclitaxel, FDA approved in 2005). These are discussed in Chapter 13, along with other nanoformulations that have been approved or are in clinical trials for cancer therapy.

1.5. A NEW FRONTIER: MULTIDISCIPLINARY CHALLENGES AND OPPORTUNITIES

Nanomedicine, in its broad scope (of which nanobioengineering is a major component), is a new frontier that faces multidisciplinary challenges—from a proper formulation of nanoplateform, to bedside implementation of nanotheranostics. It thus requires a close collaboration between biologists, chemists, physicists, engineers, pharmacologists, and clinicians. Some key multidisciplinary challenges (which in turn provide opportunities for a given discipline)
are summarized in Figure 1.8. For chemists, the challenges and opportunities include producing effective nanoformulations that are chemically and environmentally stable, as well as biocompatible, and that provide appropriate linkage and caging sites to attach and/or encapsulate the following: (a) various diagnostic probes, (b) therapeutic agents, and (c) groups enhancing circulation and producing targeting. Because a nanoparticle has a large surface-to-volume ratio, control of the surface composition and structure (surface chemistry) plays an important role in chemical design and synthesis. Identification of biomarkers and the selection of targeting group is another important aspect of creating a nanosize magic bullet that makes a precise hit of the target (in our case, a diseased site or a tumor). Ensuring effective kinetics of biodistribution, circulation, and selective localization of the nanoparticles at the targeted site is another important challenge that requires a multidisciplinary input from biophysicists, pharmacologists, and medicinal chemists. Multiple diagnoses, using a combination of various probes and methods and utilizing a number of physical and chemical principles, require input from physicists and engineers.

A growing discipline worldwide is biomedical engineering, which cross-fertilizes biomedical sciences with engineering. This is a very welcome new discipline, which can play a major role in nanomedicine through the inclusion of nanobioengineering.

In vitro and in vivo diagnostics provide a comprehensive approach for early disease diagnosis, as well as for monitoring its progression and drug-induced depression. Active engagement of practicing physicians in clinical trials and subsequent translation to bedside of a patient is of vital importance. We have to engage clinicians from an early stage of nanomedicine, because their feedback is crucial in advancing the frontier of nanomedicine toward real patient care. Finally, a multidisciplinary effort is necessary to evaluate and validate the
safety of nanomedicine. Toxicity concerns include chemical toxicity, immuno-
toxicity, organ injury, and interference in physiological functions. Hence, the
continued development of nanomedicine requires thorough study at the cel-
lar, tissue, animal, and human levels.

1.6. SCOPE OF THE BOOK: MULTIDISCIPLINARY EDUCATION,
TRAINING, AND RESEARCH

Like any new frontier, advances in nanomedicine will require engagement of
various disciplines as described in Section 1.5. One major challenge is that
these disciplines do not even use the same set of vocabularies and acronyms.
An effective cross-fertilization among these disciplines will require giving
them common vocabulary terms, and the introduction of multidisciplinary
concepts that can provide collaborators with the ability to understand and
communicate with each other on real issues. Although a good number of books
and reviews cover selective aspects of nanomedicine and nanobioengineering
[e.g.: Jain, 2008; Tibbols, 2011], there is a need for a comprehensive monograph
that introduces the integration of unified introductory concepts and provides
a broad multidisciplinary exposure of the field to new researchers. This book
is intended to fill this void and act as an introduction, providing basic concepts
for the benefit of readers from the disciplines of chemistry, physics, biology,
biomedical sciences, biomedical engineering, medical school, pharmacy school,
and dental school, as well as from the pharmaceutical and cosmetic industries.
To serve this purpose, Chapters 2–7 are designed to present basic materials,
elucidate concepts, and provide an overview of the current status in meeting
specific challenges of the areas covered in these chapters.

For a researcher either entering the field or interested in expanding his/her
research scope, for a drug developer in a pharmaceutical industry, for a bio-
medical engineer interested in developing appropriate engineering tools, for
a dentist applying nanotechnology for dental care, for a cosmetic industry
person developing nanocosmetics, or for a clinician interested in nanomedici-
cine therapeutic approaches, the subsequent chapters introduce specific appli-
cations and needs.

Each chapter begins with a brief outline of what the reader can expect from
it, and then it ends with a highlight of the chapter. These highlights succinctly
summarize the key points from the chapter, which is a very convenient listing
of the take-home message from that chapter. For assisting in the teaching of
this subject, each chapter also provides exercises. The chapters are written
largely in a self-contained manner, so that it is not necessary to read the chap-
ters in the sequential order as presented here—the reader can skip a chapter
to move on to another one, depending on interest and need.

It is my hope that this monograph—with its comprehensive, yet introdun-
tory, coverage of the basics, applications, and needs of nanomedicine—will
serve as a resource for educating and training a new generation of multidisci-