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Preface to First Edition 

The increasing demand for high-speed transport of data has revitalized optical commu-
nications, leading to extensive work on high-speed device and circuit design. This book 
has been written to address the need for a tutorial text dealing with the analysis and de-
sign of integrated circuits (ICs) for optical communication systems and will prove useful 
to both graduate students and practicing engineers. The book assumes a solid understand-
ing of analog design, e.g., at the level of Design of Analog CMOS Integrated Circuits by 
B. Razavi or Analysis and Design of Analog Integrated Circuits by P. Gray, P. Hurst, S. 
Lewis, and R. Meyer. 

The book comprises ten chapters. Chapter 1 provides an introduction to optical com-
munications, setting the stage for subsequent developments. Chapter 2 describes basic 
concepts, building the foundation for analysis and design of circuits. Chapter 3 deals with 
optical devices and systems, bridging the gap between optics and electronics. 

Chapter 4 addresses the design of transimpedance amplifiers, focusing on low-noise 
broadband topologies and their trade-offs. Chapter 5 extends these concepts to limiting 
amplifiers and output buffers, introducing methods of achieving a high gain with a broad 
bandwidth. 

Chapter 6 presents oscillator fundamentals, and Chapter 7 focuses on LC oscillators. 
Chapter 8 describes the design of phase-locked loops, and Chapter 9 applies the idea of 
phase locking to clock and data recovery circuits. Chapter 10 deals with high-speed trans-
mitter circuits such as multiplexers and laser drivers. 

The book can be adopted for a graduate course on high-speed IC design. In a quarter 
system, parts of Chapters 3, 4, and 10 may be skipped. In a semester system, all chapters 
can be covered. 

A website for the book provides additional resources for the reader, including an image 
set and web links. Visit www.mhhe.com/razavi for more information. 

I would like to express my gratitude to the reviewers who provided invaluable feed-
back on all aspects of the book. Specifically, I am thankful to Lawrence Der (Transpec-
trum), Larry De Vito (Analog Devices), Val Garuts (TDK Semiconductor), Michael Green 
(University of California, Irvine), Yuriy Greshishchev (Nortel Networks), Qiuting Huang 
(Swiss Federal Institute of Technology), Jaime Kardontchik (TDK Semiconductor), Tai-
Cheng Lee (National Taiwan University), Howard Luong (Hong Kong University of Sci-

xiii 



xiv PREFACE TO FIRST EDITION 

ence and Technology), Bradley Minch (Cornell University), Hakki Ozuc (TDK Semicon-
ductor), Ken Pedrotti (University of California, Santa Cruz), Gabor Temes (Oregon State 
University), and Barry Thompson (TDK Semoconductor). I also wish to thank Michelle 
Flomenthoft, Betsy Jones, and Gloria Schiesl of McGraw-Hill for their kind support. 

My wife, Angelina, encouraged me to start writing this book soon after we were mar-
ried. She typed the entire text and endured my late work hours—always with a smile. I am 
very grateful to her. 

Behzad Razavi 
July 2002 



Preface 

The field of optical communications has experienced some change since the first edition 
of this book was published. While the fundemantals remain the same, the field has tried 
to find a place in mass markets and, specifically, spawned "passive optical networks." In 
addition, many new circuit techniques have been introduced for broadband applications, 
including optical systems. 

This second edition reflects the new developments in the field. Recently reported circuit 
techniques for transimpedance amplifiers, broadband amplifiers, laser drivers, and clock 
and data recovery circuits have been described. Moreover, a new chapter dedicated to 
"burst-mode" circuits, i.e., building blocks required in passive optical networks, has been 
added. 

Behzad Razavi 
April 2012 
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Chapter 1 

Introduction to Optical 
Communications 

The rapidly-growing volumes of data in telecommunication networks have rekindled inter-
est in high-speed optical and electronic devices and systems. With the proliferation of the 
Internet and the rise in the speed of microprocessors and memories, the transport of data 
continues to be the bottleneck, motivating work on faster communication channels. 

The idea of using light as a carrier for signals has been around for more than a century, 
but it was not until the mid-1950s that researchers demonstrated the utility of the opti-
cal fiber as a medium for light propagation [1]. Even though early fibers suffered from a 
high loss, the prospect of guided transmission of light with a very wide modulation band 
ignited extensive research in the area of optical communications, leading to the practical 
realization of optical networks in the 1970s. 

This chapter provides an overview of optical communications, helping the reader un-
derstand how the concepts introduced in subsequent chapters fit into the "big picture." We 
begin with a brief history and study a generic optical system, describing its principal func-
tions. Next, we present the challenges in the design of modern optical transceivers. Finally, 
we review the state of the art and the trends in transceiver design. 

1.1 Brief History 

Attempts to "guide" light go back to the 1840s, when a French physicist named Jacque 
Babinet demonstrated that light could be "bent" along a jet of water. By the late 1800s, 
researchers had discovered that light could travel inside bent rods made of quartz. The 
"fiber" was thus born as a flexible, transparent rod of glass or plastic. 

In 1954, Abraham van Heel of the Technical University of Delft (Holland) and Harold 
Hopkins and Narinder Kapany of the Imperial College (Britain) independently published 
the idea of using a bundle of fibers to transmit images. Around the same time, Brian 
O'Brien of the American Optical Company recognized that "bare" fibers lost energy to 
the surrounding air, motivating van Heel to enclose the fiber core in a coating and hence 
lower the loss. Fiber loss was still very high, about 1,000 dB/km, limiting the usage to 
endoscopy applications. 
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The introduction of the laser as an intense light source in the 1950s and 1960s played 
a crucial role in fiber optics. The broadband modulation capability of lasers offered great 
potential for carrying information, although no suitable propagation medium seemed avail-
able. In 1966, Charles Ko and Charles Hockern of the Standard Telecommunication Lab-
oratory (Britain) proposed that the optical fiber could be utilized as a signal transmission 
medium if the loss was lowered to 20 dB/km. They also postulated that such a low loss 
would be obtained if the impurities in the fiber material were reduced substantially. 

Four years later, Robert Mauer and two of his colleagues at Corning Glass Works 
demonstrated silica fibers having a loss of less than 20 dB/km. With advances in semi-
conductor industry, the art of reducing impurities and dislocations in fibers improved as 
well, leading to a loss of 4 dB/km in 1975 and 0.2 dB/km in 1979. The dream of carrying 
massive volumes of information over long distances was thus fulfilled: in 1977, AT&T and 
GTE deployed the first fiber optic telephone system. 

The widespread usage of optical communication for the transport of high-speed data 
stems from (1) the large bandwidth of fibers (roughly 25 to 50 GHz) and (2) the low loss 
of fibers (0.15 to 0.2 dB/km). By comparison, the loss reaches 200 dB/km at 100 MHz for 
twisted-pair cables and 500 dB/km at 1 GHz for low-cost coaxial cables. Also, wireless 
propagation with carrier frequencies of several gigahertz incurs an attenuation of tens of 
decibels across a few meters while supporting data rates lower than 100 Mb/s. 

The large (and free) bandwidth provided by fibers has led to another important develop-
ment: the use of multiple wavelengths (frequencies) to carry several channels on a single 
fiber. For example, it has been demonstrated that 100 wavelengths, each carrying data at 
10 Gb/s, allow communication at an overall rate of 1 Tb/s across 400 km. 

1.2 Generic Optical System 
The goal of an optical communication (OC) system is to carry large volumes of data across 
a long distance. For example, the telephone traffic in Europe is connected to that in the 
United States through a fiber system installed across the Atlantic Ocean. 

Depicted in Fig. 1.1 (a), a simple OC system consists of three components: ( 1 ) an electro-
optical transducer (e.g., a laser diode), which converts the electrical data to optical form 
(i.e., it produces light for logical ONEs and remains off for logical ZEROs); (2) a fiber, 
which carries the light produced by the laser; and (3) a photodetector (e.g., a photodiode), 
which senses the light at the end of the fiber and converts it to an electrical signal. We call 
the transmit and receive sides the "near end" and the "far end," respectively. As explained 
in Chapter 3, lasers are driven by electrical currents, and photodiodes generate an output 
current. 

With long or low-cost fibers, the light experiences considerable attenuation as it travels 
from the near end to the far end. Thus, (1) the laser must produce a high light intensity, 
e.g., tens of milliwatts; (2) the photodiode must exhibit a high sensitivity to light; and (3) 
the electrical signal generated by the photodiode must be amplified with low noise. These 
observations lead to the more complete system shown in Fig. 1.1(b), where a "laser driver" 
delivers large currents to the laser and a "transimpedance amplifier" (TIA) amplifies the 
photodiode output with low noise and sufficient bandwidth, converting it to a voltage. For 
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Figure 1.1 (a) Simple optical system, (b) addition of driver and amplifier, (c) addition of MUX and 
DMUX. 

example, data at a rate of 10 Gb/s may be applied to the laser driver, modulate the laser 
light at a wavelength of 1.55 //m, and emerge at the output of the TIA with an amplitude 
of 10 mV. 

The transmit and receive operations in Fig. 1.1(b) process high-speed "serial" data, e.g., 
a single stream of data at 10 Gb/s. However, the actual data provided to the transmitter 
(TX) is in the form of many low-speed channels ("parallel" data) because it is generated 
by multiple users. The task of parallel-to-serial conversion is performed by a "multiplexer" 
(MUX). Similarly, the receiver (RX) must incorporate a "demultiplexer" (DMUX) to re-
produce the original parallel channels. The resulting system is shown in Fig. 1.1(c). 

The topology of Fig. 1.1(c) is still incomplete. Let us first consider the transmit end. The 
multiplexer requires a number of clock frequencies with precise edge alignment. These 
clocks are generated by a phase-locked loop (PLL). Furthermore, in practice, the MUX 
output suffers from nonidealities such as "jitter" and "intersymbol interference" (ISI), man-
dating the use of a "clean-up" flipflop before the laser driver. These modifications lead to 
the transmitter illustrated in Fig. 1.2(a). 

The receive end also requires additional functions. Since the TIA output swing may 
not be large enough to provide logical levels, a high-gain amplifier (called a "limiting 
amplifier") must follow the TIA. Moreover, since the received data may exhibit substantial 
noise, a clean-up flipflop (called a "decision circuit") is interposed between the limiting 
amplifier and the DMUX. The receiver thus appears as shown in Fig. 1.2(b). 

The receiver of Fig. 1.2(b) lacks a means of generating the clock necessary for the de-
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cisión circuit and the DMUX. This clock must bear a well-defined phase relationship with 
respect to the received data so that the flipflop samples the high and low levels "optimally," 
i.e., at the midpoint of each bit. The task of generating such a clock from the incoming 
data is called "clock recovery." The overall operation of clock recovery and data cleanup is 
called "clock and data recovery" (CDR). Figure 1.3 shows the complete system. Note that 
the laser driver incorporates power control (Chapter 10) and the TIA employs automatic 
gain control (AGC) (Chapter 4). 

Input 
Data 

: Output 
Data 

Figure 1.3 Complete system. 
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1.3 Design Challenges 

While the system topology of Fig. 1.3 has not changed much over the past several decades, 
the design of its building blocks and the levels of integration have. Motivated by the evolu-
tion and affordability of IC technologies as well as the demand for higher performance, this 
change has created new challenges, necessitating new circuit and architecture techniques. 
We review some of the challenges here. 

The transmitter of Fig. 1.3 entails several issues that manifest themselves at high speeds 
and/or in scaled IC technologies. Since the jitter of the transmitted data is determined pri-
marily by that of the PLL, a robust, low-noise design with high supply and substrate rejec-
tion becomes essential. Furthermore, the design of skew-free multiplexers proves difficult 
at high data rates. 

Another critical challenge arises from the laser driver, a circuit that must deliver tens 
of milliamperes of current with very short rise and fall times. Since laser diodes may ex-
perience large voltage swings between on and off states, the driver design becomes more 
difficult as scaled technologies impose lower supply voltages. The package parasitics also 
severely limit the speed with which such high currents can be switched to the laser [2]. 

The optical components in Fig. 1.3, namely, the laser diode, the fiber, and the photodi-
ode, introduce their own nonidealities, requiring close interaction between electronic and 
optical design. Effects such as chirp, dispersion, attenuation, and efficiency play a major 
role in the overall link budget. 

The receiver of Fig. 1.3 also presents many problems. The noise, gain, and bandwidth 
of the TIA and the limiter directly impact both the sensitivity and the speed of the overall 
system, raising additional issues as the supply voltage scales down. Moreover, the clock 
and data recovery functions must provide a high speed, tolerate long runs (sequences of 
identical bits), and satisfy stringent jitter and bandwidth requirements. 

Full integration of the transceiver shown in Fig. 1.3 on a single chip raises a number 
of concerns. The high-speed digital signals in the MUX and DMUX may corrupt the re-
ceiver input or the oscillators used in the PLL and the CDR circuit. The high slew rates 
produced by the laser driver may lead to similar corruptions and also desensitize the TIA. 
Finally, since the oscillators in the transmit PLL and the receive CDR circuit operate at 
slightly different frequencies (with the difference given by the mismatch between the crys-
tal frequencies in two communicating transceivers), they may "pull" each other, generating 
substantial jitter. 

The above issues have resulted in multichip solutions that integrate the noisy and sensi-
tive functions on different substrates. The dashed boxes in Fig. 1.3 indicate a typical par-
titioning, suggesting the following single-chip blocks: the PLL/MUX circuit (also called 
the "serializer"), the laser driver along with its power control circuitry, the TIA/limiter 
combination, and the CDR/MUX circuit (also called the "deserializer"). Recent work has 
integrated the serializer and deserializer (producing a "SERDES") but the TX and RX am-
plifiers may remain in isolation. 
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1.4 State of the Art 

The new optical revolution is reminiscent of the monumental change that radio-frequency 
(RF) design began to experience in the early 1990s. This resurgence entails three important 
trends: (1) Modular, general-purpose building blocks are gradually replaced by end-to-
end solutions that benefit from device/circuit/architecture codesign. (2) Greater levels of 
integration on a single chip provide higher performance and lower cost. (3) Mainstream 
VLSI technologies such as CMOS and BiCMOS continue to take over the territories thus 
far claimed by GaAs and InP devices. Modern OC transceiver applications continue to 
challenge designers along many dimensions. 

Realization in CMOS Technology The cost and integration advantages of CMOS 
technology have motivated extensive work on high-speed CMOS design. Issues such as 
noise, speed, voltage headroom, and substrate coupling pose many difficulties in the design 
of CMOS transceivers. Research on 10-Gb/s CMOS CDR circuits yielded results in 2000 
[3], and CMOS serializers and deserializers operating at this rate were reported in 2002 
[4, 5]. 

Speed With the increasing volume of data transported in the backplane of the Internet, 
optical communication at rates of 40 Gb/s has become attractive. Such high speeds emerge 
as a new territory for IC design because prior work at these frequencies ("millimeter-wave 
frequencies") has been limited to narrowband, low-complexity circuits for wireless ap-
plications. Pushing bipolar and, preferably, CMOS technologies to such speeds, designers 
must cope with broadband characterization of active and passive devices, transmission-line 
behavior of on-chip interconnects, and high-speed packaging issues. A 40-Gb/s SiGe CDR 
circuit has been reported in [6]. 

Level Of Integration Integrating a complete SERDES on a single CMOS chip serves as 
the first step toward much greater sophistication in OC transceiver design. Two important 
trends particularly suited to CMOS technology are: (1) integration of the SERDES along 
with the large digital processor that interfaces with the network (the "framer"); such inte-
gration eliminates a large number of high-speed printed-circuit board (PCB) lines between 
the two, simplifying the package design and saving substantial power. (2) integration of 
multiple SERDES on one chip; since the total data rate can be increased through the use 
of multiple light wavelengths on a single fiber, an important thrust is to integrate several 
SERDES on the same substrate, thereby increasing the "port density." 

Power Dissipation At high speeds and/or high port densities, the power dissipation 
of optical transceivers becomes critical as it determines the type and size of the package 
in which the entire module is housed. Today's 10-Gb/s SERDES consume about 1 W of 
power, leading to serious packaging issues if four must be integrated on one chip. Interest-
ingly, the low supply voltage required for deep-submicron CMOS technologies does reduce 
the overall power dissipation (e.g., in the output buffers) while making circuit design more 
difficult. 



References 7 

References 
1. D. G. Goff, Fiber Optic Reference Guide, Boston: Focal Press, 1999. 
2. H.-M. Rein and M. Möller, "Design Considerations for Very High Speed Si Bipolar ICs Op-

erating up to 50 Gb/s," IEEE Journal of Solid-State Circuits, vol. 31, pp. 1076-1090, August 
1996. 

3. J. Savoj and B. Razavi, "A 10-Gb/s CMOS Clock and Data Recovery Circuit," Symp. on VLSI 
Circuits Dig. of Tech. Papers, pp. 136-139, June 2000. 

4. M. M. Green et al., "OC-192 Transmitter in Standard 0.18-/xm CMOS," ISSCC Dig. of Tech. 
Papers, pp. 186-187, Feb. 2002. 

5. J. Cao et al, "OC-192 Receiver in Standard 0.18-/im CMOS," ISSCC Dig. of Tech. Papers, pp. 
187-188, Feb. 2002. 

6. M. Reinhold et al., "A Fully Integrated 40-Gb/s Clock and Data Recovery IC with 1:4 DMUX 
in SiGe Technology," IEEE Journal of Solid-State Circuits, vol. 36, pp. 1937-1945, Dec. 2001. 



CHAPTER 2 

Basic Concepts 

This chapter forms the background necessary for the analysis and design of optical com-
munication circuits and systems. We first review the properties of random binary data and 
consider methods of generating pseudo-random sequences. Next, we study the effect of 
bandwidth limitation and noise on random data. Finally, we introduce the concepts of phase 
noise and jitter and review transmission lines. 

2.1 Properties of Random Binary Data 

Most optical communication systems employ simple binary amplitude modulation of the 
lightwave for ease of detection. The random binary sequence (RBS) experiences various 
imperfections in the optical and electrical domains, raising important design issues. In this 
section, we study properties of random data to the extent necessary for circuit and system 
analysis. 

A random binary sequence consists of logical ONEs and ZEROs that carry the infor-
mation and usually occur with equal probabilities [Fig. 2.1(a)]. If each bit period is X¿, 
seconds, we say the bit rate, R^, is equal to 1/T& bits per second.1 The sequence depicted 

ONE 
ONE 

ZERO r _¿TJ 
ZERO 

(a) (b) 

Figure 2.1 Random binary sequence with (a) finite and (b) zero dc content. 

in Fig. 2.1(a) contains a nonzero average value because the logical ZEROs are represented 

We use b/s for random data and Hz for periodic waveforms, e.g., clocks. 
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by a zero voltage (or current). In some cases, it is simpler to view the waveform as shown 
in Fig. 2.1(b), where the ONEs and ZEROs assume equal and opposite values, thereby 
yielding a zero average. 

The random nature of data implies that a binary sequence may contain arbitrarily long 
strings of consecutive ONEs or ZEROs (also called "runs") (Fig. 2.2). We say the data 

=R hrr 
Run 

Figure 2.2 Random binary sequence with long run. 

exhibits a low "transition density." Such strings create difficulties in the design of many 
optical transceiver circuits. In particular, operations such as ac coupling, offset cancella-
tion, and clock recovery are sensitive to low transition densities, failing completely if a 
run becomes arbitrarily long. For this reason, optical communication standards typically 
specify the maximum "run length,"2 i.e., the maximum number of consecutive ONEs or 
ZEROs allowed in the data. A typical run may be as long as 72 bits. To avoid exceeding 
such a run length, the data is encoded properly in the transmitter. 

It is also instructive to examine random binary data in the frequency domain. How is the 
spectrum of a random sequence obtained?3 Let us represent the random binary sequence 
by 

x(t) = Y,hp(t-kTb), (2.1) 

where £>& = ±1 and p(t) denotes the pulse shape. That is, the RBS is viewed as positive 
and negative replicas of a basic pulse that are repeated every T¡, seconds (Fig. 2.3). While 
we can assume that p(t) is simply a rectangular pulse of width Tf,, it is still useful to obtain 

pit) 

O 

+p(t) 
V 

-p(t) 

Figure 2.3 Random sequence viewed as random repetition of a pulse. 

the spectrum of x(t) for an arbitrary p(t). 

2 Also called "consecutive identical digits" (CIDs). 
3The spectrum of a waveform indicates how much power the signal carries in a 1-Hz bandwidth at each 

frequency. 
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It can be proved that, if the positive and negative pulses in (2.1) occur with equal prob-
abilities, then the power spectral density of x(t) is given by 

$■(/) = j r | P ( / ) | 2 , (2.2) 

where P(f) represents the Fourier transform of p(t) [1]. Equation (2.2) reveals many inter-
esting properties of various data formats used in communications. As we will see through-
out this book, many of these properties directly impact the design of transceivers. 

Let us now compute Sx(f) if p(t) is a rectangular pulse T& seconds wide and repeated 
every T& seconds. Since the Fourier transform of such a pulse is equal to 

PU) = n 
sin(7T/Tt) 

7T/Ï6 ' 

the spectrum of the random sequence is expressed as 

Sx(f)=Tb 
sin(^/T6) 

vfTb 

(2.3) 

(2.4) 

Noting that sin(7r/T&) vanishes at / = n/Tb for integer values of n, we construct the 
spectrum as shown in Fig. 2.4(a). To show a wider magnitude range of Sx (/), it is common 

SxOi 

Tb Tb Tb 

(a) (b) 
Figure 2.4 Spectrum of random binary data with (a) linear and (b) logarithmic vertical scale. 

to use a logarithmic scale for the vertical axis [Fig. 2.4(b)!. 
The above analysis yields an important attribute of random binary sequences. For a 

bit rate of 1/Ti, the spectrum exhibits no power at frequencies equal to 1/T&, 2/T&, 
etc. In other words, if the waveform is applied to a 1-Hz bandpass filter centered at 
/ = 1/T&, 2/Tfc, • • -, very little energy is observed. For example, a 10-Gb/s sequence does 
not contain a 10-GHz component [Fig. 2.5(a)]. This somewhat surprising result is better 
understood if we note that the fastest waveform at 10 Gb/s consists of a 1010 sequence 
with each bit 100 ps wide [Fig. 2.5(b)]. Such a signal is a 5-GHz square wave, containing 
only odd harmonics at 5 GHz, 15 GHz, etc. Another method of proving the existence of 
the nulls is described in Section 2.2. 


