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Introduction

When I was an undergraduate in Pittsburgh determined to learn about surface science, John Yates pushed
a copy of Robert and McKee’s Chemistry of the Metal-Gas Interface [1] into my hands, and said “Read
this”. It was very good advice, and this book is a good starting point for surface chemistry. But since the
early 1980s, the field of surface science has changed dramatically. Binnig and Rohrer [2, 3] discovered
the scanning tunnelling microscope (STM) in 1983 [3]. By 1986, they had been awarded the Nobel
Prize in Physics and surface science was changed indelibly. Thereafter, it was possible to image almost
routinely surfaces and surface bound species with atomic-scale resolution. Not long afterward, Eigler and
Schweizer [4] demonstrated that matter could be manipulated on an atom by atom basis. The tremendous
infrastructure of instrumentation, ideas and understanding that has been amassed in surface science is
evident in the translation of the 2004 discovery of Novoselov and Geim [5] of graphene into a body of
influential work recognized by the 2010 Nobel Prize in Physics.

With the inexorable march of smaller, faster, cheaper, better in the semiconductor device industry,
technology was marching closer and closer to surfaces. The STM has allowed us to visualize quantum
mechanics as never before. As an example, two images of a Si(100) surface are shown in Fig. I.1. In one
case, Fig. I.1(a), a bonding state is imaged. In the other, Fig. I.1(b) an antibonding state is shown. Just
as expected, the antibonding state exhibits a node between the atoms whereas the bonding state exhibits
enhanced electron density between the atoms.

The STM ushered in the age of nanoscience; however, surface science has always been about
nanoscience, even when it was not phrased that way. Catalysis has been the traditional realm of
surface chemistry, and 2007 was a great year for surface science as celebrated by the awarding of the
Nobel Prize in Chemistry to Gerhard Ertl “for his studies of chemical processes on solid surface”.
While it was Irving Langmuir’s work – Nobel Prize in Chemistry, 1932 – that established the basis for
understanding surface reactivity, it was not until the work of Gerhard Ertl that surface chemistry emerged
from its black box, and that we were able to understand the dynamics of surface reactions on a truly
molecular level.

Of course, these are not the only scientists to have contributed to the growth of understanding in surface
science, nor even the only Nobel Prize winners. In the pages that follow, you will be introduced to many
more scientists and, hopefully, to many more insights developed by all of them. This book is an attempt,
from the point of view of a dynamicist, to approach surface science as the underpinning science of both
heterogeneous catalysis and nanotechnology.

Surface Science: Foundations of Catalysis and Nanoscience, Third Edition. Kurt W. Kolasinski.
c© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure I.1 Bonding and antibonding electronic states on the Si(100) surface as imaged by STM. Reproduced
with permission from R.J. Hamers, P. Avouris and F. Bozso, Phys. Rev. Lett. 59 (1987) 2071. c©1987 by the
American Physical Society.

I.1 Heterogeneous catalysis

One of the great motivations for studying chemical reactions on surfaces is the will to understand hetero-
geneous catalytic reactions. Heterogeneous catalysis is the basis of the chemical industry. Heterogeneous
catalysis is involved in literally billions of dollars worth of economic activity. Neither the chemical indus-
try nor civilization would exist as we know them today if it were not for the successful implementation
of heterogeneous catalysis. At the beginning of the 20th century, the human condition was fundamentally
changed by the transformation of nitrogen on nanoscale, potassium promoted, iron catalysts to ammonia
and ultimately fertilizer. Undoubtedly, catalysts are the most successful implementation of nanotechnology,

Homogeneous reaction
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catalytic reaction

Reactants

Reaction path

Preferred catalytic reaction
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C
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Ehom > Ecat
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Figure I.2 Activation energies and their relationship to an active and selective catalyst, which transforms A,
the reactant, into B, the desired product, rather than C, the undesired product. Ehom, activation barrier for the
homogeneous reaction; Ecat , activation barrier with use of a catalyst; �rH, change in enthalpy of reactants
compared with products.
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not only contributing towards roughly 1/3 of the material GDP of the US economy [6], but also supporting
an additional 3.2 billion people beyond what the Earth could otherwise sustain [7]. One aim of this book
is to understand why catalytic activity occurs, and how we can control it.

First we should define what we mean by catalysis and a catalyst. The term catalysis (from the Greek
λνσ ιζ and κατα, roughly “wholly loosening”) was coined by Berzelius in 1836 [8]. Armstrong proposed
the word catalyst in 1885. A catalyst is an active chemical spectator. It takes part in a reaction but is not
consumed. A catalyst produces its effect by changing activation barriers as shown in Fig. I.2. As noted by
Ostwald , who was awarded the Nobel Prize in Chemistry in 1909 primarily for this contribution, a catalyst
speeds up a reaction; however, it does not change the properties of the equilibrated state. It does so by
lowering the height of an activation barrier. Remember that whereas the kinetics of a reaction is determined
by the relative heights of activation barriers (in combination with Arrhenius pre-exponential factors), the
equilibrium constant is determined by the Gibbs energy of the initial state relative to the final state.

Nonetheless, the acceleration of reactions is not the only key factor in catalytic activity. If catalysts only
accelerated reactions, they would not be nearly as important or as effective as they actually are. Catalysts
can be designed not only to accelerate reactions: the best of them can also perform this task selectively . In
other words, it is important for catalysts to speed up the right reactions, not simply every reaction. This is
also illustrated in Fig. I.2, wherein the activation barrier for the desired product B is decreased more than
the barrier for the undesired product C.

I.2 Why surfaces?

Heterogeneous reactions occur in systems in which two or more phases are present, for instance, solids
and liquids, or gases and solids. The reactions occur at the interface between these phases. The interfaces
are where the two phases and reactants meet, where charge exchange occurs. Liquid/solid and gas/solid
interfaces are of particular interest because the surface of a solid gives us a place to deposit and immobilize
a catalytic substance. By immobilizing the catalyst, we can ensure that it is not washed away and lost in
the stream of products that are made. Very often catalysts take the form of nanoparticles (the active agent)
attached to the surfaces of high surface area porous solids (the substrate).

However, surfaces are of particular interest not only because they are where phases meet, and because
they give us a place to put catalysts. The surface of a solid is inherently different than the rest of the solid
(the bulk) because its bonding is different. Therefore, we should expect the chemistry of the surface to be
unique. Surface atoms simply cannot satisfy their bonding requirements in the same way as bulk atoms.
Therefore, surface atoms will always have a propensity to react in some way, either with each other or
with foreign atoms, to satisfy their bonding requirements.

I.3 Where are heterogeneous reactions important?

To illustrate a variety of topics in heterogeneous catalysis, I will make reference to a list of catalytic
reactions that I label the (unofficial) Industrial Chemistry Hall of Fame. These reactions are selected not
only because they demonstrate a variety of important chemical concepts, but also because they have also
been of particular importance both historically and politically.

I.3.1 Haber-Bosch process

N2 + 3H2 → 2NH3
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Nitrogen fertilizers underpin modern agriculture [7]. The inexpensive production of fertilizers would not
be possible without the Haber-Bosch process. Ammonia synthesis is almost exclusively performed over an
alkali metal promoted Fe catalyst invented by Haber, optimized by Mittasch and commercialized by Bosch.
The establishment of the Haber-Bosch process is a fascinating story [7]. Ostwald (who misinterpreted his
results), Nernst (who thought yields were intolerably low and abandoned further work), and Le Châtelier
(who abandoned his work after an explosion in his lab), all could have discovered the secret of ammonia
synthesis but did not. Technical innovations such as lower pressure reforming and synthesis, better catalysts
and integrated process designs have reduced the energy consumption per ton of fixed nitrogen from
120 GJ to roughly 30 GJ, which is only slightly above the thermodynamic limit. This represents an
enormous cost and energy usage reduction since over 130 million metric tons (MMt) of NH3 are produced
each year.

Ammonia synthesis is a structure sensitive reaction. Already a number of questions arise. Why an Fe
catalyst? Why is the reaction run at high pressure and temperature? What do we mean by promoted, and
why does an alkali metal act as a promoter? What is a structure sensitive reaction? What is the reforming
reaction used to produce hydrogen, and how is it catalyzed? By the end of this book all of the answers
should be clear.

I.3.2 Fischer-Tropsch chemistry

H2+ CO → methanol or liquid fuels or other hydrocarbons (HC) and oxygenates

Fischer-Tropsch chemistry transforms synthesis gas (H2+ CO, also called syngas) into useful fuels and
intermediate chemicals. It is the chemistry, at least in part, that makes synthetic oils that last 8000 km instead
of 5000 km. It is the basis of the synthetic fuels industry, and has been important in sustaining economies
that were shut off from crude oil, two examples of which were Germany in the 1930s and 1940s and, more
recently, South Africa. It represents a method of transforming either natural gas or coal into more useful
chemical intermediates and fuels. Interest in Fischer-Tropsch chemistry is rising again, not only because
of the discovery of new and improved capture from old sources of natural gas, but also because biomass
may also be used to produce synthesis gas, which is then converted to diesel or synthetic crude oil [9].

Fischer-Tropsch reactions are often carried out over Fe or Co catalysts. However, while Fischer-Tropsch
is a darling of research labs, industrialists often shy away from it because selectivity is a major concern.
A nonselective process is a costly one, and numerous products are possible in FT synthesis while only a
select few are desired for any particular application.

I.3.3 Three-way catalyst

NOx , CO and HC → H2O + CO2 + N2

Catalysis is not always about creating the right molecule. It can equally well be important to destroy
the right molecules. Increasing automobile use translates into increasing necessity to reduce automotive
pollution. The catalytic conversion of noxious exhaust gasses to more benign chemicals has made a massive
contribution to the reduction of automotive pollution. The three-way catalyst is composed of Pt, Rh and
Pd. Pb rapidly poisons the catalyst. How does this poisoning (loss of reactivity) occur?

I.4 Semiconductor processing and nanotechnology

The above is the traditional realm of heterogeneous catalytic chemistry. However, modern surface science
is composed of other areas as well, and has become particularly important to the world of micro- and
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nanotechnology [10–12]. Critical dimensions in microprocessors dropped below 100 nm in 2004 and now
stand at 32 nm. The thickness of insulating oxide layers is now only 4–5 atomic layers. Obviously, there
is a need to understand materials properties and chemical reactivity at the molecular level if semiconductor
processing is to continue to advance to even smaller dimensions. It has already been established that surface
cleanliness is one of the major factors affecting device reliability. Eventually, however, the engineers will
run out of “room at the bottom”. Furthermore, as length scales shrink, the effects of quantum mechanics
inevitably become of paramount importance. This has led to the thought that a whole new device world
may exist, which is ruled by quantum mechanical effects. Devices such as a single electron transistor
have been built. Continued fabrication and study of such devices requires an understanding of atomic
Legos® – the construction of structures on an atom-by-atom basis.

Figure I.3 shows images of some devices and structures that have been crafted at surfaces. Not only
electronic devices are of interest. Microelectromechanical and nanoelectromechanical systems (MEMS and
NEMS) are attracting increasing interest. The first commercial example is the accelerometer, which triggers
airbags in cars and lets your iPhoneTM know whether it should present its display in landscape or portrait
mode. These structures are made by a series of surface etching and growth reactions.

The ultimate control of growth and etching would be to perform these one atom at a time. Figure I.4
demonstrates how H atoms can be removed one by one from a Si surface. The uncovered atoms are
subsequently covered with oxygen, then etched. In Fig. I.4(b) we see a structure built out of Xe atoms. There
are numerous ways to create structures at surfaces. We will investigate several of these in which the architect
must actively pattern the substrate. We will also investigate self-assembled structures, that is, structures that
form spontaneously without the need to push around the atoms or molecules that compose the structure.

I.5 Other areas of relevance

Surface science touches on a vast array of applications and basic science. The fields of corrosion, adhesion
and tribology are all closely related to interfacial properties. The importance of heterogeneous processes
in atmospheric and interstellar chemistry has been realized [13]. Virtually all of the molecular hydrogen
that exists in the interstellar medium had to be formed on the surfaces of grains and dust particles. The
role of surface chemistry in the formation of the over 100 other molecules that have been detected in outer
space remains an active area of research [14–16]. Many electrochemical reactions occur heterogeneously.
Our understanding of charge transfer at interfaces and the effects of surface structure and adsorbed species
remain in a rudimentary but improving state [17–21].

I.6 Structure of the book

The aim of this book is to provide an understanding of chemical transformations and the formation of
structures at surfaces. To do these we need to (i) assemble the appropriate vocabulary, and (ii) gain a
familiarity with an arsenal of tools and a set of principles that guide our thinking, aid interpretation and
enhance prediction. Chapter 1 introduces us to the structure (geometric, electronic and vibrational) of
surfaces and adsorbates. This gives us a picture of what surfaces look like, and how they compare to
molecules and bulk materials. Chapter 2 introduces the techniques with which we look at surfaces. We
quickly learn that surfaces present some unique experimental difficulties. This chapter might be skipped
in a first introduction to surface science. However, some of the techniques are themselves methods for
surface modification. In addition, a deeper insight into surface processes is gained by understanding the
manner in which data are obtained. Finally, a proper reading of the literature cannot be made without an
appreciation of the capabilities and limitations of the experimental techniques.
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Figure I.3 Examples of devices and structures that are made by means of surface reactions, etching and
growth. (a) Transmission electron micrograph of yttria (Y2O3) nanocrystals in an yttrium barium copper oxide
(YBCO) matrix. (b) Yttria nanocrystal embedded in YBCO layer of a second generation high temperature (high
Tc) superconductor. Panels (a) and (b) reproduced from M. W. Rupich et al., IEEE Transactions on Applied
Superconductivity 15, 2611. Copyright (2003), with permission from the IEEE. (c) An advanced CMOS device
incorporating a low dielectric constant (low k) insulating layer. Reproduced from T. Torfs, V. Leonov, R. J. M.
Vullers, Sensors and Transducers Journal, 80, 1230. Copyright (2007), with permission from the International
Frequency Sensor Association (http://www.sensorsportal.com). (d) Micromachined thermoelectric generator
fabricated on a silicon rim.

After these foundations have been set in the first two chapters, the next two chapters elucidate dynamical,
thermodynamic and kinetic principles concentrating on the gas/solid interface. These principles allow us to
understand how and why chemical transformations occur at surfaces. They deliver the mental tools required
to interpret the data encountered at liquid interfaces (Chapter 5) as well as in catalysis (Chapter 6), and
growth and etching (Chapter 7) studies. Finally, in Chapter 8, we end with a chapter that resides squarely
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(a) (b)

Figure I.4 Examples of surface manipulation with atomic-scale resolution. (a) Nanolithography can be performed
on a hydrogen-terminated silicon surface using a scanning tunnelling microscope (STM) tip to remove H atoms
one at a time from the surface. (b) Individual Xe atoms can be moved with precision by an STM tip to write on
surfaces. Panel (a) reproduced with permission from T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding,
P. Avouris and R. E. Walkup, Science 268 (1995) 1590. c© 1995 American Association for the Advancement of
Science. Panel (b) reproduced with permission from D. M. Eigler and E. K. Schweizer, Nature 344 (2000) 524.
c© 2000 Macmillan Magazines Ltd.

at the frontier of our knowledge: an investigation of the interfacial process probed and exited by photons,
electrons and proximal probes.

Each chapter builds from simple principles to more advanced ones. Each chapter is sprinkled with
Advanced Topics. The Advanced Topics serve two purposes. First, they provide material beyond the
introductory level and can be skipped so as not to interrupt the flow of the introductory material. Second,
they highlight some frontier areas. The frontiers are often too complex to explain in depth at the introductory
level; nonetheless, they are included to provide a taste of the exciting possibilities of what can be done with
surface science. Each chapter is also accompanied by exercises. The exercises act not only to demonstrate
concepts arising in the text, but also as extensions to the text. They truly are an integral part of the whole
and their solutions comprise the last eight chapters of this book. The exercises are not meant to be mere
problems with answers to look up. Rather, they are intended to be exercises in problem solving applying
the material in the text. The solutions, therefore, not only highlight and extend the material covered
in the first eight chapters, they also detail methods of problem solving and the melding of concepts with
mathematics to develop answers. Additional exercises can be found at the website that supports this book
http://courses.wcupa.edu/kkolasinski/surfacescience/.
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Energy

1 eV 1.602176 × 10−19 J
1 eV/hc 8065.5 cm−1

1 meV/hc 8.0655 cm−1

1 eV/particle 96.485 kJ mol−1

1 kcal mol−1 4.184 kJ mol−1

Impingement Rate

Zw = NAp(2πMRT )−1/2 M = molar mass
Zw = p(2πmkBT )−1/2 m = particle mass

Zw = 3.51 × 1022 cm−2 s−1(p/
√

MT ) Z w in cm−2 s−1, M in g mol−1, p in torr, T in K

Zw = 2.63 × 1024 m−2 s−1(p/
√

MT ) Z w in m−2 s−1, M in g mol−1, p in Pa

Pressure

1 atm = 101325 Pa = 1013.25 mbar = 760 torr
1 bar = 105 Pa
1 torr = 1.3332 mbar = 133.32 Pa

Quantity Symbol Value Units

Boltzmann constant kB 1.38066 10−23 J K−1

8.61741 10−5 eV K−1

Planck constant h 6.62608 10−34 J s
� = h/2π 1.05457 10−34 J s

Avogadro constant NA 6.02214 1023 mol−1

Bohr radius a0 5.29177 10−11 m
Rydberg constant R∞ 1.09737 105 cm−1

Speed of light c 2.99792458 108 m s−1

Faraday constant F = NAe 9.64853 104 C mol−1

Elementary charge e 1.602176 10−19 C
Gas constant R = NAkB 8.31451 J K−1 mol−1

Vacuum permittivity ε0 8.85419 10−12 J−1 C2 m−1

Atomic mass unit u 1.66054 10−27 kg
Electron mass me 9.10939 10−31 kg
Proton mass mp 1.67262 10−27 kg
Neutron mass mn 1.67493 10−27 kg



1
Surface and Adsorbate Structure

We begin with some order of magnitude estimates and rules of thumb that will be justified in the remainder
of this book. These estimates and rules introduce and underpin many of the most important concepts in
surface science. The atom density in a solid surface is roughly 1015 cm−2 (1019 m−2). The Hertz-Knudsen
equation

Zw = p

(2πmkBT )1/2
(1.0.1)

relates the flux of molecules striking a surface, Zw, to the pressure (or, equivalently, the number density).
Combining these two, we find that if the probability that a molecule stays on the surface after it strikes it
(known as the sticking coefficient s) is unity, then it takes roughly 1 s for a surface to become covered with
a film one molecule thick (a monolayer) when the pressure is 1 × 10−6 Torr. The process of molecules
sticking to a surface is called adsorption. If we heat up the surface with a linear temperature ramp, the
molecules will eventually leave the surface (desorb) in a well-defined thermal desorption peak, and the
rate of desorption at the top of this peak is roughly one monolayer per second. When molecules adsorb
via chemical interactions, they tend to stick to well-defined sites on the surface. An essential difference
between surface kinetics and kinetics in other phases is that we need to keep track of the number of empty
sites. Creating new surface area is energetically costly and creates a region that is different from the bulk
material. Size dependent effects lie at the root of nanoscience, and two of the primary causes of size
dependence are quantum confinement and the overwhelming of bulk properties by the contributions from
surfaces.

We need to understand the structure of clean and adsorbate-covered surfaces and use this as a foundation
for understanding surface chemical processes. We will use our knowledge of surface structure to develop a
new strand of chemical intuition that will allow us to know when we can apply things that we have learned
from reaction dynamics in other phases and when we need to develop something completely different to
understand reactivity in the adsorbed phase.

What do we mean by surface structure? There are two inseparable aspects to structure: electronic
structure and geometric structure. The two aspects of structure are inherently coupled and we should never
forget this point. Nonetheless, it is pedagogically helpful to separate these two aspects when we attack
them experimentally and in the ways that we conceive of them.

When we speak of structure in surface science we can further subdivide the discussion into that of the
clean surface, the surface in the presence of an adsorbate (substrate structure) and that of the adsorbate

Surface Science: Foundations of Catalysis and Nanoscience, Third Edition. Kurt W. Kolasinski.
c© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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(adsorbate structure or overlayer structure). That is, we frequently refer to the structure of the first few
layers of the substrate with and without an adsorbed layer on top of it. We can in addition speak of the
structure of the adsorbed layer itself. Adsorbate structure not only refers to how the adsorbed molecules
are bound with respect to the substrate atoms but also how they are bound with respect to one another.

1.1 Clean surface structure

1.1.1 Ideal flat surfaces

Most of the discussion here centres on transition metal and semiconductor surfaces. First we consider
the type of surface we obtain by truncating the bulk structure of a perfect crystal. The most important
crystallographic structures of metals are the face-centred cubic (fcc), body-centred cubic (bcc) and hexag-
onal close-packed (hcp) structures. Many transition metals of interest in catalysis take up fcc structures
under normal conditions. Notable exceptions are Fe, Mo and W, which assume bcc structures and Co
and Ru, which assume hcp structures. The most important structure for elemental (group IV: C, Si, Ge)
semiconductors is the diamond lattice whereas compound semiconductors from groups III and V (III-V
compounds, e.g. GaAs and InP) assume the related zincblende structure.

A perfect crystal can be cut along any arbitrary angle. The directions in a lattice are indicated by the
Miller indices. Miller indices are related to the positions of the atoms in the lattice. Directions are uniquely
defined by a set of three (fcc, bcc and diamond) or four (hcp) rational numbers and are denoted by enclosing
these numbers in square brackets, e.g. [100]. hcp surfaces can also be defined by three unique indices and
both notations are encountered as shown in Fig. 1.3. A plane of atoms is uniquely defined by the direction
that is normal to the plane. To distinguish a plane from a direction, a plane is denoted by enclosing the
numbers associated with the defining direction in parentheses, e.g. (100). The set of all related planes with
permutations of indices, e.g. (100), (010), (001) etc, is denoted by curly brackets such as {001}.

The most important planes to learn by heart are the low index planes. Low index planes can be thought
of as the basic building blocks of surface structure as they represent some of the simplest and flattest of
the fundamental planes. The low-index planes in the fcc system, e.g. (100), (110) and (111), are shown in
Fig. 1.1. The low-index planes of bcc symmetry are displayed in Fig. 1.2, and the more complex structures
of the hcp symmetry are shown in Fig. 1.3.

The ideal structures shown in Fig. 1.1 demonstrate several interesting properties. Note that these surfaces
are not perfectly isotropic. We can pick out several high-symmetry sites on any of these surfaces that are
geometrically unique. On the (100) surface we can identify sites of one-fold (on top of and at the centre of

(a) (b) (c)

Figure 1.1 Hard sphere representations of face-centred cubic (fcc) low index planes: (a) fcc(100); (b) fcc(111);
(c) fcc(110).
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(a) (b) (c)

Figure 1.2 Hard sphere representations of body-centred cubic (bcc) low index planes: (a) bcc(100); (b) bcc(110);
(c) bcc(211).

(a) (b) (c)

Figure 1.3 Hard sphere representations of hexagonal close-packed (hcp) low index planes: (a) hcp(001) =
(0001); (b) hcp(1010) = hcp(100); (c) hcp(1120) = hcp(110).

one atom), two-fold (bridging two atoms) or four-fold co-ordination (in the hollow between four atoms).
The co-ordination number is equal to the number of surface atoms bound directly to the adsorbate. The
(111) surface has one-fold, two-fold and three-fold co-ordinated sites. Among others, the (110) presents
two different types of two-fold sites: a long bridge site between two atoms on adjacent rows and a
short bridge site between two atoms in the same row. As one might expect based on the results of co-
ordination chemistry, the multitude of sites on these surfaces leads to heterogeneity in the interactions
of molecules with the surfaces. This is important in our discussions of adsorbate structure and surface
chemistry.

A very useful number is the surface atom density, σ0. Nicholas [1] has shown that there is a simple
relationship between σ0 and the Miller indices hkl ,

σ0 = 1

Ahkl
= 4

Qa2(h2 + k2 + l2)1/2
for fcc and bcc (1.1.1)

and

σ0 = 1

Ahkl
= 2

a2[4r2(h2 + hk + k2) + 3l2]1/2
for hcp (1.1.2)


