Edited by
Conor R. Caffrey

Parasitic Helminths
Titles of the Series “Drug Discovery in Infectious Diseases”

Selzer, P. M. (ed.)
Antiparasitic and Antibacterial Drug Discovery
From Molecular Targets to Drug Candidates
2009
ISBN: 978-3-527-32327-2

Becker, K. (ed.)
Apicomplexan Parasites
Molecular Approaches toward Targeted Drug Development
2011
ISBN: 978-3-527-32731-7

Forthcoming Topics of the Series
• Drug Discovery for Trypanosomatid Diseases
• Protein Phosphorylation in Parasites: Novel Targets for Antiparasitic Intervention

Related Titles

Gunn, A., Pitt, S. J.
Parasitology
An Integrated Approach
2012

Schwartz, E.
Tropical Diseases in Travelers
2009
ISBN: 978-1-4051-8441-0

Scott, I., Sutherland, I.
Gastrointestinal Nematodes of Sheep and Cattle
Biology and Control
2009
ISBN: 978-1-4051-8582-0
The cover depicts a phylogenetic tree based on the ligand binding regions of putative ligand-gated ion channel genes. Nematode, platyhelminth, insect and vertebrate sequences are shown in shades of green, yellow, purple and red, respectively. Some C. elegans and human subunits are indicated and the labels for proteins involved in drug susceptibility to levamisole, monepantel and ivermectin are colored in cyan, orange and blue, respectively (see Rufener et al., PLoS Pathogens (2010) 6(9):e1001091; courtesy of R. Kaminsky; see Chapter 17 for details). Left inset: freshly hatched *Ascaridia galli* larva (courtesy of M. Uphoff, Intervet Innovation GmbH, MSD AH; see Chapter 9 for details). Right inset: ribbon representation of the crystal structure of the *Schistosoma mansoni* Sm14 fatty acid binding protein in complex with arachidonic acid that is shown in a space fill representation (PDB 1VYG). The image was prepared by R. Marhöfer, Intervet Innovation GmbH, MSD AH and based on an original adapted from Angelucci et al., Biochemistry (2004) 43:13000-13011 that was kindly provided by M. Tendler (see Chapter 26 for details).
Foreword to *Parasitic Helminths: Targets, Screens, Drugs and Vaccines*

Peter Hotez

The last decade has witnessed a renewed interest in neglected diseases caused by parasitic helminths, especially for the high prevalence gastrointestinal nematode infections, filarial infections, schistosomiasis, food-borne trematodiases and larval cestode infections. A number of factors have contributed to this resurgent interest in helminthic infections as global health threats:

1) There is new information suggesting that parasitic helminthiases are the most common causes of infection among the “bottom billion”, *i.e.*, the 1.4 billion world’s poorest people who live below the World Bank poverty level in developing countries of Asia, Africa, and the Americas. The major helminthiases include 600–800 million people with one or more soil-transmitted helminth infection, 400–600 million with schistosomiasis, more than 100 million people filarial infections and tens of millions with food-borne trematode infections.

2) Additional studies have revealed that some of the most prevalent parasitic helminths may increase susceptibility to the “big three” diseases, *i.e.*, HIV/AIDS, malaria and tuberculosis or exacerbate the morbidities of the big three diseases.

3) According to some estimates the major parasitic helminth infections together cause a disease burden measured in disability adjusted life years that may rival or even exceed the big three conditions, while additional information indicates that these helminthiases may actually cause poverty through their deleterious effects on child growth and cognitive development, pregnancy outcome and agricultural worker productivity.

The global health community has responded to this public health threat by expanding efforts directed at mass drug administration (MDA). For example, using either diethylcarbamazine citrate or ivermectin together with albendazole, lymphatic filariasis (LF) has been eliminated as a public health problem in more than 20 countries, while through annual treatments with ivermectin, onchocerciasis has been eliminated in Senegal and Mali and may soon be eliminated from the Americas. Simultaneously, large scale financial support from the United States Agency for International Development (USAID), the British Department for International Development (DFID) and the non-profit Global Network for Neglected Tropical
Diseases has facilitated combining LF and onchocerciasis MDA efforts with MDA for soil-transmitted helminth infections and schistosomiasis to create “rapid impact” packages of anthelmintic interventions in national programs of helminth control in more than a dozen African countries, in addition to selected countries in Asia, Latin America and the Caribbean.

The promise of MDA for parasitic helminth infections has generated excitement among the international community that it might be possible to one day eliminate several helminthiases globally thereby achieving successes on this front that cannot yet be imagined for any of the big three diseases. However, there are warning signs that MDA with currently available drugs might fail to achieve such expectations: 1) high rates of mebendazole drug failure have been reported for hookworm infection caused by *Necator americanus* and trichuriasis, i.e., two of the helminth infections with the greatest prevalence; 2) there is the looming specter of benzimidazole drug resistance among gastrointestinal nematodes of humans as has already occurred for nematode parasites of livestock, and 3) it has been shown that high rates of post-treatment re-infection occur for most of the major soil-transmitted helminth infections, schistosomiasis, and opisthorchiasis and other food-borne trematode infections.

Such concerns highlight the urgent need to develop and maintain a pipeline of new anthelmintic drugs in addition to anthelmintic vaccines to prevent infection or re-infection. Sadly, there is a glaring disconnect between the urgency for research and development (R&D) for new anthelmintic products and the global R&D budget for helminthiases. According to the global health think tank, Policy Cures, less than $100 million annually is spent on R&D for all human helminthiases compared to more than $3 billion spent annually on R&D for all the other neglected infections, including the big three diseases.

This volume summarizes the work of dedicated investigators in the medical and veterinary fields who are applying the latest technologies to discover the next generation of anthelmintic drugs and vaccines. Despite the difficulty in working with parasitic helminths in the laboratory, these investigators are overcoming significant hurdles in the study of the world’s most important helminths affecting more than a billion people worldwide and countless livestock.

Their work is leading to a new generation of advances and represents the best in science and in the pursuit of humanitarian goals.

Peter Hotez MD PhD is Dean of the National School of Tropical Medicine and Professor of Pediatrics and Molecular Virology & Microbiology, Texas Children’s Hospital and Baylor College of Medicine, Houston, Texas, USA
Contents

Foreword to Parasitic Helminths: Targets, Screens, Drugs and Vaccines V

Preface XI

List of Contributors XIII

Part One Targets 1

1 Ligand-Gated Ion Channels as Targets for Anthelmintic Drugs: Past, Current, and Future Perspectives 3
Kristin Lees*, Ann Sluder, Niroda Shannan, Lance Hammerland, and David Sattelle

2 How Relevant is Caenorhabditis elegans as a Model for the Analysis of Parasitic Nematode Biology? 23
Lindy Holden-Dye* and Robert J. Walker

3 Integrating and Mining Helminth Genomes to Discover and Prioritize Novel Therapeutic Targets 43
Dhanasekaran Shanmugam, Stuart A. Ralph, Santiago J. Carmona, Gregory J. Crowther, David S. Roos, and Fernán Agüero*

4 Recent Progress in Transcriptomics of Key Gastrointestinal Nematodes of Animals – Fundamental Research Toward New Intervention Strategies 61
Cinzia Cantacessi, Bronwyn E. Campbell, Aaron R. Jex, Ross S. Hall, Neil D. Young, Matthew J. Nolan, and Robin B. Gasser*

5 Harnessing Genomic Technologies to Explore the Molecular Biology of Liver Flukes-Major Implications for Fundamental and Applied Research 73
Neil D. Young*, Aaron R. Jex, Cinzia Cantacessi, Bronwyn E. Campbell, and Robin B. Gasser
6 RNA Interference: A Potential Discovery Tool for Therapeutic Targets of Parasitic Nematodes 89
Collette Britton

7 RNA Interference as a Tool for Drug Discovery in Parasitic Flatworms 105
Akram A. Da’dara and Patrick J. Skelly

Part Two Screens 121

8 Mechanism-Based Screening Strategies for Anthelmintic Discovery 123
Timothy G. Geary

9 Identification and Profiling of Nematicidal Compounds in Veterinary Parasitology 135
Andreas Rohwer, Jürgen Lutz, Christophe Chassaing, Manfred Uphoff, Anja R. Heckeroth, and Paul M. Selzer

10 Quantitative High-Content Screening-Based Drug Discovery against Helminthic Diseases 159
Rahul Singh

11 Use of Rodent Models in the Discovery of Novel Anthelmintics 181
Rebecca Fankhauser, Linsey R. Cozzie, Bakela Nare, Kerrie Powell, Ann E. Sluder, and Lance G. Hammerland

12 To Kill a Mocking Worm: Strategies to Improve Caenorhabditis elegans as a Model System for use in Anthelmintic Discovery 201
Andrew R. Burns and Peter J. Roy

Part Three Drugs 217

13 Anthelmintic Drugs: Tools and Shortcuts for the Long Road from Discovery to Product 219
Eugenio L. de Hostos and Tue Nguyen

14 Antinematodal Drugs – Modes of Action and Resistance: And Worms Will Not Come to Thee (Shakespeare: Cymbeline: IV, ii) 233
Alan P. Robertson, Samuel K. Buxton, Sreekanth Puttachary, Sally M. Williamson, Adrian J. Wolstenholme, Cedric Neveu, Jacques Cabaret, Claude L. Charvet, and Richard J. Martin

15 Drugs and Targets to Perturb the Symbiosis of Wolbachia and Filarial Nematodes 251
Mark J. Taylor, Louise Ford, Achim Hoerauf, Ken Pfarr, Jeremy M. Foster, Sanjay Kumar, and Barton E. Slatko
16 Promise of *Bacillus thuringiensis* Crystal Proteins as Anthelmintics 267
   Yan Hu and Raffi V. Aroian*

17 Monepantel: From Discovery to Mode of Action 283
   Ronald Kaminsky* and Lucien Rufener

18 Discovery, Mode of Action, and Commercialization of Derquantel 297
   Debra J. Woods*, Steven J. Maeder, Alan P. Robertson,
   Richard J. Martin, Timothy G. Geary, David P. Thompson,
   Sandra S. Johnson, and George A. Conder

19 Praziquantel: Too Good to be Replaced? 309
   Livia Pica-Mattoccia* and Donato Cioli

20 Drug Discovery for Trematodiases: Challenges and Progress 323
   Conor R. Caffrey*, Jürg Utzinger, and Jennifer Keiser

Part Four Vaccines 341

21 Barefoot thru’ the Valley of Darkness: Preclinical Development of a Human Hookworm Vaccine 343
   Jeffrey M. Bethony*, Maria Victoria Periago, and Amar R. Jariwala

22 Vaccines Linked to Chemotherapy: A New Approach to Control Helminth Infections 357
   Sara Lustigman*, James H. McKerrow, and Maria Elena Bottazzi

23 Antifilarial Vaccine Development: Present and Future Approaches 377
   Sara Lustigman*, David Abraham, and Thomas R. Klei

24 Proteases as Vaccines Against Gastrointestinal Nematode Parasites of Sheep and Cattle 399
   David Knox

25 Schistosomiasis Vaccines – New Approaches to Antigen Discovery and Promising New Candidates 421
   Alex Loukas*, Soraya Gaze, Mark Pearson, Denise Doolan,
   Philip Felgner, David Diemert, Donald P. McManus,
   Patrick Driguez, and Jeffrey Bethony
Preface

Parasitic helminths continue to plague the lives of billions of people, and those of farm and domestic animals. Their capacity to persist in the environment is infuriating, costly (health-wise and economically), and fascinating depending on one’s perspective as a livestock farmer, medical provider, or research scientist. For the animal health industry, the intrinsic capacity of helminths to resist drug pressure drives the never-ending quest to bring new anthelmintic drugs to market. In recent years, we have seen the fruits of that industry with the registration of new drugs containing emodepside, monepantel, and derquantel. These drugs and other compounds in the pipeline are critical not just for staying “one up” on resistant parasites of animals, but also for their potential to cross-over to human medicine, as has occurred with earlier anthelmintics that have been of immeasurable value to improving global health. That contribution becomes all the more relevant today given the increasing concerns over the continued efficacy of many first-generation anthelmintic drugs relied upon to treat human helminthiases, not least the benzimidazoles and the “wonder drug” ivermectin, and the serious implications for public health should these drugs fail.

This volume is intended to showcase the state-of-the-art in the fields of drug and vaccine development for parasitic helminths as well as draw attention to the challenges associated with bringing such products to market. The book is Volume 3 in the series Drug Discovery in Infectious Diseases and expands on some of the themes raised in Volume 1, Antiparasitic and Antibacterial Drug Discovery: From Molecular Targets to Drug Candidates. Contributions from the animal health industry figure prominently with a focus on the discovery and development of new chemical entities. Importantly, however, the book also covers the increasingly relevant contribution of academia, not just in its traditional strengths of identifying new drug targets or understanding how drug resistance arises, but also in the ways and means of preclinical and translational drug discovery through highly collaborative and interdisciplinary research. Indeed, this exciting movement into the traditional domain of the pharmaceutical industry can be viewed as a natural consequence of the central importance and success of academia in the public–private consortia that currently maintain dynamic drug development portfolios for other global parasitic diseases such as malaria and the trypanosomatid diseases. The creativity and productivity of academic scientists are highlighted in the many chapters covering
the development and expansion of genomics and functional genomic tools, and the
application of automated screening technologies to prosecute anthelmintic drug
discovery with rigor.

Finally, this volume discusses the need for, and the particular difficulties asso-
ciated with, developing anthelmintic vaccines for both humans and animals – for
many the “holy grail” in providing the tool (including in combination with che-
motherapy) to ultimately control and, hopefully, eliminate helminth diseases. Great
progress has been made in identifying a number of candidates with proven efficacy
in target animal species or that are now entering human trials, thanks in part to the
establishment of the necessary national and transnational institutional infrastruc-
tures.

To all of the authors, my sincere thanks for their time, insights, and patience in
contributing to an important collection of on-topic discussions. My thanks also to the
book series editor, Paul M. Selzer of Intervet Innovation GmbH, and to my collea-
gues at the Sandler Center for Drug Discovery at the University of California San
Francisco for their constructive input.

March 2012
San Francisco

Conor R. Caffrey
List of Contributors

David Abraham
Thomas Jefferson University
Department of Microbiology and Immunology
233 South 10th Street
Philadelphia, PA 19107
USA

Fernán Agüero
Universidad de San Martín
Instituto de Investigaciones Biotecnológicas
25 de Mayo y Francia
San Martín
B 1650 HMP, Buenos Aires
Argentina
E-mail: fernan@iib.unsam.edu.ar, fernan.aguero@gmail.com

Cristian Alvarez
University of Melbourne
Veterinary Clinical Center
250 Princes Highway
Werribee
Victoria 3030
Australia

Raffi V. Aroian
University of California San Diego
Section of Cell and Developmental Biology
Division of Biological Sciences
9500 Gilman Dr
La Jolla, CA 92093-0322
USA
E-mail: raroian@ucsd.edu

Jeffrey M. Bethony
George Washington University Medical Center
Clinical Immunology Laboratory
Department of Microbiology, Immunology and Tropical Medicine
2300 Eye Street, NW
Washington, DC 20052
USA
E-mail: mtmjmb@gwumc.edu

and

FIOCRUZ
Clinical Immunology Laboratory
Laboratório de Imunologia Celular e Molecular
Centro de Pesquisas René Rachou
Av. Augusto de Lima 1715
Belo Horizonte
Minas Gerais 30190-002
Brazil
List of Contributors

Maria Elena Bottazzi
National School of Tropical Medicine
Sabin Vaccine Institute and Texas
Children’s Center for Vaccine Development
Section of Pediatric Tropical Medicine
Baylor College of Medicine
1102 Bates St.
Houston, TX 77030
USA

Collette Britton
University of Glasgow
Institute of Infection, Immunity and Inflammation
College of Medical, Veterinary and Life Sciences
Bearsden Road
Glasgow G61 1QH
UK
E-mail: Collette.Britton@glasgow.ac.uk

Andrew R. Burns
University of Toronto
Department of Molecular Genetics and The Donnelly Centre for Cellular and Biomolecular Research
160 College Street, Rm1202
Toronto
Ontario, M5S 1A8
Canada

Samuel K. Buxton
Iowa State University
Department of Biomedical Sciences
Ames, IA 50011
USA

Jacques Cabaret
INRA
UR1282 Infectiologie Animale et Santé Publique
37380 Nouzilly
France

Conor R. Caffrey
University of California San Francisco
Sandler Center for Drug Discovery and the Department of Pathology
1700 4th Street
San Francisco, CA 94158-2330
USA
E-mail: conor.caffrey@ucsf.edu

Bronwyn E. Campbell
The University of Melbourne
Faculty of Veterinary Science
Corner Flemington Road and Park Drive
Parkville
Victoria 3010
Australia

Cinzia Cantacessi
The University of Melbourne
Faculty of Veterinary Science
Corner Flemington Road and Park Drive
Parkville
Victoria 3010
Australia

Carlos Carmona
Universidad de la República
Unidad de Biología Parasitaria
Instituto de Biología
Facultad de Ciencias
Av. A. Navarro 3051
CP 11600 Montevideo
Uruguay

Santiago J. Carmona
Universidad de San Martín
Instituto de Investigaciones Biotecnológicas
25 de Mayo y Francia
San Martín
B 1650 HMP, Buenos Aires
Argentina
List of Contributors

Claude L. Charvet
INRA
UR1282 Infectiologie Animale et Santé Publique
37380 Nouzilly
France

Christophe Chassaing
Intervet Innovation GmbH
MSD Animal Health
Zur Propstei
55270 Schwabenheim
Germany

Donato Cioli
National Research Council
Cell Biology and Neurobiology Institute
32 Via Ramarini
Monterotondo
00015 Rome
Italy

George A. Conder
Pfizer Animal Health
Veterinary Medicine Research & Development
7000 Portage Road
Kalamazoo, MI 49001
USA

Linsey R. Cozzie
Merial Ltd
Clinical R&D Americas East
115 Transtech Drive
Athens, GA 30601
USA

Gregory J. Crowther
University of Washington
Department of Medicine
Division of Allergy and Infectious Diseases
1959 NE Pacific Street
Seattle, WA 98195-7185
USA

Akram A. Da’dara
Tufts University
Molecular Helminthology Laboratory
Division of Infectious Diseases
Department of Biomedical Sciences
Cummings School of Veterinary Medicine
200 Westboro Road
Grafton, MA 01536
USA

John P. Dalton
McGill University
Institute of Parasitology
21111 Lakeshore Road
St Anne de Bellevue
Quebec H9X 3V9
Canada

David Diemert
Sabin Vaccine Development PDP
723-D Ross Hall
2300 Eye Street NW
Washington, DC 20037
USA

Sheila M. Donnelly
University of Technology Sydney
ithree Institute
Level 6, Building 4
Corner of Thomas and Harris Street
Sydney
New South Wales 2007
Australia

Denise Doolan
Queensland Institute of Medical Research
Division of Infectious Diseases
300 Herston Rd
Brisbane
Queensland 4006
Australia
List of Contributors

Patrick Driguez
Queensland Institute of Medical Research
Division of Infectious Diseases
300 Herston Rd
Brisbane
Queensland 4006
Australia

Rebecca Fankhauser
Merial Ltd
Clinical R&D Americas East
115 Transtech Drive
Athens, GA 30601
USA

Philip Felgner
University of California Irvine
School of Medicine
3052 Hewitt Hall
Irvine, CA 92697
USA

Louise Ford
Liverpool School of Tropical Medicine
Molecular and Biochemical Parasitology
Pembroke Place
Liverpool L3 5QA
UK

Jeremy M. Foster
New England Biolabs
Division of Molecular Parasitology
240 County Road
Ipswich, MA 01938
USA

Robin B. Gasser
The University of Melbourne
Faculty of Veterinary Science
Corner Flemington Road and Park Drive
Parkville
Victoria 3010
Australia
E-mail: robinbg@unimelb.edu.au

Charles G. Gauci
University of Melbourne
Veterinary Clinical Center
250 Princes Highway
Werribee
Victoria 3030
Australia

Soraya Gaze
James Cook University
Queensland Tropical Health Alliance
McGregor Rd, Smithfield
Cairns
Queensland 4878
Australia

Timothy G. Geary
McGill University
Institute of Parasitology
21111 Lakeshore Road
Ste-Anne-de-Bellevue
Quebec H9X 3V9
Canada
E-mail: timothy.g.geary@mcgill.ca

Ross S. Hall
The University of Melbourne
Faculty of Veterinary Science
Corner Flemington Road and Park Drive
Parkville
Victoria 3010
Australia

Lance G. Hammerland
Merial Ltd
Pharmaceutical R&D
3239 Satellite Boulevard
Duluth, GA 30096
USA
E-mail: lance.hammerland@merial.com
Anja. R. Heckeroth
Intervet Innovation GmbH
MSD Animal Health
Zur Propstei
55270 Schwabenheim
Germany

Achim Hoerauf
University Clinic Bonn
Institute for Medical Microbiology, Immunology, and Parasitology
Sigmund-Freud Strasse 25
53105 Bonn
Germany

Lindy Holden-Dye
University of Southampton
Centre for Biological Sciences
University Road
Southampton SO17 1BJ
UK
E-mail: lmhd@soton.ac.uk

Eugenio L. de Hostos
OneWorld Health
Suite 250
280 Utah Avenue
South San Francisco, CA 94080
USA
E-mail: edehostos@oneworldhealth.org

Peter Hotez
National School of Tropical Medicine
Sabin Vaccine Institute and Texas Children’s Center for Vaccine Development
Section of Pediatric Tropical Medicine
Baylor College of Medicine
1102 Bates St.
Houston, TX 77030
USA
E-mail: hotez@bcm.edu

Yan Hu
University of California San Diego
Section of Cell and Developmental Biology
Division of Biological Sciences
9500 Gilman Dr
La Jolla, CA 92093-0322
USA

Abdul Jabbar
The University of Melbourne
Veterinary Clinical Center
250 Princes Highway
Werribee
Victoria 3030
Australia

Amar R. Jariwala
George Washington University
Medical Center
Clinical Immunology Laboratory
Department of Microbiology, Immunology and Tropical Medicine
2300 Eye Street, NW
Washington, DC 20052
USA

Aaron R. Jex
The University of Melbourne
Department of Veterinary Science
Corner Flemington Road and Park Drive
Parkville
Victoria 3010
Australia

Sandra S. Johnson
Pfizer Animal Health
Veterinary Medicine Research & Development
7000 Portage Road
Kalamazoo, MI 49001
USA
List of Contributors

Ronald Kaminsky*
Novartis
Center de Recherche Santé Animale
Route de la Petite Glâne
1566 Saint Aubin
Switzerland
E-mail: ronald.kaminsky@novartis.com

Jennifer Keiser
Swiss Tropical and Public Health Institute
Department of Medical Parasitology and Infection Biology
PO Box
4002 Basel
Switzerland

Thomas R. Klei
Louisiana State University
School of Veterinary Medicine
Skip Bertman Drive
Baton Rouge, LA 70803
USA

David Knox*
Moredun Research Institute
Parasitology Division
Bush Loan
Penicuik EH26 0PZ
UK
E-mail: dave.knox@moredun.ac.uk

Sanjay Kumar
New England Biolabs
Division of Molecular Parasitology
240 County Road
Ipswich, MA 01938
USA

Kristin Lees*
University of Manchester
Faculty of Life Sciences
Oxford Road
Manchester M13 9PT
UK
E-mail: kristin.lees@manchester.ac.uk

Marshall W. Lightowlers*
University of Melbourne
Veterinary Clinical Center
250 Princes Highway
Werribee
Victoria 3030
Australia
E-mail: marshall@unimelb.edu.au

Alex Loukas*
James Cook University
Queensland Tropical Health Alliance
McGregor Rd, Smithfield
Cairns
Queensland 4878
Australia
E-mail: Alex.Loukas@jcu.edu.au

Sara Lustigman*
New York Blood Center
Laboratory of Molecular Parasitology
Lindsley F. Kimball Research Institute
310 East 67th Street
New York, NY 10065
USA
E-mail: slustigman@nybloodcenter.org

Jürgen Lutz
Intervet Innovation GmbH
MSD Animal Health
Zur Propstei
55270 Schwabenheim
Germany

Steven J. Maeder
Pfizer Animal Health
Veterinary Medicine Research & Development
38–42 Wharf Road West Ryde
Sydney
New South Wales 2114
Australia
Richard J. Martin
Iowa State University
Department of Biomedical Sciences
Ames, IA 50011
USA
E-mail: rjmartin@iastate.edu

James H. McKerrow
University of California San Francisco
Sandler Center for Drug Discovery and
Department of Pathology
California Institute for Quantitative
Biosciences
1700 4th Street
San Francisco, CA 94158-2330
USA

Donald P. McManus
Queensland Institute of Medical
Research
Division of Infectious Diseases
300 Herston Rd
Brisbane
Queensland 4006
Australia

Bakela Nare
Scynexis Inc.
Department
3501C Tricenter Boulevard
Durham, NC 27713
USA

Cedric Neveu
INRA
UR1282 Infectiologie Animale et Santé
Publique
37380 Nouzilly
France

Tue Nguyen
OneWorld Health
Suite 250
280 Utah Avenue
South San Francisco, CA 94080
USA

Matthew J. Nolan
The University of Melbourne
Faculty of Veterinary Science
Corner Flemington Road and Park Drive
Parkville
Victoria 3010
Australia

Sandra M. O’Neill
Dublin City University
Parasite Immune Modulation Group
School of Nursing
Collins Avenue
Glasnevin
Dublin 9
Ireland

Mark Pearson
James Cook University
Queensland Tropical Health Alliance
McGregor Rd, Smithfield
Cairns
Queensland 4878
Australia

Maria Victoria Periago
George Washington University Medical
Center
Clinical Immunology Laboratory
Department of Microbiology,
Immunology and Tropical Medicine
2300 Eye Street, NW
Washington, DC 20052
USA
List of Contributors

and

FIOCRUZ
Clinical Immunology Laboratory
Laboratório de Imunologia Celular e Molecular
Centro de Pesquisas René Rachou
Av. Augusto de Lima 1715
Belo Horizonte
Minas Gerais 30190-002

Ken Pfarr
University Clinic Bonn
Institute for Medical Microbiology,
Immunology, and Parasitology
Sigmund-Freud Strasse 25
53105 Bonn
Germany

Livia Pica-Mattoccia
National Research Council
Cell Biology and Neurobiology Institute
32 Via Ramarini
Monterotondo
00015 Rome
Italy
E-mail: lpica@ibc.cnr.it

David Piedrafita
Monash University
Biotechnology Research Laboratories
Wellington Road
Clayton
Victoria 3800
Australia

Kerrie Powell
Scynexis Inc.
Department
3501C Tricenter Boulevard
Durham, NC 27713
USA

Sreekanth Puttachary
Iowa State University
Department of Biomedical Sciences
Ames, IA 50011
USA

Stuart A. Ralph
University of Melbourne
Department of Biochemistry and Molecular Biology
Bio21 Molecular Science and Biotechnology Institute
30 Flemington Road
Parkville
Victoria 3010
Australia

Celso Raul Romero Ramos
FIOCRUZ
Laboratório de Esquistossomose Experimental
Av. Brasil 4365
Manguinhos
Rio de Janeiro 21-045-900
Brazil

Alan P. Robertson
Iowa State University
Department of Biomedical Sciences
Ames, IA 50011
USA

Mark W. Robinson
University of Technology Sydney
ithree Institute
Level 6, Building 4
Corner of Thomas and Harris Street
Sydney
New South Wales 2007
Australia
E-mail: mark.robinson@uts.edu.au
List of Contributors

Andreas Rohwer
Intervet Innovation GmbH
MSD Animal Health
Zur Propstei
55270 Schwabenheim
Germany

and

Roche Diagnostics Deutschland GmbH
Sandhofer Strasse 116
68305 Mannheim
Germany

David S. Roos
University of Pennsylvania
Department of Biology and Penn Genomics Institute
415 South University Ave
Philadelphia, PA 19104
USA

Peter J. Roy
University of Toronto
Department of Molecular Genetics, The Donnelly Centre for Cellular and Biomolecular Research and the Collaborative Programme in Developmental Biology
160 College Street, Rm1202
Toronto
Ontario, M5S 1A8
Canada
E-mail: peter.roy@utoronto.ca

Lucien Rufener
Novartis
Center de Recherche Santé Animale
Route de la Petite Glâne
1566 Saint Aubin
Switzerland

David Sattelle
University of Manchester
Faculty of Life Sciences
Oxford Road
Manchester M13 9PT
UK

Dhanasekaran Shanmugam
Division of Biochemical Sciences
National Chemical Laboratories
Dr. Homi Bhabha Road
Pune, 411008
India

Niroda Shannan
University of Manchester
Faculty of Life Sciences
Oxford Road
Manchester M13 9PT
UK

Paul M. Selzer
Intervet Innovation GmbH
MSD Animal Health
Zur Propstei
55270 Schwabenheim
Germany
E-mail: Paul.Selzer@msd.de

Andrew J.G. Simpson
Ludwig Institute for Cancer Research
New York Branch at Memorial Sloan-Kettering Cancer Center
1275 York Avenue
New York, NY 10021
USA

Rahul Singh
San Francisco State University
Department of Computer Science
1600 Holloway Avenue
San Francisco, CA 94132
USA
E-mail: rsingh@cs.sfsu.edu
List of Contributors

Patrick J. Skelly
Tufts University
Molecular Helminthology Laboratory
Division of Infectious Diseases
Department of Biomedical Sciences
Cummings School of Veterinary Medicine
200 Westboro Road
Grafton, MA 01536
USA
E-mail: Patrick.Skelly@Tufts.edu

Barton E. Slatko
New England Biolabs
Division of Molecular Parasitology
240 County Road
Ipswich, MA 01938
USA

Ann E. Sluder
Scynexis Inc.
Department
3501C Tricenter Boulevard
Durham, NC 27713
USA

Peter M. Smooker
RMIT University
School of Applied Sciences
Plenty Road
Bundoora
Victoria 3083
Australia

Mark J. Taylor
Liverpool School of Tropical Medicine
Molecular and Biochemical Parasitology
Pembroke Place
Liverpool L3 5QA
UK
E-mail: mark.taylor@liverpool.ac.uk

Miriam Tendler
FIOCRUZ
Laboratório de Esquistossomose Experimental
Av. Brasil 4365
Manguinhos
Rio de Janeiro 21-045-900
Brazil
E-mail: mtendler@ioc.fiocruz.br

David P. Thompson
Pfizer Animal Health
Veterinary Medicine Research & Development
7000 Portage Road
Kalamazoo, MI 49001
USA

Manfred Uphoff
Intervet Innovation GmbH
MSD Animal Health
Zur Propstei
55270 Schwabenheim
Germany

Jürg Utzinger
Swiss Tropical and Public Health Institute
Department of Epidemiology and Public Health
PO Box
4002 Basel
Switzerland

Terry W. Spithill
La Trobe University
Department of Agricultural Sciences and Center for AgriBioscience
Kingsbury Drive
Bundoora
Victoria 3086
Australia
E-mail: t.spithill@latrobe.edu.au
Robert J. Walker
University of Southampton
Centre for Biological Sciences
University Road
Southampton SO17 1BJ
UK

Sally M. Williamson
University of Georgia
Department of Infectious Diseases &
Center for Tropical and Emerging
Global Disease
Athens, GA 30602
USA

Adrian J. Wolstenholme
University of Georgia
Department of Infectious Diseases &
Center for Tropical and Emerging
Global Disease
Athens, GA 30602
USA

Debra J. Woods*
Pfizer Animal Health
Veterinary Medicine Research &
Development
7000 Portage Road
Kalamazoo, MI 49001
USA
E-mail: debra.j.woods@pfizer.com

Neil D. Young*
The University of Melbourne
Faculty of Veterinary Science
Corner Flemington Road and Park Drive
Parkville, Victoria 3010
Australia
E-mail: nyoung@unimelb.edu.au
Part One
Targets
Ligand-Gated Ion Channels as Targets for Anthelmintic Drugs: Past, Current, and Future Perspectives

Kristin Lees*, Ann Sluder, Niroda Shannan, Lance Hammerland, and David Sattelle

Abstract

Ligand-gated ion channels (LGIC) are targets for anthelmintic drugs used in human health and veterinary applications. Given the diverse physiological roles of LGICs in neuromuscular function, the nervous system, and elsewhere, it is not surprising that random chemical screening programs often identify drug candidates targeting this superfamily of transmembrane proteins. Such leads provide the basis for further chemical optimization, resulting in important commercial products. Currently, members of three LGIC families are known to be targeted by anthelmintics. These include the nicotinic acetylcholine receptors gating cation channels, glutamate-gated chloride channels, and γ-aminobutyric acid-gated chloride channels. The recent impact of genomics on model invertebrates and parasitic species has been far-reaching, leading to the description of new helminth LGIC families. Among the current challenges for anthelmintic drug discovery are the assessment of newly discovered LGICs as viable targets (validation) and circumventing resistance when exploring further the well-established targets. Recombinant expression of helminth LGICs is not always straightforward. However, new developments in the understanding of LGIC chaperones and automated screening technologies may hold promise for target validation and chemical library screening on whole organisms or ex vivo preparations. Here, we describe LGIC targets for the current anthelmintics of commercial importance and discuss the potential impact of that knowledge on screening for new compounds. In addition, we discuss some new technologies for anthelmintic drug hunting, aimed at the discovery of novel treatments to control veterinary parasites and some neglected human diseases.

Introduction

Anthelmintic drugs are central to combating many human and veterinary disorders. One in four of the world’s population is infected with a parasitic roundworm or nematode, with infestation being particularly severe in tropical and subtropical regions. The consequent debilitating effects on the workforce and the compounding...
risk of other pathogenic infections represents a considerable social and economic burden. If we add to that a very high level of roundworm infestation among the world’s farmed animals, and the devastating impact of trematode parasites in man and animals, then the need for adequate helminth control is transparent [1, 2].

The veterinary economic burden is reflected in the scale of the global animal health drug market (approximately US$11 billion/annum) [3]. The human health antiparasitic drug market is around US$0.5 billion/annum. However, it costs around US$40 million to develop a new drug that controls livestock nematodes, whereas it can cost US$800 million for a new drug for human use. Understandably, the cost barrier has limited progress, but the size of the global markets for antiparasitic drugs and chemicals make their pursuit of commercial interest as well as an important human and animal health priority.

Exciting new developments in research on vaccines targeting helminth parasites are underway and these, undoubtedly, will make important contributions in the future. However, at present, chemical approaches to helminth control predominate. For example, the world’s three top-selling veterinary antiparasitic drugs (imidacloprid, fipronil, and ivermectin) and several others such as selamectin, levamisole, pyrantel, morantel, tribendimidine, piperazine, and amino-acetonitrile derivatives (AADs) act on Cys-loop ligand-gated ion channels (LGICs). These transmembrane receptor molecules facilitate the fast actions of neurotransmitter chemicals at nerve–nerve synapses and neuromuscular junctions (NMJs) in invertebrates. Often they offer rapid control of the pathogen. Much of our current knowledge of these important drug targets stems from the genetic model organism and free-living nematode, *Caenorhabditis elegans*, which possesses the most extensive known superfamily of Cys-loop LGICs, consisting of 102 subunit-encoding genes [4]. They include cation-permeable channels gated by acetylcholine (ACh) and \( \gamma \)-aminobutyric acid (GABA) as well as anion-selective channels gated by ACh, GABA, glutamate, 5-hydroxytryptamine (5-HT), dopamine, and tyramine [5–7]. Less than half of the genes in the *C. elegans* Cys-loop LGIC superfamily have been functionally characterized.

Unfortunately, many of the anthelmintic drugs in current use are under threat (Table 1.1). Important compounds such as ivermectin, which have given excellent service, are at the end of their patent life. Repeated use of effective chemicals leads to the development of pathogen resistance. Indeed, multidrug resistance against the three major classes of anthelmintics including macrocyclic lactones, which target glutamate-gated chloride channels (GluCls), has become a global problem for the treatment of gastrointestinal nematode parasites of farm animals [8–10]. The increasing development costs and poor return from conventional screening approaches are also problematic. Together, these factors bring a sense of urgency to the development of new, effective anthelmintics.

The life of a patent has always been finite, but as the time from discovery to market becomes protracted and the bar is raised for new, safer molecules with improved specifications on toxicity and environmental residues, the task of discovery becomes more difficult. The introduction of generic forms of a drug has the potential to lower the cost of treatment and make it available more widely, although this positive benefit