

Bioisosteres in Medicinal Chemistry

Volume 54

Series Editors:
R. Mannhold,
H. Kubinyi,
G. Folkers

Edited by
Nathan Brown

**Bioisosteres in Medicinal
Chemistry**

Methods and Principles in Medicinal Chemistry

Edited by R. Mannhold, H. Kubinyi, G. Folkers

Editorial Board

H. Buschmann, H. Timmerman, H. van de Waterbeemd, T. Wieland

Previous Volumes of this Series:

Gohlke, Holger (Ed.)

Protein-Ligand Interactions

2012

ISBN: 978-3-527-32966-3

Vol. 53

Kappe, C. Oliver / Stadler, Alexander / Dallinger, Doris

Microwaves in Organic and Medicinal Chemistry Second, Completely Revised and Enlarged Edition

2012

ISBN: 978-3-527-33185-7

Vol. 52

Smith, Dennis A. / Allerton, Charlotte / Kalgutkar, Amit S. / van de Waterbeemd, Han / Walker, Don K.

Pharmacokinetics and Metabolism in Drug Design

Third, Revised and Updated Edition

2012

ISBN: 978-3-527-32954-0

Vol. 51

De Clercq, Erik (Ed.)

Antiviral Drug Strategies

2011

ISBN: 978-3-527-32696-9

Vol. 50

Klebl, Bert / Müller, Gerhard / Hamacher, Michael (Eds.)

Protein Kinases as Drug Targets

2011

ISBN: 978-3-527-31790-5

Vol. 49

Sotriffer, Christoph (Ed.)

Virtual Screening

Principles, Challenges, and Practical Guidelines

2011

ISBN: 978-3-527-32636-5

Vol. 48

Rautio, Jarkko (Ed.)

Prodrugs and Targeted Delivery

Towards Better ADME Properties

2011

ISBN: 978-3-527-32603-7

Vol. 47

Smit, Martine J. / Lira, Sergio A. / Leurs, Rob (Eds.)

Chemokine Receptors as Drug Targets

2011

ISBN: 978-3-527-32118-6

Vol. 46

Ghosh, Arun K. (Ed.)

Aspartic Acid Proteases as Therapeutic Targets

2010

ISBN: 978-3-527-31811-7

Vol. 45

Ecker, Gerhard F. / Chiba, Peter (Eds.)

Transporters as Drug Carriers

Structure, Function, Substrates

2009

ISBN: 978-3-527-31661-8

Vol. 44

Edited by Nathan Brown

Bioisosteres in Medicinal Chemistry

WILEY-VCH Verlag GmbH & Co. KGaA

Series Editors

Prof. Dr. Raimund Mannhold
Molecular Drug Research Group
Heinrich-Heine-Universität
Universitätsstrasse 1
40225 Düsseldorf
Germany
mannhold@uni-duesseldorf.de

Prof. Dr. Hugo Kubinyi
Donnersbergstrasse 9
67256 Weisenheim am Sand
Germany
kubinyi@t-online.de

Prof. Dr. Gerd Folkers
Collegium Helveticum
STW/ETH Zurich
8092 Zurich
Switzerland
folkers@collegium.ethz.ch

Volume Editor

Dr. Nathan Brown
The Institute of Cancer Research
Cancer Research UK Cancer
Therapeutics Unit
15 Cotswold Road
Sutton SM2 5NG
United Kingdom

All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2012 Wiley-VCH Verlag & Co. KGaA,
Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photostriping, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Composition Thomson Digital, Noida, India
Printing and Binding Markono Print Media Pte Ltd, Singapore
Cover Design Schulz Grafik-Design, Fußgönheim

Print ISBN: 978-3-527-33015-7
ePDF ISBN: 978-3-527-65433-8
ePub ISBN: 978-3-527-65432-1
mobi ISBN: 978-3-527-65431-4
oBook ISBN: 978-3-527-65430-7

Printed in Singapore
Printed on acid-free paper

Contents

List of Contributors *XI*

Preface *XV*

A Personal Foreword *XVII*

Part One Principles *1*

1 Bioisosterism in Medicinal Chemistry *3*

Nathan Brown

1.1 Introduction *3*

1.2 Isosterism *3*

1.3 Bioisosterism *6*

1.4 Bioisosterism in Lead Optimization *9*

1.4.1 Common Replacements in Medicinal Chemistry *9*

1.4.2 Structure-Based Drug Design *9*

1.4.3 Multiobjective Optimization *12*

1.5 Conclusions *13*

References *14*

2 Classical Bioisosteres *15*

Caterina Barillari and Nathan Brown

2.1 Introduction *15*

2.2 Historical Background *15*

2.3 Classical Bioisosteres *17*

2.3.1 Monovalent Atoms and Groups *17*

2.3.2 Bivalent Atoms and Groups *17*

2.3.3 Trivalent Atoms and Groups *18*

2.3.4 Tetravalent Atoms *19*

2.3.5 Ring Equivalents *19*

2.4 Nonclassical Bioisosteres *20*

2.4.1 Carbonyl Group *20*

2.4.2 Carboxylic Acid *21*

2.4.3 Hydroxyl Group *22*

2.4.4 Catechol *22*

2.4.5	Halogens	23
2.4.6	Amide and Esters	24
2.4.7	Thiourea	25
2.4.8	Pyridine	26
2.4.9	Cyclic Versus Noncyclic Systems	27
2.5	Summary	27
	References	27
3	Consequences of Bioisosteric Replacement	31
	<i>Dennis A. Smith and David S. Millan</i>	
3.1	Introduction	31
3.2	Bioisosteric Groupings to Improve Permeability	32
3.3	Bioisosteric Groupings to Lower Intrinsic Clearance	40
3.4	Bioisosteric Groupings to Improve Target Potency	43
3.5	Conclusions and Future Perspectives	47
	References	49
Part Two	Data	53
4	BIOSTER: A Database of Bioisosteres and Bioanalogues	55
	<i>István Ujváry and Julian Hayward</i>	
4.1	Introduction	55
4.2	Historical Overview and the Development of BIOSTER	56
4.2.1	Representation of Chemical Transformations for Reaction Databases	56
4.2.2	The Concept of “Biosteric Transformation”	57
4.2.3	Other Analogue and Bioisostere Databases	58
4.3	Description of BIOSTER Database	59
4.3.1	Coverage and Selection Criteria	59
4.3.2	Sources	59
4.3.3	Description of the Layout of Database Records	60
4.3.3.1	ID Code	60
4.3.3.2	Biosteric Transformation	60
4.3.3.3	Citation(s)	62
4.3.3.4	Activity	63
4.3.3.5	Fragments	63
4.3.3.6	Component Molecules and Fragments	64
4.4	Examples	64
4.4.1	Benzodioxole Bioisosteres	65
4.4.2	Phenol Bioisosteres	66
4.4.3	Ketoamides	66
4.5	Applications	69
4.6	Summary	70
4.7	Appendix	70
	References	71

5	Mining the Cambridge Structural Database for Bioisosteres	75
	<i>Colin R. Groom, Tjelvar S. G. Olsson, John W. Liebeschuetz, David A. Bardwell, Ian J. Bruno, and Frank H. Allen</i>	
5.1	Introduction	75
5.2	The Cambridge Structural Database	76
5.3	The Cambridge Structural Database System	78
5.3.1	ConQuest	78
5.3.2	Mercury	78
5.3.3	WebCSD	79
5.3.4	Knowledge-Based Libraries Derived from the CSD	80
5.4	The Relevance of the CSD to Drug Discovery	83
5.5	Assessing Bioisosteres: Conformational Aspects	84
5.6	Assessing Bioisosteres: Nonbonded Interactions	86
5.7	Finding Bioisosteres in the CSD: Scaffold Hopping and Fragment Linking	91
5.7.1	Scaffold Hopping	91
5.7.2	Fragment Linking	92
5.8	A Case Study: Bioisosterism of 1 <i>H</i> -Tetrazole and Carboxylic Acid Groups	94
5.8.1	Conformational Mimicry	94
5.8.2	Intermolecular Interactions	94
5.9	Conclusions	97
	References	98
6	Mining for Context-Sensitive Bioisosteric Replacements in Large Chemical Databases	103
	<i>George Papadatos, Michael J. Bodkin, Valerie J. Gillet, and Peter Willett</i>	
6.1	Introduction	103
6.2	Definitions	104
6.3	Background	105
6.4	Materials and Methods	109
6.4.1	Human Microsomal Metabolic Stability	109
6.4.2	Data Preprocessing	109
6.4.3	Generation of Matched Molecular Pairs	110
6.4.4	Context Descriptors	111
6.4.4.1	Whole Molecule Descriptors	111
6.4.4.2	Local Environment Descriptors	112
6.4.5	Binning of ΔP Values	112
6.4.6	Charts and Statistics	112
6.5	Results and Discussion	113
6.5.1	General Considerations	123
6.6	Conclusions	124
	References	125

Part Three Methods 129

7	Physicochemical Properties 131
	<i>Peter Ertl</i>
7.1	Introduction 131
7.2	Methods to Identify Bioisosteric Analogues 132
7.3	Descriptors to Characterize Properties of Substituents and Spacers 132
7.4	Classical Methods for Navigation in the Substituent Space 135
7.5	Tools to Identify Bioisosteric Groups Based on Similarity in Their Properties 136
7.6	Conclusions 138
	References 138
8	Molecular Topology 141
	<i>Nathan Brown</i>
8.1	Introduction 141
8.2	Controlled Fuzziness 141
8.3	Graph Theory 142
8.4	Data Mining 144
8.4.1	Graph Matching 144
8.4.2	Fragmentation Methods 145
8.5	Topological Pharmacophores 146
8.6	Reduced Graphs 149
8.7	Summary 151
	References 152
9	Molecular Shape 155
	<i>Pedro J. Ballester and Nathan Brown</i>
9.1	Methods 156
9.1.1	Superposition-Based Shape Similarity Methods 156
9.1.2	Superposition-Free Shape Similarity Methods 158
9.1.3	Choosing a Shape Similarity Technique for a Particular Project 160
9.2	Applications 161
9.3	Future Prospects 164
	References 165
10	Protein Structure 167
	<i>James E. J. Mills</i>
10.1	Introduction 167
10.2	Database of Ligand–Protein Complexes 168
10.2.1	Extraction of Ligands 168
10.2.2	Assessment of Ligand and Protein Criteria 169

10.2.3	Cavity Generation	170
10.2.4	Generation and Validation of SMILES String	170
10.2.5	Generation of FASTA Sequence Files	171
10.2.6	Identification of Intermolecular Interactions	172
10.3	Generation of Ideas for Bioisosteres	173
10.3.1	Substructure Search	173
10.3.2	Sequence Search	175
10.3.3	Binding Pocket Superposition	175
10.3.4	Bioisostere Identification	176
10.4	Context-Specific Bioisostere Generation	177
10.5	Using Structure to Understand Common Bioisosteric Replacements	178
10.6	Conclusions	180
	References	180

Part Four Applications 183

11	The Drug Guru Project	185
	<i>Kent D. Stewart, Jason Shanley, Karam B. Alsayyed Ahmed, and J. Phillip Bowen</i>	
11.1	Introduction	185
11.2	Implementation of Drug Guru	187
11.3	Bioisosteres	188
11.4	Application of Drug Guru	194
11.5	Quantitative Assessment of Drug Guru Transformations	195
11.6	Related Work	197
11.7	Summary: The Abbott Experience with the Drug Guru Project	197
	References	198
12	Bioisosteres of an NPY-Y5 Antagonist	199
	<i>Nicholas P. Barton and Benjamin R. Bellenie</i>	
12.1	Introduction	199
12.2	Background	199
12.3	Potential Bioisostere Approaches	201
12.4	Template Molecule Preparation	204
12.5	Database Molecule Preparation	206
12.6	Alignment and Scoring	206
12.7	Results and Monomer Selection	207
12.8	Synthesis and Screening	208
12.9	Discussion	209
12.10	SAR and Developability Optimization	211
12.11	Summary and Conclusion	214
	References	214

13	Perspectives from Medicinal Chemistry	217
	<i>Nicholas A. Meanwell, Marcus Gastreich, Matthias Rarey, Mike Devereux, Paul L.A. Popelier, Gisbert Schneider, and Peter Willett</i>	
13.1	Introduction	217
13.2	Pragmatic Bioisostere Replacement in Medicinal Chemistry: A Software Maker's Viewpoint	219
13.3	The Role of Quantum Chemistry in Bioisostere Prediction	221
13.4	Learn from "Naturally Drug-Like" Compounds	223
13.5	Bioisosterism at the University of Sheffield	224
	References	227
	Index	231

List of Contributors

Frank H. Allen

Cambridge Crystallographic Data
Centre (CCDC)
12 Union Road
Cambridge CB2 1EZ
UK

Karam B. Alsayyed Ahmed

University of North Carolina at
Greensboro
Department of Chemistry & Biochemistry
Center for Drug Design
Greensboro, NC 27410
USA

Pedro J. Ballester

European Bioinformatics Institute
Wellcome Trust Genome Campus
Hinxton, Cambridge CB10 1SD
UK

David A. Bardwell

Cambridge Crystallographic Data
Centre (CCDC)
12 Union Road
Cambridge CB2 1EZ
UK

Caterina Barillari

The Institute of Cancer Research
Cancer Research UK Cancer
Therapeutics Unit
15 Cotswold Road
Sutton SM2 5NG
UK

Nicholas P. Barton

GlaxoSmithKline Pharmaceuticals
New Frontiers Science Park (North)
Coldharbour Road
Harlow, Essex CM15 5AD
UK

Michael J. Bodkin

Eli Lilly Limited
Erl Wood Manor
Windlesham, Surrey GU20 6PH
UK

J. Phillip Bowen

University of North Carolina at
Greensboro
Department of Chemistry &
Biochemistry
Center for Drug Design
Greensboro, NC 27410
USA

and

Mercer University
College of Pharmacy and Health
Sciences
Department of Pharmaceutical Sciences
3001 Mercer University Drive
Atlanta, GA 30341
USA

Nathan Brown

The Institute of Cancer Research
 Cancer Research UK Cancer
 Therapeutics Unit
 15 Cotswold Road
 Sutton SM2 5NG
 UK

Ian J. Bruno

Cambridge Crystallographic Data
 Centre (CCDC)
 12 Union Road
 Cambridge CB2 1EZ
 UK

Mike Devereux

University of Basel
 Klingelbergstrasse 80
 4056 Basel
 Switzerland

Peter Ertl

Novartis Institutes for BioMedical
 Research
 Novartis Campus
 4056 Basel
 Switzerland

Marcus Gastreich

BioSolveIT
 An der Ziegelei 79
 53757 St. Augustin
 Germany

Valerie J. Gillet

The University of Sheffield
 Information School
 Regent Court
 211 Portobello
 Sheffield S1 4DP
 UK

Colin R. Groom

Cambridge Crystallographic Data
 Centre (CCDC)
 12 Union Road
 Cambridge CB2 1EZ
 UK

Julian Hayward

Digital Chemistry Ltd
 30 Kiveton Lane
 Todwick, Sheffield S26 1HL
 UK

John W. Liebeschuetz

Cambridge Crystallographic Data
 Centre (CCDC)
 12 Union Road
 Cambridge CB2 1EZ
 UK

Nicholas A. Meanwell

Bristol-Myers Squibb Pharmaceutical
 Research and Development
 Department of Medicinal Chemistry
 5 Research Parkway
 Wallingford, CT 06492
 USA

David Millan

Sandwich Laboratories
 Pfizer Global Research and
 Development
 Ramsgate Road
 Sandwich, Kent CT13 9NJ
 UK

James E. J. Mills

Sandwich Laboratories
 Pfizer Global Research and
 Development
 Ramsgate Road
 Sandwich, Kent CT13 9NJ
 UK

Tjelvar J. Olsson

Cambridge Crystallographic Data
Centre (CCDC)
12 Union Road
Cambridge CB2 1EZ
UK

George Papadatos

Eli Lilly Limited
Erl Wood Manor
Windlesham, Surrey GU20 6PH
UK

Paul L.A. Popelier

University of Manchester
Manchester Interdisciplinary Biocentre
(MIB)
131 Princess Street
Manchester M1 7DN
UK

and

University of Manchester
School of Chemistry
Oxford Road
Manchester M13 9PL
UK

Matthias Rarey

ZBH University of Hamburg
Bundesstrasse 43
20146 Hamburg
Germany

Gisbert Schneider

ETH Zurich
Institute of Pharmaceutical Sciences
8093 Zurich
Switzerland

Jason Shanley

Abbott Laboratories
Global Pharmaceutical Research and
Development
Department of Structural Biology
100 Abbott Park Road
Abbott Park, IL 60031
USA

Dennis A. Smith

Sandwich Laboratories
Pfizer Global Research and
Development
Ramsgate Road
Sandwich, Kent CT13 9NJ
UK

Kent D. Stewart

Abbott Laboratories
Global Pharmaceutical Research and
Development
Department of Structural Biology
100 Abbott Park Road
Abbott Park, IL 60031
USA

István Ujváry

iKem BT
Búza u. 32
1033 Budapest
Hungary

Peter Willett

University of Sheffield
Information School
Sheffield S1 4DP
UK

Preface

Bioisosteric replacement of substituents, ring atoms, linkers, and other groups aims to generate chemical substitutes with related biological properties, in the hope that the new analogues may have somewhat better properties. Such replacements are the toolbox of medicinal chemists to optimize their lead structures with respect to lipophilicity, solubility, activity, selectivity, absorption, metabolism, and lack of toxic and other side effects. Whenever an analogue with some improved properties is observed, the new compound is taken as the starting point for further modification. In this evolutionary procedure, either a preclinical or a clinical candidate results or the project has to be terminated, without success. Whereas the whole process quite often follows a trial and error procedure, certain empirical rules developed in medicinal chemistry. Very simple ones are, for example, the replacement of a hydrogen atom in the *para*-position of a benzene ring, to avoid rapid metabolic degradation, or, on the other hand, the introduction of an aromatic methyl group instead of a chlorine atom, to avoid too long biological half-life. More sophisticated rules exist for modification of the ligands of certain targets, for example, proteases or kinases.

The organization of this book follows a logical sequence, starting with Part One on the principles of bioisosterism, including an introductory chapter, and chapters on classical bioisosteres in medicinal chemistry and the logical but often surprising consequences of bioisosteric replacement. Part Two presents a database on bioisosteres and bioanalogues and discusses the search for bioisosteres, using the Cambridge Structure Database of 3D structures of small molecules, as well as the mining of bioisosteric pairs. Part Three presents methods to identify bioisosteres under the aspect of physicochemical properties, molecular topology, molecular shape, and protein 3D structures. Part Four describes a computer program for drug design, using medicinal chemistry rules, discusses the bioisosteric modification of a receptor antagonist, and ends with a concluding chapter on perspectives from medicinal chemistry.

Whereas some reviews on bioisosteres are found in the literature, as well as chapters in medicinal chemistry books, no dedicated monograph on bioisosteres has been published so far. Thus, we are very grateful to Nathan Brown for editing such a book, which will help novices in the field as well as experienced scientists to manage lead structure optimization in an even more rational manner. In addition, we are

very much indebted to Frank Weinreich and Heike Nöthe, both at Wiley-VCH. Their support and ongoing engagement, not only for this book but also for the whole series “Methods and Principles in Medicinal Chemistry,” adds to the success of this excellent collection of monographs on various topics, all related to drug research.

March 2012
Düsseldorf
Weisenheim am Sand
Zürich

Raimund Mannhold
Hugo Kubinyi
Gerd Folkers

A Personal Foreword

“Hamlet: Do you see yonder cloud that’s almost in shape of a camel?

Polonius: By th’ Mass, and ’tis like a camel, indeed.

Hamlet: Methinks it is like a weasel.

Polonius: It is backed like a weasel.

Hamlet: Or like a whale.

Polonius: Very like a whale.”

Hamlet, Act III, Scene II

William Shakespeare

The essence of design is the identification of appropriate constituents and their careful arrangement in sympathy with the requirements of the desired object. The same principles apply in drug design, where the components are elements and elemental groups, and their arrangement is achieved through the synthetic organic chemistry that is undertaken. The ultimate requirement in the design of new drugs is an entity that summons a physiological response of benefit to the patient.

In this book, we cover the key aspects of drug design through the identification and replacement of bioisosteric groups within the context of the drug design ethic. Bioisosterism is a phenomenon where molecular groups are functionally similar, that is, they have a similar biological effect, while modulating other properties.

This is the first book to provide a general overview of the field of bioisosterism at a time when its application has become a formal process. There are now many information sources and design tools available to assist the medicinal chemist in the identification of relevant bioisosters.

The first part of this book covers the historical aspects of bioisosterism, from its founding principles of isosterism from Langmuir through defined sets of classical isosteres and bioisosteres, to the potential consequences of bioisosteric replacement in context.

A considerable amount of knowledge has been collated in recent years, in large molecular databases with metadata that can be analyzed and brought to bear in bioisosteric replacement. Knowledge-based methods form the second part, covering experimentally determined bioisosteric replacements from the medicinal chemistry

literature; small-molecule crystal identification of bioisosteres; and mining unknown bioisosteres from these databases through the application of recently developed methods for their identification.

One can describe a molecule in many ways and the same applies to bioisosteres. Molecular descriptor methods are covered in the third part by the application of different representations. A number of computational approaches to bioisosteric replacement are covered in chapters on physicochemical properties, molecular topology, molecular shape, and the use of protein structure information. Each chapter covers many common methods and overviews of when best to apply these methods, and where they have been successfully applied.

This book concludes with two case studies of where bioisosteric replacement strategies have been applied in drug discovery, to provide demonstrable evidence of their utility. Finally, a few leading scientists in this field have kindly provided personal perspectives on bioisosterism and its relevance to drug discovery.

My sincere wish is that you enjoy reading this book as much as I did working with the very talented team of scientists who contributed chapters. I would also like to thank the publishing team and the series editors for their help in bringing this book together.

London, 2012

Nathan Brown

Part one Principles

1

Bioisosterism in Medicinal Chemistry

Nathan Brown

1.1

Introduction

One of the key challenges for the medicinal chemist today is the modulation and mediation of the potency of a small-molecule therapeutic against its biological target. In addition, it is essential to ensure that the molecule reaches its target effectively while also ensuring that it satisfies necessary safety requirements. One of the most significant approaches to assist in efficiently navigating the available chemistry space is that of bioisosteric replacement.

This book, the first dedicated solely to the subject of bioisosterism, covers the field from the very beginning to its development as a reliable and well-used approach to assist in drug design. This book is split into four parts. The first part covers the principles and theory behind isosterism and bioisosterism. The second part investigates methods that apply knowledge bases of experimental data from a variety of sources to assist in decision making. The third part reports on the four main computational approaches to bioisosteric identification and replacement using molecular properties, topology, shape, and protein structure. This book concludes with real-world examples of bioisosterism in application and a collection of reflections and perspectives on bioisosteric identification and replacement from many of the current leaders in the field.

This chapter provides an overview of the history of bioisosterism from its beginning in the early twentieth century to the present day. We also provide an overview of the importance of judicious bioisosteric replacement in lead optimization to assist in the path toward a viable clinical candidate and, ultimately, a drug.

1.2

Isosterism

James Moir [1] first considered isosterism in all but name, in 1909. It was not until 1919 that the term isosterism was given to this phenomenon by Irving Langmuir [2] in his landmark paper “Isomorphism, isosterism and covalence.” The focus of this

Table 1.1 Experimental data from Landolt–Börnstein's tables and Abegg's handbook for nitrous oxide (N_2O) and carbon dioxide (CO_2).

Property	N_2O	CO_2
Critical pressure (atm)	75	77
Critical temperature ($^{\circ}\text{C}$)	35.4	31.9
Viscosity at 20°C	148×10^{-6}	148×10^{-6}
Heat conductivity at 100°C	0.0506	0.0506
Density of liquid at -20°C	0.996	1.031
Density of liquid at $+10^{\circ}\text{C}$	0.856	0.858
Refractive index of liquid, D line, 16°C	1.193	1.190
Dielectric constant of liquid at 0°C	1.598	1.582
Magnetic susceptibility of gas at 40 atm, 16°C	0.12×10^{-6}	0.12×10^{-6}
Solubility in water at 0°C	1.305	1.780
Solubility in alcohol at 15°C	3.25	3.13

early isosterism work was on the electronic configuration of atoms. Langmuir used experiment to identify the correspondence between the physical properties of different substances. Langmuir, in accordance with the octet rule where atoms will often combine to have eight electrons in their valence shells, compared the number and arrangement of electrons between nitrogen, carbon monoxide, and the cyanogen ion and identified that these would be the same. This relationship was demonstrated to be true between nitrogen and carbon monoxide in terms of their physical properties. The same similarities were also reported between nitrous oxide and carbon dioxide when taking experimental data from Landolt–Börnstein's tables and Abegg's handbook (Table 1.1).

However, Langmuir identified one distinct property that is substantially different between nitrous oxide and carbon dioxide, the freezing point: -102 and -56°C , respectively. Evidence for this was assumed to be due to the freezing point being “abnormally sensitive to even slight differences in structure.”

With this observation of the correlation between the structure and arrangement of electrons with physical properties, Langmuir defined the neologism calling them isosteres, or isosteric compounds. Langmuir defined isosterism as follows:

“Comolecules are thus isosteric if they contain the same number and arrangement of electrons. The comolecules of isosteres must, therefore, contain the same number of atoms. The essential differences between isosteres are confined to the charges on the nuclei of the constituent atoms. Thus in carbon dioxide the charges on the nuclei of the carbon and oxygen atoms are 6 and 8, respectively, and there are $2 \times 8 + 6 = 22$ electrons in the molecule. In nitrous oxide the number of charges on the nitrogen nuclei is 7, but the total number of electrons in the molecule is again $2 \times 7 + 8 = 22$. The remarkable similarity of the physical properties of these two substances proves that their electrons are arranged in the same manner.”

Table 1.2 List of isosteres defined by Langmuir in 1919.

Type	Isosteres
1	H^- , He , Li^+
2	O^{2-} , F^- , Ne , Na^+ , Mg^{2+} , Al^{3+}
3	S^{2-} , Cl^- , A , K^+ , Ca^{2+}
4	Cu^+ , Zn^{2+}
5	Br^- , Kr , Rb^+ , Sr^{2+}
6	Ag^+ , Cd^{2+}
7	I^- , Xe , Cs^+ , Ba^{2+}
8	N_2 , CO , CN^-
9	CH_4 , NH_4^+
10	CO_2 , N_2O , N_3^- , CNO^-
11	NO_3^- , CO_3^{2-}
12	NO_2^- , O_3
13	HF , OH^-
14	ClO_4^- , SO_4^{2-} , PO_4^{3-}
15	ClO_3^- , SO_4^{2-} , PO_4^{3-}
16	SO_3 , PO_3^-
17	$\text{S}_2\text{O}_6^{2-}$, $\text{P}_2\text{O}_6^{4-}$
18	$\text{S}_2\text{O}_7^{2-}$, $\text{P}_2\text{O}_7^{4-}$
19	SiH_4 , PH_4^+
20	MnO_4^- , CrO_4^{2-}
21	SeO_4^{2-} , AsO_4^{3-}

The list of isosteres that Langmuir described in 1919 is given in Table 1.2. Langmuir extended his concept of isosterism to predicting likely crystal forms using sodium and fluorine ions as exemplars, these having been solved by William Henry Bragg and William Lawrence Bragg – father and son who were together awarded the Nobel Prize for Physics in 1915. Since the magnesium and oxygen ions are isosteric with the sodium and fluorine ions, it follows that magnesium oxide will have a crystal structure that is identical to that of sodium fluoride.

In 1925, H.G. Grimm [3] extended the concept of isosterism, introduced by Langmuir, with Grimm's hydride displacement law:

"Atoms anywhere up to four places in the periodic system before an inert gas change their properties by uniting with one to four hydrogen atoms, in such a manner that the resulting combinations behave like pseudoatoms, which are similar to elements in the groups one to four places, respectively, to their right."

Therefore, according to this law, the addition of hydrogen to an atom will result in a *pseudoatom* with similar properties to the atom of the next highest atomic number. So, CH is isosteric with N and NH is isosteric with O and so on.

Beginning in 1932, Friedrich Erlenmeyer [4, 5] extended the concepts from Grimm further and the first applications of isosterism to biological systems. Erlenmeyer redefined isosteres as:

“...elements, molecules or ions in which the peripheral layers of electrons may be considered identical.”

In addition, Erlenmeyer also proposed the following three additions to the concept of isosteres:

- 1) All elements within the same group in the periodic table are isosteres of each other. Therefore, silicon and carbon are isosteres of each other, as are oxygen and sulfur.
- 2) Pseudoatoms are included to characterize groups that appear superficially different but are actually very similar in physical properties. Pseudohalogens are an instance of this class, where $\text{Cl} \approx \text{CN} \approx \text{SCN}$, and so on.
- 3) Finally, ring equivalences are included to permit isosteric matches between different ring systems. One example is the isosteric properties between benzene and thiophene, where $-\text{CH}=\text{CH}- \approx -\text{S}-$.

It was with Erlenmeyer that the concept of bioisosterism was introduced to differentiate from classical isosteres, ensuring its relevance to medicinal chemistry. The introduction of ring equivalences is significant. This was the formalization of what we consider to be a bioisosteric comparison and is the first definition of most relevance to medicinal chemistry.

1.3

Bioisosterism

Classical isosteres are traditionally categorized into the following distinct groupings [6]:

- 1) Monovalent atoms or groups.
- 2) Divalent atoms or groups.
- 3) Trivalent atoms or groups.
- 4) Tetrasubstituted atoms.
- 5) Ring equivalents.

A number of classical bioisosteric examples are provided in Table 1.3 that illustrate typical replacements possible in each of these five groups.

However, more recent definitions of isosterism, and more specifically bioisosterism, relax these constraints and permit bioisosteric pairings between moieties that do not necessarily contain the same number of atoms. Specifically, nonclassical bioisosteres include the addition of the following two groups:

- 1) Rings versus acyclic structures.
- 2) Exchangeable groups.