To my son Michael Sam and my daughter Andrea Rachel for being the major source of inspiration and happiness.

Enrico Ascher, July 2012
Contents

Preface, x
Preface to the Fifth Edition, xi
Contributors, xii
List of Abbreviations, xx

PART I VASCULAR IMAGING TECHNIQUES AND PHYSIOLOGIC TESTING

1 Arterial and Venous Duplex Scanning, 3
Gregory L. Moneta

2 Duplex Arteriography for Lower Extremity Revascularization, 28
Enrico Ascher, Anil Hingorani, and Natalie Marks

3 Fundamentals of Angiography, 44
Douglas B. Hood and Kim J. Hodgson

4 Arteriographic Patterns of Atherosclerotic Occlusive Disease of the Lower Extremity, 56
Henry Haimovici

5 Computed Tomography in Vascular Disease, 79
Aoife N. Keeling, Peter A. Naughton, Frederick L. Hoff, and William H. Pearce

6 Magnetic Resonance Angiography, 99
April Farley, Javier E. Anaya-Ayala, Mark G. Davies, and Alan B. Lumsden

7 Intravascular Ultrasound Imaging, 112
George Kopchok and Rodney A. White

PART II BASIC SCIENCE IN VASCULAR DISEASES

8 Hemodynamics of Vascular Disease: Applications to Diagnosis and Treatment, 127
David S. Sumner

9 Atherosclerosis: Biological and Surgical Considerations, 148
Bauer E. Sumpio

10 Neointimal Hyperplasia: Basic Considerations, 178
Lynn S. Model and Alan Dardik

11 Therapeutic Angiogenesis, 197
Bo Liu and K. Craig Kent

12 Thrombogenesis and Thrombolysis, 209
Takki A. Momin, Robyn A. Macsata, and Anton N. Sidawy

13 Etiology of Abdominal Aortic Aneurysms, 221
Sartaj S. Sanghera, Anil Hingorani, and Martin D. Tilson

14 An Evidence-based Approach to Cardiopulmonary Risk Assessment for Vascular Surgery Procedures, 233
Joel H. Horovitz

PART III BASIC OPEN VASCULAR TECHNIQUES

15 Vascular Sutures and Anastomoses, 243
Henry Haimovici

16 Patch- graft Angioplasty, 253
Henry Haimovici
17 Endarterectomy, 259
 Henry Haimovici

18 Balloon Angioplasty of Peripheral Arteries and Veins, 268
 Douglas B. Hood and Kim J. Hodgson

19 Stents for Peripheral Arteries and Veins, 280
 Samuel S. Ahn, Carber C. Huang, and Foster A. Hays

20 Thrombolytic Therapy for Peripheral Arterial and Venous Thrombosis, 301
 Michael B. Silva Jr, Charlie C. Cheng, and Lorraine Choi

PART IV OPEN SURGICAL EXPOSURE OF ARTERIES

21 Exposure of the Carotid Artery, 317
 Henry Haimovici

22 The Vertebrobasilar System: Anatomy and Surgical Exposure, 320
 Enrique Criado and Ramon Berguer

23 Trans-sternal Exposure of the Great Vessels of the Aortic Arch, 324
 Calvin B. Ernst

24 Extrathoracic Surgical Exposure for Distal Revascularization of Brachiocephalic Branches, 331
 Henry Haimovici

25 Open Surgical Exposure of Upper Extremity Arteries, 338
 Henry Haimovici

26 Transperitoneal Exposure of Abdominal Aorta and Iliac Arteries, 351
 Henry Haimovici

27 Retroperitoneal Exposure of Abdominal Aorta, 360
 Calvin B. Ernst

28 Retroperitoneal Exposure of Iliac Arteries, 366
 Henry Haimovici

29 Open Surgical Exposures of Arteries in the Lower Extremity, 372
 Henry Haimovici

PART V CEREBROVASCULAR INSUFFICIENCY

30 Medical Management of Carotid Artery Disease, 391
 Russell H. Samson

31 Carotid Endarterectomy: Indications, Techniques, and Results, 405
 Bruce A. Perler

32 Eversion Carotid Endarterectomy, 419
 Jorge Rey, Sean P. Roddy, and R. Clement Darling III

33 Carotid Stenting: Indications, Techniques, and Results, 427
 Tejas R. Shah and Peter L. Faries

34 Cerebral Protection Devices During Carotid Stenting, 437
 Amit R. Shah and Evan C. Lipsitz

35 Vertebrobasilar Disease: Surgical Management, 448
 Enrique Criado and Ramon Berguer

36 Nonatherosclerotic Cerebrovascular Disease, 456
 Gary R. Seabrook

PART VI AORTIC AND ILIAC ANEURYSMS

37 Indications, Techniques and Results of Open Repair of Ascending and Transverse Aortic Arch Aneurysms, 475
 Hazim J. Safi, Anthony L. Estrera, Roy Sheinbaum, and Charles C. Miller III

38 Hybrid Repair of Aortic Arch Aneurysms, 486
 Gustavo S. Oderich and Adam H. Power

39 Endovascular Management of Thoracic Aortic Aneurysms and Dissections, 504
 Donald T. Baril and Michel S. Makaroun

40 Open Repair of Thoracoabdominal Aortic Aneurysms, 517
 Joseph Huh, Scott A. LeMaire, and Joseph S. Coselli

41 Open Repair of Abdominal Aortic Aneurysms, 533
 Colin M. Brady and Elliot L. Chaikof
42 Endovascular Repair of Infrarenal Abdominal Aortic Aneurysms, 554
Jeffrey Hnath, Manish Mehta, Yaron Sternbach, John B. Taggert, and R. Clement Darling III

43 Fenestrated and Branched Stent Grafts for the Treatment of Complex Aortic Aneurysms, 565
Joseph J. Ricotta II

44 Endovascular Treatment of Ruptured Infrarenal Aortic and Iliac Aneurysms, 582
Frank J. Veith and Neal S. Cayne

45 Open Surgical Treatment of Isolated Iliac Aneurysms, 590
Henry Haimovici

46 Endovascular Grafts in the Treatment of Isolated Iliac Aneurysms, 594
Todd L. Berland, Frank J. Veith, Karan Garg, and Neal S. Cayne

47 Infected Aortic Grafts: General Considerations and Techniques, 602
Taylor A. Smith and G. Patrick Clagett

48 Para-anastomotic Aortic Aneurysms: General Considerations and Techniques, 612
John J. Ricotta

PART VII VISCERAL VESSELS

49 Surgery of the Celiac Artery for Occlusive Disease and Arcuate Ligament Syndrome, 627
Juan Carlos Jimenez and William J. Quinones-Baldrich

50 Management of Acute and Chronic Mesenteric Ischemia, 639
Natalia O. Glebova and Julie A. Freischlag

51 Endovascular Treatment of Mesenteric Occlusive Disease, 653
Carlos F. Bechara and Peter H. Lin

52 Renal Artery Revascularization, 664
Keith D. Calligaro and Matthew J. Dougherty

53 Renal Artery Fibrodylosplasia and Renovascular Hypertension, 680
James C. Stanley and Jonathan L. Eliaison

54 Visceral Artery Aneurysms, 690
Matthew J. Dougherty and Keith D. Calligaro

PART VIII LOWER EXTREMITY OCCLUSIVE AND NON-OCCCLUSIVE ARTERIAL DISEASE

55 Acute Arterial Occlusion of the Lower Extremities, 703
Kenneth Ouriel

56 Aortoiliac Occlusive Disease, 710
David C. Brewster

57 Endovascular Treatment of Aortoiliac Artery Stenosis and Occlusions, 736
Jeannouan Kang and Christopher J. Kwolek

58 Infrainguinal Arterial Disease, 749
John Byrne, R. Clement Darling III, and Frank J. Veith

59 Bypasses to Plantar Arteries and Other Branches of Tibial Arteries, 761
Enrico Ascher and Frank J. Veith

60 Role of Surgical Options for Critical Lower Limb Ischemia, 767
Frank J. Veith, Neal S. Cayne, Nicholas J. Gargiulo III, Evan C. Lipsitz, and Enrico Ascher

61 Adjuvant Surgical Techniques for Limb Salvage, 776
Robyn A. Maccaba and Anton N. Sidawy

62 Endovascular Treatment of Infrapopliteal Arteries, 786
Peter A. Schneider, W. Austin Blevins, and Nicolas Nelken

63 Popliteal Artery Aneurysms, 801
Javairiah Fatima and Peter Gloviczki

64 Endovascular Treatment of Popliteal Artery Aneurysms: The Role of Stent-Grafts and Thrombolysis, 811
Alik Farber and Tze-Woei Tan

65 Duplex-guided Balloon Angioplasty for Infrainguinal Arterial Occlusive and Aneurysmal Disease, 821
Enrico Ascher, Natalie Marks, and Anil Hingorani
66 Extra-anatomic Bypasses, 832
Enrico Ascher, Frank J. Veith, and Kapil Gopal

67 Infected Extracavitary Prosthetic Grafts, 845
Keith D. Calligaro and Matthew J. Dougherty

68 Popliteal Entrapment and Chronic Compartment Syndrome: Unusual Causes for Claudication in Young Adults, 852
William D. Turnipseed

69 Lumbar Sympathectomy: Current Indications and Techniques, 860
Ali F. AbuRahma

70 Nonatherosclerotic Diseases of Small Arteries, 873
Henry Haimovici and Yoshio Mishima

71 Intraoperative Assessment and Postoperative Surveillance of Vascular Reconstructions, 898
Gustavo De Jesús-Gómez and Dennis F. Bandyk

PART IX VASCULAR TRAUMA

72 Vascular Trauma, 909
Ramyar Gilani, Asher Hirshberg, and Kenneth L. Mattox

73 Ankle and Foot Fasciotomy for Compartment Syndrome of the Foot, 928
Enrico Ascher

74 Post-Traumatic Pain Syndrome: Complex Regional Pain Syndrome, 932
Ali F. AbuRahma and Albeir Y. Mousa

PART X UPPER EXTREMITY VASCULAR DISEASE

75 Vasospastic Disease of the Upper Extremity: Primary Raynaud's Syndrome, 949
Gregory L. Moneta and Gregory J. Landry

76 Arterial Surgery of the Upper Extremity, 962
Rodeen Rahbar, Richard F. Neville, and Anton N. Sidawy

77 Neurogenic Thoracic Outlet Syndrome and Pectoralis Minor Syndrome, 981
Richard J. Sanders

78 Venous Thoracic Outlet Syndrome, 997
Peter F. Lawrence, Hugh Gelabert, Brian G. DeRubertis, and David A. Rigberg

79 Arterial Thoracic Outlet Syndrome, 1004
Frank J. Veith and Juan Carlos Jimenez

80 Upper Thoracic Sympathectomy: Conventional Technique, 1015
Henry Haimovici

81 Thoracoscopic Sympathectomy, 1023
Igor Brichkov and Jason P. Shaw

PART XI ARTERIAL-VENOUS MALFORMATION, ACCESS FOR HEMODIALYSIS AND PORTAL HYPERTENSION

82 Arteriovenous Fistulas and Vascular Malformations, 1035
Peter Gloviczki, Audra A. Noel, and Larry H. Hollier

83 Vascular Access for Dialysis, 1060
Andres Schanzer and Harry Schanzer

84 Portal Hypertension, 1078
Ian C. Carmody and John C. Bowen

85 Endovascular Treatment of Portal Hypertension, 1095
Yosef Golowa and Jacob Cynamon

PART XII VENOUS AND LYMPHATIC DISORDERS

86 Clinical Application of Objective Testing in Venous Insufficiency, 1109
John J. Bergan and Warner P. Bundens

87 Varicose Veins, 1121
Jose I. Almeida and Jeffrey K. Raines

88 Superficial Thrombophlebitis, 1131
Anil Hingorani and Enrico Ascher
89 Acute Deep Vein Thrombosis and Contemporary Venous Thrombectomy, 1136
Anthony J. Comerota

90 Acute Upper Extremity Deep Venous Thrombosis, 1154
Anil Hingorani and Enrico Ascher

91 Vena Cava Filters, 1160
Linda M. Harris and Raphael Blochle

92 Repair of Iliac and Iliocaval Venous Obstructions, 1173
Seshadri Raju and Peter Neglen

93 Ablation of Major Incompetent Superficial Veins, 1185
Manju Kalra and Peter Gloviczki

94 Management of Perforator-vein Incompetence, 1201
Javier E. Anaya-Ayala, Mark G. Davies, Eric K. Peden, and Alan B. Lumsden

95 Ischemic Venous Thrombosis: Phlegmasia Cerulea Dolens and Venous Gangrene, 1213
Jesse M. Manunga Jr and Peter Gloviczki

96 Diagnosis and Management of Lymphedema, 1221
Harry Ma and Mark Iafrati

PART XIII AMPUTATIONS AND REHABILITATION

97 Amputation of the Lower Extremity: General Considerations, 1239
Henry Haimovici

98 Major Amputations, 1243
Alexander Shiferson and Henry Haimovici

99 Postoperative and Preprosthetic Management for Lower Extremity Amputations, 1260
Yeongchi Wu

100 Prosthetic Fitting and Management of Lower Extremity Amputees, 1268
Jan J. Stokosa

Index, 1287
Preface

Henry Haimovici was one of the founding fathers of vascular surgery and it has been a privilege and an honor for me to be allowed to help edit yet another version of his book. Henry died on July 10, 2001 at the age of 93 in New York City following a brilliant clinical and academic career as a vascular surgeon. Henry was a prolific scientific researcher and a well respected surgeon-scientist who contributed in many ways for the maturation of vascular surgery. His pioneer work in the understanding of the pathophysiology and treatment of vascular diseases is impressive. One example is the recognition of renal and metabolic complications of extensive venous thrombosis of the lower extremities leading to gangrene. Henry called it “ischemic venous thrombosis” but the condition became popular under the name of phlegmasia cerula dolens. Dr. Haimovici’s leadership position among vascular surgeons worldwide led him to be one of the founders of the International Society for Cardiovascular Surgery as well as a founding co-editor of the Journal of Cardiovascular Surgery. He became president of the prestigious North American Chapter of the ISCVS (1959–1960) and in 1986 he was elected a corresponding member of the French National Academy of Medicine, an honor bestowed upon so few of the great academicians. Henry Haimovici, a mentor and friend, continues to live among us through his many important contributions to vascular surgery.

Since the last edition of Haimovici’s Vascular Surgery in 2004, endovascular surgery and management of venous diseases continued to play an increasingly important role in the daily activities of vascular surgeons. Accordingly, I was elated when both Drs. Frank J. Veith and Peter Gloviczki accepted to be the principal Co-Editors of the current edition. These legendary surgeons have added significantly to the book and I want to thank them for all their contributions. Equally, I need to recognize and thank all the Co-Editors who did an excellent job reviewing the various chapters and for writing their own chapters. Without this superb group of highly talented surgeons the 6th edition would not have come to fruition.

This edition follows the same principles originally outlined by Henry Haimovici, that is, a combination of fundamental surgical principles with well established vascular and endovascular techniques. Of the 100 chapters in this edition, 31 are totally new chapters and most others have been updated. We left most of Haimovici’s chapters unchanged since they are technical in nature and very well described. I believe the readers of this book will find these and all other chapters to be of great value.

I want to thank Dr. Anil P. Hingorani for his contributions to the book and for allowing me the time to complete this and many other projects. Anne Ober, my assistant of 16 years has been very helpful in following-up with the various authors and keeping us on schedule. Lastly, I want to thank Wiley-Blackwell for all their support and guidance during the creation of this edition.

Enrico Ascher, MD
New York, New York
2012
Preface to the Fifth Edition

It has been nearly three decades since the late Dr Henry Haimovici (1907–2001) first presented to us his landmark publication Vascular Surgery: Principles and Techniques. Even then he observed that, in this historically brief period of time, we had already experienced momentous developments in the magnitude and scope of our specialty. I believe that, unlike any other period of time and unlike any other surgical specialty, we have also maintained the ability to focus and redirect our craft in tandem with, if not in advance of, the changing needs of our patients and the technological advancements available to us. As a great pioneer of vascular surgery, Dr Haimovici was a principal instrument of our success throughout the infancy and maturation of vascular surgery. He was ever committed to its future beyond measure. Henry was also my mentor and a great friend. I am forever indebted to him for the privilege of assuming editorship of this grand textbook.

We are also saddened by the loss of yet another great leader in vascular surgery: D. Eugene Strandness, Jr., MD (1928–2002). Dr Strandness fielded numerous contributions throughout the formative years of noninvasive vascular testing and ultimately established what has now become our most effective asset in the diagnosis of vascular disease—the vascular laboratory. His early work focused on physiologic tests, but he was also responsible for the development and application of direct ultrasonic methods for vascular diagnosis. Working with engineers at the University of Washington, he combined a B-mode imaging system and a Doppler flow detector to create the first duplex scanner. These explorers of science were prolific in their contributions to our specialty through their research, publications, and societal leaderships. It is in their footsteps that the current and successive generations of vascular leaders must walk—and they have left great shoes for them to fill.

We are proud to have returning Section Editors Larry Hollier (Aortic and Peripheral Aneurysms), Eugene Strandness (Imaging Techniques), and Jonathan B. Towne (Acute Arterial Occlusions of the Lower Extremities). We are also fortunate to have joining us K. Craig Kent (Basic Cardiovascular Problems), John J. Ricotta (Cerebrovascular Insufficiency), Keith D. Calligaro (Visceral Vessels), Gregory L. Moneta (Specific Upper Extremity Occlusions), and William H. Pearce (Venous and Lymphatic Surgery) as Section Editors.

This 5th edition of Haimovici’s Vascular Surgery remains true to its heritage of the comprehensive inspection of the practice of vascular surgery. Innovations in operative technique and reflections on noninvasive diagnostic imaging have been examined and each topic has been updated and expanded. This textbook has now included the most current topics regarding endovascular therapy. Extensive changes have been made to this edition—fully 75 chapters have been revised and 25 new chapters have been added.

Enrico Ascher, MD
New York, New York
2003
Contributors

Ali F. AbuRahma MD
Professor of Surgery
Chief, Vascular and Endovascular Surgery
Director, Vascular Surgery Fellowship
Medical Director, Vascular Laboratory
Co-Director, Vascular Center of Excellence
Robert C. Byrd Health Sciences Center
West Virginia University
Charleston, WV, USA

Samuel S. Ahn MD, FACS
Clinical Professor of Surgery
UCLA School of Medicine;
Attending Surgeon
UCLA Center for the Health Sciences
Division of Vascular Surgery
Los Angeles, CA, USA

Jose I. Almeida MD, FACS, RVT
Director, Miami Vein Center
Voluntary Associate Professor of Surgery
University of Miami—Jackson Memorial Hospital
Miami Vein Center
Miami, FL, USA

Enrico Ascher MD
Chief of Vascular and Endovascular Surgery
Lutheran Medical Center;
Professor of Surgery
Mount Sinai School of Medicine
New York, NY, USA

Carlos F. Bechara MD, MS
Assistant Professor of Surgery
Baylor College of Medicine
Houston, TX, USA

John J. Bergan MD, FACS
Professor of Surgery
University of California, San Diego
Professor of Surgery
Uniformed Services of the Health Sciences
Bethesda, MD, USA

Ramon Berguer MD, PhD
Professor of Surgery
University of Michigan
School of Medicine
Ann Arbor, MI, USA

Todd L. Berland MD, RPVI
Assistant Professors of Surgery
New York University Medical Center
New York, NY, USA

W. Austin Blevins MD
Division of Vascular Therapy
Hawaii Permanente Medical Group
Kaiser Foundation Hospital
Honolulu, HI, USA

Raphael Blochle MD
Assistant Professor of Surgery
The State University of New York
Buffalo, NY, USA

John C. Bowen MD
Chairman Emeritus, Department of Surgery
Ochsner Clinic Foundation
New Orleans, LA, USA

Colin M. Brady MD
Division of Vascular Surgery and Endovascular Therapy
Emory University School of Medicine
Atlanta, GA, USA

David C. Brewster MD
Clinical Professor of Surgery
Harvard Medical School;
Surgeon
Massachusetts General Hospital
Boston, MA, USA
Igor Brichkov MD
Attending Surgeon
Division of Thoracic Surgery
Maimonides Medical Center
Brooklyn, NY, USA

Warner P. Bundens MD
Assistant Clinical Professor of Surgery
University of California
San Diego, CA, USA

John Byrne MD
Clinical Fellow in Vascular Surgery
Albany Medical Center
Albany, NY, USA

Keith D. Calligaro MD
Associate Clinical Professor
University of Pennsylvania School of Medicine;
Chief, Section of Vascular Surgery
Pennsylvania Hospital
Philadelphia, PA, USA

Neal S. Cayne MD, FACS
Assistant Professor of Surgery
New York University Medical Center
New York, NY, USA

Elliot L. Chaikof MD, PhD
Johnson and Johnson Professor of Surgery
Harvard Medical School;
Chairman, Roberta and Stephen R. Weiner
Department of Surgery;
Surgeon-in-Chief
Beth Israel Deaconess Medical Center
Boston, MA, USA

Charlie C. Cheng MD
Assistant Professor of Surgery
Division of Vascular Surgery and Endovascular Therapy
Texas Vascular Center
The University of Texas Medical Branch
Galveston, TX, USA

Lorraine Choi MD
Assistant Professor of Surgery
Division of Vascular Surgery and Endovascular Therapy
Texas Vascular Center
The University of Texas Medical Branch
Galveston, TX, USA

G. Patrick Clagett MD
Chairman, Division of Vascular and Endovascular Medicine Surgery
University of Texas Southwestern Medical Center
Dallas, TX, USA

Anthony J. Comerota MD, FACS, FACC
Adjunct Professor of Surgery
University of Michigan
Director, Jobst Vascular Institute
The Toledo Hospital
Toledo, OH, USA

Joseph S. Coselli MD
Professor and Chief of the Division of Cardiothoracic Surgery
Michael E. DeBakey Department of Surgery
Baylor College of Medicine;
Chief of the Section of Adult Cardiac Surgery
The Texas Heart Institute at St. Luke’s Episcopal Hospital
Houston, TX, USA

Enrique Criado MD
Professor of Surgery
University of Michigan School of Medicine
Ann Arbor, MI, USA

Jacob Cynamon MD
Clinical Professor of Radiology
Albert Einstein College of Medicine;
Director, Division of Vascular and Interventional Radiology
Montefiore Medical Center
Bronx, NY, USA

Alan Dardik MD, PhD
Associate Professor of Surgery
Department of Surgery
The Yale University School of Medicine
New Haven, CT, USA

R. Clement Darling III MD
Professor of Surgery
Albany Medical College;
Chief, Division of Vascular Surgery
Albany Medical Center
Albany, NY, USA

Mark G. Davies MD, PhD, MBA
Professor of Surgery
Weill Medical College at Cornell University
New York, NY;
Department of Cardiovascular Surgery
Methodist DeBakey Heart and Vascular Center
Houston, TX, USA

Brian G. DeRubertis MD
Assistant Professor of Surgery
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Matthew J. Dougherty MD, FACS
Assistant Clinical Professor
University of Pennsylvania
Section of Vascular Surgery
Pennsylvania Hospital
Philadelphia, PA, USA
Anil Hingorani MD
Attending Surgeon
Lutheran Medical Center;
Associate Chairman
The Vascular Institute of New York;
Associate Professor of Surgery
Mount Sinai School of Medicine
New York, NY, USA

Jeffrey Hnath MD
Albany Medical College / Albany Medical Center Hospital
The Institute for Vascular Health and Disease
Albany, NY, USA

Kim J. Hodgson MD
Professor and Chair
Division of Vascular Surgery
Southern Illinois University
School of Medicine
Springfield, IL, USA

Frederick L. Hoff MD
Assistant Professor of Radiology
Department of Radiology
Northwestern University Medical School
Chicago, IL, USA

Douglas B. Hood MD
Associate Professor
Division of Vascular Surgery
Southern Illinois University
School of Medicine
Springfield, IL, USA

Joel H. Horovitz MD, FACS, FRCS(C)
Vice Chairman, Department of Surgery
Director, General Surgery
Maimonides Medical Center
Brooklyn, NY, USA

Larry H. Hollier MD, FACS, FACC, FRCS (Eng)
Chancellor of Louisiana State University
Health Sciences Center
New Orleans, LA, USA

Carber C. Huang MD
Endovascular Fellow, Division of Vascular Surgery
UCLA School of Medicine
Los Angeles, CA, USA

Joseph Huh MD
Associate Professor, Division of Cardiothoracic Surgery
Michael E. DeBakey Department of Surgery
Baylor College of Medicine
and Cardiovascular Surgery Staff
The Texas Heart Institute at St. Luke’s Episcopal Hospital
Houston, TX, USA

Mark Iafrati MD
Chief, Vascular Surgery
Director Vascular Medicine Center
Tufts Medical Center
Boston, MA, USA

Juan Carlos Jimenez MD, FACS
Assistant Professor of Surgery
Gonda (Goldschmied) Vascular Center
David Geffen School of Medicine at UCLA;
Attending Surgeon
Ronald Reagan UCLA Medical Center
UCLA-Olive View Medical Center
UCLA-Santa Monica Hospital
Los Angeles, CA, USA

Gustavo De Jesús-Gómez MD
Division of Vascular and Endovascular Surgery,
University of South Florida College of Medicine
Tampa, FL, USA

Jeanwan Kang MD
Vascular Surgery Fellow
Massachusetts General Hospital
Division of Vascular and Endovascular Surgery
Boston, MA, USA

Manju Kalra MBBS
Associate Professor of Surgery
and Consultant, Division of Vascular and Endovascular Surgery
Mayo Clinic
Rochester, MN, USA

Aoife N. Keeling FFR RCSI
Interventional Radiology
Northwestern University Medical School
Chicago, IL, USA

K. Craig Kent MD
Professor of Surgery
Columbia Weill Cornell Division of Vascular Surgery
Columbia College of Physicians and Surgeons
Weill Medical College of Cornell University
New York, NY, USA

George Kopchok BS
Biomedical Engineer
Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center
Torrance, CA, USA

Christopher J. Kwolek MD
Program Director in Vascular Surgery
Massachusetts General Hospital
Division of Vascular and Endovascular Surgery
Boston, MA, USA
Gregory J. Landry MD
Associate Professor of Surgery
Division of Vascular Surgery
Oregon Health and Science University
Portland, OR, USA

Peter F. Lawrence MD
Director, Gonda (Goldschmied) Vascular Center
Wiley Barker Endowed Chair and Chief of Vascular Surgery
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Scott A. LeMaire MD
Professor and Director of Research
Division of Cardiac and Thoracic Surgery
Michael E. DeBakey Department of Surgery
Baylor College of Medicine
and Cardiovascular Surgery Staff
The Texas Heart Institute at St. Luke’s Episcopal Hospital
Houston, TX, USA

Peter H. Lin MD
Professor of Surgery
Baylor College of Medicine
Houston, TX, USA

Evan C. Lipsitz MD
Associate Professor of Surgery
Chief, Division of Vascular and Endovascular Surgery
Montefiore Medical Center and the Albert Einstein College of Medicine
Bronx, NY, USA

Bo Liu PhD
Associate Professor
Department of Surgery
School of Medicine and Public Health
University of Wisconsin
Madison, WI, USA

Alan B. Lumsden MD
Professor of Surgery
Weill Medical College at Cornell University
New York, NY;
Chairman, Department of Cardiovascular Surgery
Medical Director
Methodist DeBakey Heart and Vascular Center
Houston, TX, USA

Harry Ma MD, PhD
Vascular Surgery
Tufts Medical Center
Boston, MA, USA

Robyn A. Macsata MD, FACS
Chief, Vascular Surgery
Veterans Affairs Medical Center
Washington DC, USA

Michel S. Makaroun MD
Division of Vascular Surgery
University of Pittsburgh Medical Center
Pittsburgh, PA, USA

Jesse M. Manunga, Jr. MD
Fellow, Division of Vascular and Endovascular Surgery
Mayo Clinic
Rochester, MN, USA

Natalie Marks MD, RVT
The Vascular Institute of New York
Division of Vascular Surgery at Maimonides Medical Center
Brooklyn, NY, USA

Kenneth L. Mattox MD
Distinguished Service Professor
Michael E. DeBakey Department of Surgery
Baylor College of Medicine
Houston, TX, USA

Manish Mehta MD, MPH
Associate Professor of Surgery
Albany Medical College / Albany Medical Center Hospital
The Institute for Vascular Health and Disease
Albany, NY, USA

Charles C. Miller III
Foster School of Medicine
Texas Tech University Health Sciences Center
El Paso, TX, USA

Yoshio Mishima MD
Professor and Chairman of Surgery
Tokyo Medical and Dental University
Tokyo, Japan

Lynn S. Model MD
Department of Surgery
The Yale University School of Medicine
New Haven, CT, USA

Takki A. Momin MD
Vascular Surgery Fellow
Georgetown University / Washington Hospital Center
Washington DC, USA

Gregory L. Moneta MD
Professor of Surgery
Chief, Division of Vascular Surgery
Oregon Health Sciences University
Portland, OR, USA

Albeir Y. Mousa MD
Assistant Professor
Department of Surgery
Robert C. Byrd Health Sciences Center
West Virginia University
Charleston, WV, USA
Peter A. Naughton MD
Fellow, Vascular Surgery
Northwestern University Medical School
Chicago, IL, USA

Peter Neglen MD, PhD
University of Mississippi Medical Center and River Oaks Hospital
Flowood, MS, USA

Nicolas Nelken MD
Division of Vascular Therapy
Hawaii Permanente Medical Group
Kaiser Foundation Hospital
Honolulu, HI, USA

Richard F. Neville MD, FACS
Chief, Division of Vascular Surgery
Professor of Surgery
George Washington University
Washington, DC, USA

Audra A. Noel MD
Assistant Professor of Surgery
Mayo Medical School
Consultant
Division of Vascular Surgery
Mayo Clinic
Rochester, MN, USA

Gustavo S. Oderich MD
Associate Professor of Surgery
Consultant, Saint Marys and Methodist Hospital
Director of Endovascular Therapy
Director of Edward Rogers Clinical Research Fellowship Program
Division of Vascular and Endovascular Surgery
Mayo Clinic College of Medicine
Rochester, MN, USA

Kenneth Ouriel MD
Syntactx
New York, NY, USA

William H. Pearce MD
Violet R. and Charles A. Baldwin Professor of Vascular Surgery
Department of Surgery
Northwestern University Medical School
Chicago, IL, USA

Eric K. Peden MD
Assistant Professor of Surgery
Weill Medical College at Cornell University
New York, NY; Department of Cardiovascular Surgery
Methodist DeBakey Heart and Vascular Center
Houston, TX, USA

Bruce A. Perler MD, MBA
Julius H Jacobson, II Professor of Surgery
Chief, Division of Vascular Surgery & Endovascular Therapy
John Hopkins University
School of Medicine
Baltimore, MD, USA

Adam H. Power MD
Clinical Fellow in Vascular and Endovascular Surgery
Division of Vascular and Endovascular Surgery
Mayo Clinic College of Medicine
Mayo Clinic
Rochester, MN, USA

William J. Quinones-Baldrich MD
Professor of Surgery
David Geffen School of Medicine at UCLA;
Director UCLA Aortic Center
Ronald Reagan UCLA Medical Center
Los Angeles, CA, USA

Rodeen Rahbar MD, FACS
Assistant Professor of Surgery
George Washington University
Washington, DC, USA

Jeffrey K. Raines PhD, RVT
Director, Vascular Laboratory and Research
Miami Vein Center
Emeritus Professor of Surgery
University of Miami Miller School of Medicine
Miami, FL, USA

Seshadri Raju MD
Professor Emeritus and Honorary Surgeon
University of MS Medical Center;
Attending Physician
Riveroaks Hospital
Flowood, MS, USA

Jorge Rey MD
The Institute for Vascular Health and Disease
Albany Medical College / Albany Medical Center Hospital
Albany, NY, USA

John J. Ricotta MD
Chairman of Surgery
Washington Hospital Center and Georgetown University
Washington, DC, USA

Joseph J. Ricotta II MD, MS
Assistant Professor of Surgery
Director of Clinical Research
Director, International Clinical Research Fellowship in Vascular Surgery
Associate Program Director, Vascular Surgery Fellowship
Division of Vascular Surgery and Endovascular Therapy
Emory University School of Medicine
Atlanta, GA, USA
Contributors

David A. Rigberg, MD
Associate Professor of Surgery
David Geffen School of Medicine at UCLA
Los Angeles, CA, USA

Sean P. Roddy MD
Associate Professor of Surgery
The Institute for Vascular Health and Disease
Albany Medical College
Albany Medical Center Hospital
Albany, NY, USA

Hazim J. Safi
Department of Cardiothoracic and Vascular Surgery
The University of Texas at Houston Medical School
Memorial Hermann Heart and Vascular Institute
Houston, TX, USA

Russell H. Samson MD, RVT, FACS
Clinical Associate Professor of Surgery (Vascular) and
President, Mote Foundation Inc
Florida State University Medical School
Tallahassee, FL, USA

Richard J. Sanders MD
Clinical Professor of Surgery
University of Colorado School of Medicine
Rose Medical Center
Denver, CO, USA

Sartaj S. Sanghera MD
Surgical Oncology Fellow
Roswell Park Cancer Institute
Buffalo, NY, USA

Andres Schanzer MD
Associate Professor of Surgery
University of Massachusetts Medical School
Division of Vascular and Endovascular Surgery
Worcester, MA, USA

Harry Schanzer MD, FACS
Clinical Professor of Surgery
Mount Sinai School of Medicine;
Attending Surgeon
Mount Sinai Hospital
New York, USA

Peter A. Schneider MD
Division of Vascular Therapy
Hawaii Permanente Medical Group
Kaiser Foundation Hospital
Honolulu, HI, USA

Gary R. Seabrook MD
Professor of Vascular Surgery
Medical College of Wisconsin
Milwaukee, WI, USA

Amit R. Shah MD
Vascular Surgeon
Montefiore Medical Center and the Albert Einstein
College of Medicine
Bronx, NY, USA

Tejas R. Shah MD
Department of Surgery
Mount Sinai Medical Center
New York, NY, USA

Jason P. Shaw MD
Attending Surgeon
Division of Thoracic Surgery
Maimonides Medical Center
Brooklyn, NY, USA

Roy Sheinbaum
Department of Cardiothoracic and Vascular Surgery
The University of Texas at Houston Medical School
Memorial Hermann Heart and Vascular Institute
Houston, TX, USA

Alexander Shiferson DO
Professor and Chairman
Department of Surgery
George Washington University
Washington, DC, USA

Anton N. Sidawy MD, MPH, FACS
The Fred J. and Dorothy E. Wolma Professor in Vascular
Surgery and Professor of Radiology
Chief, Division of Vascular Surgery and Endovascular
Therapy
Director, Texas Vascular Center
The University of Texas Medical Branch
Galveston, TX, USA

Michael B. Silva Jr MD
Division of Vascular and Endovascular Surgery
Ochsner Medical Center
New Orleans, LA, USA

James C. Stanley MD
Handleman Professor of Surgery
Section of Vascular Surgery
University of Michigan
Ann Arbor, MI, USA

Yaron Sternbach MD
Associate Professor of Surgery
Albany Medical College / Albany Medical Center Hospital
The Institute for Vascular Health and Disease
Albany, NY, USA
Jan J. Stokosa CP, FAAOP
American Prosthetic Institute
Stokosa Prosthetic Clinic
East Lansing, MI, USA

David S. Sumner MD
Distinguished Professor of Surgery
Chief, Section of Peripheral Vascular Surgery
Southern Illinois University School of Medicine
Springfield, IL, USA

Bauer E. Sumpio MD, PhD
Professor and Vice Chairman of Surgery
Chief, Vascular Surgery
Yale University School of Medicine;
Chief, Vascular Service
Yale–New Haven Hospital
New Haven, CT, USA

John B. Taggert MD
Albany Medical College / Albany Medical Center Hospital
The Institute for Vascular Health and Disease
Albany, NY, USA

Martin D. Tilson MD
Ailsa Mellon Bruce Professor of Surgery
Columbia University;
Director Emeritus
Department of Surgery
St. Luke’s / Roosevelt Hospital
New York, NY, USA

William D. Turnipseed MD
Professor of Surgery
Division of Vascular Surgery
University of Wisconsin Hospital
Madison, WI, USA

Frank J. Veith MD, FACS
Division of Vascular Surgery
New York University Medical Center
New York, NY;
The Cleveland Clinic
Cleveland, OH, USA

Rodney A. White MD
Chief of Vascular Surgery
Harbor–UCLA Medical Center, Torrance, CA;
Professor of Surgery, UCLA School of Medicine
Los Angeles, CA, USA

Tze-Woei Tan MD
Fellow, Vascular Surgery
Boston Medical Center
Boston, MA, USA

Yeongchi Wu MD
Associate Professor of Physical Medicine and Rehabilitation
Northwestern University Medical School;
Director, Amputee Rehabilitation
Rehabilitation Institute of Chicago
Center for International Rehabilitation
Chicago, IL, USA
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>abdominal aortic aneurysm</td>
</tr>
<tr>
<td>AAAP-40</td>
<td>aortic aneurysm-associated protein 40</td>
</tr>
<tr>
<td>AASV</td>
<td>anterior accessory saphenous vein</td>
</tr>
<tr>
<td>ABF</td>
<td>aortofemoral bypass</td>
</tr>
<tr>
<td>ABI</td>
<td>ankle-brachial index</td>
</tr>
<tr>
<td>ABPI</td>
<td>ankle brachial pressure index</td>
</tr>
<tr>
<td>ACE</td>
<td>angiotensin-converting enzyme</td>
</tr>
<tr>
<td>ACP</td>
<td>antegrade cerebral perfusion</td>
</tr>
<tr>
<td>ACS</td>
<td>acute coronary syndromes</td>
</tr>
<tr>
<td>ACT</td>
<td>activated clotting time</td>
</tr>
<tr>
<td>ADP</td>
<td>adenosine diphosphate</td>
</tr>
<tr>
<td>AER</td>
<td>abduction external rotation</td>
</tr>
<tr>
<td>AIOD</td>
<td>aortoiliac occlusive disease</td>
</tr>
<tr>
<td>ALI</td>
<td>acute limb ischemia</td>
</tr>
<tr>
<td>AMI</td>
<td>acute mesenteric ischemia</td>
</tr>
<tr>
<td>AMP</td>
<td>adenosine monophosphate</td>
</tr>
<tr>
<td>AMS</td>
<td>absorbable metal stent</td>
</tr>
<tr>
<td>ANA</td>
<td>antinuclear antibody</td>
</tr>
<tr>
<td>AP</td>
<td>ambulatory phlebectomy</td>
</tr>
<tr>
<td>APC</td>
<td>activated protein C</td>
</tr>
<tr>
<td>APG</td>
<td>air plethysmography</td>
</tr>
<tr>
<td>ApoA</td>
<td>apoprotein A</td>
</tr>
<tr>
<td>ApoB</td>
<td>apoprotein B</td>
</tr>
<tr>
<td>aPTT</td>
<td>activated partial thromboplastin time</td>
</tr>
<tr>
<td>ARB</td>
<td>angiotensin-receptor blocking agent</td>
</tr>
<tr>
<td>ASM</td>
<td>anterior scalen muscle</td>
</tr>
<tr>
<td>ASO</td>
<td>arteriosclerosis obliterans</td>
</tr>
<tr>
<td>ASVAL</td>
<td>ambulatory selective varices ablation under local anesthesia</td>
</tr>
<tr>
<td>ATIII</td>
<td>antithrombin III</td>
</tr>
<tr>
<td>ATOS</td>
<td>arterial thoracic outlet syndrome</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AV</td>
<td>arteriovenous</td>
</tr>
<tr>
<td>AVA</td>
<td>arteriovenous anastomosis</td>
</tr>
<tr>
<td>AVF</td>
<td>arteriovenous fistula</td>
</tr>
<tr>
<td>AVG</td>
<td>arteriovenous grafts</td>
</tr>
<tr>
<td>AVM</td>
<td>arteriovenous malformation</td>
</tr>
<tr>
<td>AVSS</td>
<td>Aberdeen varicose vein severity score</td>
</tr>
<tr>
<td>BAI</td>
<td>blunt aortic injury</td>
</tr>
<tr>
<td>BAM</td>
<td>balloon-assisted maturation</td>
</tr>
<tr>
<td>BCS</td>
<td>Budd–Chiari syndrome</td>
</tr>
<tr>
<td>BCVI</td>
<td>blunt cerebrovascular injury</td>
</tr>
<tr>
<td>bFGF</td>
<td>basic fibroblast growth factor</td>
</tr>
<tr>
<td>BIPAP</td>
<td>bi-level positive airway pressure</td>
</tr>
<tr>
<td>BMAC</td>
<td>bone marrow aspirate concentrate</td>
</tr>
<tr>
<td>BMS</td>
<td>bare-metal stent</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>BPA</td>
<td>blood-pool contrast agents</td>
</tr>
<tr>
<td>BRTO</td>
<td>balloon-occluded retrograde transvenous obliteration</td>
</tr>
<tr>
<td>CA</td>
<td>carotid artery, contrast angiography</td>
</tr>
<tr>
<td>CAA</td>
<td>carotid artery atherosclerosis, celiac artery aneurysm</td>
</tr>
<tr>
<td>CABG</td>
<td>coronary artery bypass graft</td>
</tr>
<tr>
<td>CACS</td>
<td>celiac artery compression syndrome</td>
</tr>
<tr>
<td>CAD</td>
<td>coronary artery disease</td>
</tr>
<tr>
<td>CAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAS</td>
<td>carotid artery stenting</td>
</tr>
<tr>
<td>CBA</td>
<td>cutting-balloon angioplasty</td>
</tr>
<tr>
<td>CBP</td>
<td>cardiopulmonary bypass</td>
</tr>
<tr>
<td>CCA</td>
<td>common carotid artery</td>
</tr>
<tr>
<td>CCS</td>
<td>chronic compartment syndrome</td>
</tr>
<tr>
<td>CEA</td>
<td>carotid endarterectomy</td>
</tr>
<tr>
<td>CFA</td>
<td>common femoral artery</td>
</tr>
<tr>
<td>CFDI</td>
<td>color flow duplex imaging</td>
</tr>
<tr>
<td>cGFR</td>
<td>calculated glomerular filtration rate</td>
</tr>
<tr>
<td>cGMP</td>
<td>cyclic guanine monophosphate</td>
</tr>
<tr>
<td>CGRP</td>
<td>calcitonin gene-related peptide</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CHF</td>
<td>congestive heart failure</td>
</tr>
<tr>
<td>CIA</td>
<td>common iliac artery</td>
</tr>
<tr>
<td>CIN</td>
<td>contrast-induced nephropathy</td>
</tr>
<tr>
<td>CLI</td>
<td>critical limb ischemia</td>
</tr>
<tr>
<td>CMI</td>
<td>chronic mesenteric ischemia</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airway pressure</td>
</tr>
<tr>
<td>CPB</td>
<td>cardiopulmonary bypass</td>
</tr>
<tr>
<td>CRI</td>
<td>chronic renal insufficiency</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>CRPS</td>
<td>complex regional pain syndrome</td>
</tr>
<tr>
<td>CSF</td>
<td>cerebrospinal fluid</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>CTA</td>
<td>computed tomographic angiography</td>
</tr>
<tr>
<td>CTO</td>
<td>chronic total occlusion</td>
</tr>
<tr>
<td>CV</td>
<td>contrast venography</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease, chronic venous disease</td>
</tr>
<tr>
<td>CVI</td>
<td>chronic venous insufficiency</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DA</td>
<td>duplex arteriography</td>
</tr>
<tr>
<td>DAG</td>
<td>diacylglycerol</td>
</tr>
<tr>
<td>dAVF</td>
<td>distal arteriovenous fistula</td>
</tr>
<tr>
<td>DES</td>
<td>drug-eluting stent</td>
</tr>
<tr>
<td>DHCA</td>
<td>deep hypothermic circulatory arrest</td>
</tr>
<tr>
<td>DLT</td>
<td>deep decongestive lymphatic therapy</td>
</tr>
<tr>
<td>DR</td>
<td>diameter reduction</td>
</tr>
<tr>
<td>DSA</td>
<td>digital subtraction angiography</td>
</tr>
<tr>
<td>DSE</td>
<td>dobutamine stress echocardiography</td>
</tr>
<tr>
<td>DR5S</td>
<td>distal splenorenal shunt</td>
</tr>
<tr>
<td>DTPA</td>
<td>diethylenetriamine pentaacetic acid</td>
</tr>
<tr>
<td>DUS</td>
<td>duplex ultrasound</td>
</tr>
<tr>
<td>DVP</td>
<td>distal vein patch</td>
</tr>
<tr>
<td>DVT</td>
<td>deep vein thrombosis</td>
</tr>
<tr>
<td>DWI</td>
<td>diffusion-weighted imaging</td>
</tr>
<tr>
<td>DW-MR</td>
<td>diffusion-weighted magnetic resonance</td>
</tr>
<tr>
<td>EAST</td>
<td>elevated arm stress test</td>
</tr>
<tr>
<td>EC</td>
<td>endothelial cell</td>
</tr>
<tr>
<td>ECA</td>
<td>external carotid artery</td>
</tr>
<tr>
<td>ECG</td>
<td>electrocardiogram</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>EDRF</td>
<td>endothelial-dependent relaxing factor</td>
</tr>
<tr>
<td>EDS</td>
<td>Ehlers–Danlos syndrome</td>
</tr>
<tr>
<td>EDV</td>
<td>end-diastolic velocity</td>
</tr>
<tr>
<td>EEG</td>
<td>electroencephalogram</td>
</tr>
<tr>
<td>EEL</td>
<td>external elastic lamina</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EHIT</td>
<td>endovenous heat-induced thrombosis</td>
</tr>
<tr>
<td>EIA</td>
<td>external iliac artery</td>
</tr>
<tr>
<td>ELG</td>
<td>endoluminal graft</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>eNOS</td>
<td>endothelial nitric oxide synthase</td>
</tr>
<tr>
<td>EPC</td>
<td>endothelial progenitor cell</td>
</tr>
<tr>
<td>EPD</td>
<td>embolic protection devices</td>
</tr>
<tr>
<td>EPSF</td>
<td>early postsurgical fitting</td>
</tr>
<tr>
<td>ePTFE</td>
<td>expanded polytetrafluoroethylene</td>
</tr>
<tr>
<td>ER-DP</td>
<td>extended-release dipyridamole</td>
</tr>
<tr>
<td>E-selectin</td>
<td>endothelial-cell selectin</td>
</tr>
<tr>
<td>ESR</td>
<td>erythrocyte sedimentation rate</td>
</tr>
<tr>
<td>ESRD</td>
<td>end-stage renal disease</td>
</tr>
<tr>
<td>ET</td>
<td>endothelin</td>
</tr>
<tr>
<td>EVAR</td>
<td>endovascular aneurysm repair</td>
</tr>
<tr>
<td>EVL</td>
<td>endovenous laser</td>
</tr>
<tr>
<td>EVPAR</td>
<td>endovascular popliteal artery aneurysm repair</td>
</tr>
<tr>
<td>FAP</td>
<td>femoral artery pressure</td>
</tr>
<tr>
<td>FAK</td>
<td>focal adhesion kinase</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FEP</td>
<td>fluorinated ethylene propylene</td>
</tr>
<tr>
<td>FEVI</td>
<td>forced expiratory volume in one second</td>
</tr>
<tr>
<td>FGF</td>
<td>fibroblast growth factor</td>
</tr>
<tr>
<td>FOV</td>
<td>field of view</td>
</tr>
<tr>
<td>FXII</td>
<td>factor XII</td>
</tr>
<tr>
<td>G-6PD</td>
<td>glucose-6-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GA</td>
<td>general anesthesia</td>
</tr>
<tr>
<td>G-CSF</td>
<td>granulocyte colony-stimulating factor</td>
</tr>
<tr>
<td>GDAA</td>
<td>gastroduodenal aneurysm</td>
</tr>
<tr>
<td>GFR</td>
<td>glomerular filtration rate</td>
</tr>
<tr>
<td>GFV</td>
<td>graft flow velocity</td>
</tr>
<tr>
<td>GRE</td>
<td>gradient echo</td>
</tr>
<tr>
<td>GSM</td>
<td>grayscale medium</td>
</tr>
<tr>
<td>GSV</td>
<td>great saphenous vein</td>
</tr>
<tr>
<td>HAA</td>
<td>hepatic artery aneurysm</td>
</tr>
<tr>
<td>HB-EGF</td>
<td>heparin-binding epidermal growth factor</td>
</tr>
<tr>
<td>HBOT</td>
<td>hyperbaric oxygen therapy</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatocellular carcinoma</td>
</tr>
<tr>
<td>HCFI</td>
<td>hypobaric compression interface</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HGF</td>
<td>hepatocyte growth factor</td>
</tr>
<tr>
<td>HIF</td>
<td>hypoxia-inducible factor</td>
</tr>
<tr>
<td>HIS</td>
<td>hypobaric cushion interface with integrated suspension</td>
</tr>
<tr>
<td>HIT</td>
<td>heparin-induced thrombocytopenia</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HMVEC</td>
<td>human microvascular endothelial cell</td>
</tr>
<tr>
<td>HMWK</td>
<td>high-molecular-weight kininogen</td>
</tr>
<tr>
<td>HO</td>
<td>heme oxygenase</td>
</tr>
<tr>
<td>HRE</td>
<td>hypoxia response element</td>
</tr>
<tr>
<td>HRS</td>
<td>hepatorenal syndrome</td>
</tr>
<tr>
<td>HSC</td>
<td>hematopoietic stem cell</td>
</tr>
<tr>
<td>HSLW</td>
<td>hemoglobin-specific laser wavelengths</td>
</tr>
<tr>
<td>HU</td>
<td>Hounsfield unit</td>
</tr>
<tr>
<td>HUVEC</td>
<td>human umbilical-vein endothelial cell</td>
</tr>
<tr>
<td>IAA</td>
<td>iliac artery aneurysm</td>
</tr>
<tr>
<td>IBD</td>
<td>iliac branched device</td>
</tr>
<tr>
<td>ICA</td>
<td>internal carotid artery</td>
</tr>
<tr>
<td>ICAM</td>
<td>intercellular cell-adhesion molecule</td>
</tr>
<tr>
<td>IDE</td>
<td>investigational device exemption</td>
</tr>
<tr>
<td>IDL</td>
<td>intermediate-density lipoprotein</td>
</tr>
<tr>
<td>IEL</td>
<td>internal elastic lamina</td>
</tr>
<tr>
<td>IEUS</td>
<td>intraoperative epiaortic ultrasound</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>IGF</td>
<td>insulin-related growth factor</td>
</tr>
<tr>
<td>IH</td>
<td>intimal hyperplasia</td>
</tr>
<tr>
<td>IIA</td>
<td>internal iliac artery</td>
</tr>
<tr>
<td>IL-1</td>
<td>interleukin 1</td>
</tr>
<tr>
<td>IMA</td>
<td>inferior mesenteric artery</td>
</tr>
<tr>
<td>iNOS</td>
<td>inducible nitric oxide synthase</td>
</tr>
<tr>
<td>INR</td>
<td>international normalized ratio</td>
</tr>
<tr>
<td>IP3</td>
<td>inositol triphosphate</td>
</tr>
<tr>
<td>IPG</td>
<td>intraoperative pressure gradient</td>
</tr>
<tr>
<td>IPSF</td>
<td>immediate postsurgical fitting</td>
</tr>
<tr>
<td>IPV</td>
<td>incompetent perforator veins</td>
</tr>
<tr>
<td>IVT</td>
<td>ischemic venous thrombosis</td>
</tr>
<tr>
<td>IVUS</td>
<td>intravascular ultrasound</td>
</tr>
<tr>
<td>KTS</td>
<td>Klippel–Trénaunay syndrome</td>
</tr>
<tr>
<td>LAO</td>
<td>left anterior oblique</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>LDL-C</td>
<td>low-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>LE</td>
<td>lupus erythematosus</td>
</tr>
<tr>
<td>LE DVT</td>
<td>lower-extremity deep vein thrombosis</td>
</tr>
<tr>
<td>LEED</td>
<td>linear endovenous energy density</td>
</tr>
<tr>
<td>LHB</td>
<td>left heart bypass</td>
</tr>
<tr>
<td>LIMA</td>
<td>left internal mammary artery</td>
</tr>
<tr>
<td>LL</td>
<td>laparoscopic lysis</td>
</tr>
<tr>
<td>LMWH</td>
<td>low-molecular-weight heparin</td>
</tr>
<tr>
<td>LR</td>
<td>lactated Ringer’s</td>
</tr>
<tr>
<td>LSV</td>
<td>long saphenous vein</td>
</tr>
<tr>
<td>MACE</td>
<td>major adverse cardiac events</td>
</tr>
<tr>
<td>MALs</td>
<td>median arcuate ligament syndrome</td>
</tr>
<tr>
<td>MAP kinase</td>
<td>mitogen-activated protein kinase</td>
</tr>
<tr>
<td>MCA</td>
<td>middle cerebral artery</td>
</tr>
<tr>
<td>MCP-1</td>
<td>monocyte chemoattractant protein 1</td>
</tr>
<tr>
<td>MDCTA</td>
<td>multidetector computed tomographic angiography</td>
</tr>
<tr>
<td>MEP</td>
<td>motor-evoked potential</td>
</tr>
<tr>
<td>MET</td>
<td>metabolic equivalent</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MI</td>
<td>myocardial infarction</td>
</tr>
<tr>
<td>MIP</td>
<td>maximal intensity projection</td>
</tr>
<tr>
<td>MIMP</td>
<td>matrix metalloproteinase</td>
</tr>
<tr>
<td>MPA</td>
<td>mycophenolic acid</td>
</tr>
<tr>
<td>MR</td>
<td>magnetic resonance</td>
</tr>
<tr>
<td>MRA</td>
<td>magnetic resonance angiography</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>MRV</td>
<td>magnetic resonance venography</td>
</tr>
<tr>
<td>MSC</td>
<td>mesenchymal stem cell</td>
</tr>
<tr>
<td>MSM</td>
<td>middle scalene muscle</td>
</tr>
<tr>
<td>MVT</td>
<td>mesenteric venous thrombosis</td>
</tr>
<tr>
<td>NIH</td>
<td>neointimal hyperplasia</td>
</tr>
<tr>
<td>NIV</td>
<td>noninvasive ventilation</td>
</tr>
<tr>
<td>NIVL</td>
<td>nonthrombotic iliac vein lesion</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NOS</td>
<td>nitric oxide synthase</td>
</tr>
<tr>
<td>NP</td>
<td>natural peptide</td>
</tr>
<tr>
<td>NPMS</td>
<td>neurogenic pectoralis minor syndrome</td>
</tr>
<tr>
<td>NRH</td>
<td>nodular regenerative hyperplasia</td>
</tr>
<tr>
<td>NSF</td>
<td>nephrogenic systemic fibrosis</td>
</tr>
<tr>
<td>NTOS</td>
<td>neurogenic thoracic outlet syndrome</td>
</tr>
<tr>
<td>OLT</td>
<td>orthotopic liver transplantation</td>
</tr>
<tr>
<td>PA</td>
<td>popliteal artery</td>
</tr>
<tr>
<td>PAA</td>
<td>popliteal artery aneurysm</td>
</tr>
<tr>
<td>PAAA</td>
<td>para-anastomotic aortic aneurysm</td>
</tr>
<tr>
<td>PACU</td>
<td>post-anesthesia care unit</td>
</tr>
<tr>
<td>PAD</td>
<td>peripheral arterial disease</td>
</tr>
<tr>
<td>PAF</td>
<td>platelet-activating factor</td>
</tr>
<tr>
<td>PAI-1</td>
<td>plasminogen activator inhibitor 1</td>
</tr>
<tr>
<td>PAI-2</td>
<td>plasminogen activator inhibitor 2</td>
</tr>
<tr>
<td>PAPs</td>
<td>percutaneous ablation of perforators</td>
</tr>
<tr>
<td>PC</td>
<td>primary closure</td>
</tr>
<tr>
<td>PCA</td>
<td>patient-controlled anesthesia</td>
</tr>
<tr>
<td>PCD</td>
<td>phlegmasia cerulea dolens</td>
</tr>
<tr>
<td>PCI</td>
<td>percutaneous cardiac intervention</td>
</tr>
<tr>
<td>Pco2</td>
<td>partial pressure of carbon dioxide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SDF</td>
<td>stroma-derived factor</td>
</tr>
<tr>
<td>SEPS</td>
<td>subfascial endoscopic perforator surgery</td>
</tr>
<tr>
<td>SFA</td>
<td>superficial femoral artery</td>
</tr>
<tr>
<td>SFJ</td>
<td>saphenofemoral junction</td>
</tr>
<tr>
<td>SFJT</td>
<td>saphenofemoral junction</td>
</tr>
<tr>
<td></td>
<td>thrombophlebitis</td>
</tr>
<tr>
<td>SIA</td>
<td>subintimal angioplasty</td>
</tr>
<tr>
<td>SIP</td>
<td>sympathetically independent pain</td>
</tr>
<tr>
<td>SMA</td>
<td>superior mesenteric artery</td>
</tr>
<tr>
<td>SMAA</td>
<td>superior mesenteric artery aneurysm</td>
</tr>
<tr>
<td>SMC</td>
<td>smooth muscle cell</td>
</tr>
<tr>
<td>SMP</td>
<td>sympathetically maintained pain</td>
</tr>
<tr>
<td>SNR</td>
<td>signal-to-noise ratio</td>
</tr>
<tr>
<td>SSEP</td>
<td>somatosensory-evoked potential</td>
</tr>
<tr>
<td>SSFP</td>
<td>steady-state free precession</td>
</tr>
<tr>
<td>SSV</td>
<td>short saphenous vein</td>
</tr>
<tr>
<td>SSVT</td>
<td>suppurative superficial venous thrombophlebitis</td>
</tr>
<tr>
<td>SVC</td>
<td>superior vena cava</td>
</tr>
<tr>
<td>SVC-GF</td>
<td>superior vena cava Greenfield filter</td>
</tr>
<tr>
<td>SVR</td>
<td>superficial venous reflux</td>
</tr>
<tr>
<td>SVT</td>
<td>superficial venous thrombophlebitis</td>
</tr>
<tr>
<td>TAA</td>
<td>thoracic aortic aneurysm</td>
</tr>
<tr>
<td>TAAA</td>
<td>thoracoabdominal aortic aneurysm</td>
</tr>
<tr>
<td>TAO</td>
<td>thromboangiitis obliterans</td>
</tr>
<tr>
<td>TASC</td>
<td>TransAtlantic Intersociety Consensus</td>
</tr>
<tr>
<td>TBPI</td>
<td>toe brachial pressure index</td>
</tr>
<tr>
<td>TCD</td>
<td>transcranial Doppler</td>
</tr>
<tr>
<td>TcPo2</td>
<td>transcutaneous oxygen tension</td>
</tr>
<tr>
<td>TE</td>
<td>echo time</td>
</tr>
<tr>
<td>TEA</td>
<td>transaortic endarterectomy</td>
</tr>
<tr>
<td>TEE</td>
<td>transesophageal echocardiography</td>
</tr>
<tr>
<td>TEVAR</td>
<td>thoracic endovascular aneurysm repair</td>
</tr>
<tr>
<td>TF</td>
<td>tissue factor</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TIA</td>
<td>transient ischemic attack</td>
</tr>
<tr>
<td>TIMP</td>
<td>tissue inhibitor of metalloproteinases</td>
</tr>
<tr>
<td>TIPS</td>
<td>transjugular intrahepatic portosystemic shunt</td>
</tr>
<tr>
<td>TMJ</td>
<td>temporomandibular joint</td>
</tr>
</tbody>
</table>
PART I
Vascular Imaging Techniques and Physiologic Testing
CHAPTER 1
Arterial and Venous Duplex Scanning

Gregory L. Moneta
Oregon Health and Science University, Portland, OR, USA

The noninvasive vascular laboratory provides the scientific basis for vascular surgery. It safely provides accurate and quantitative evidence of the presence and physiologic significance of arterial and venous disease. In the modern vascular laboratory ultrasound-based techniques, particularly duplex ultrasound techniques, are most extensively employed.

Ultrasound basics

Duplex ultrasound was introduced in 1974 with application to the carotid artery. “Duplex” indicates the technique combines B-mode imaging and Doppler analysis of blood-flow direction and velocity. It is extensively utilized for evaluation of carotid arteries, intrathoracic arteries and veins, and upper- and lower-extremity arteries and veins. Since its inception, engineering and software advances have been extensive and include: 1) improved gray-scale B-mode imaging, 2) low-frequency scan heads permitting deep penetration of the ultrasound beam from the skin surface, 3) improvements in online computer-based microprocessing, and 4) addition of color-flow imaging.

Color flow is a superimposed real-time colorized image of blood flow onto a standard gray-scale B-mode picture. Echoes from stationary tissues generate B-mode images, whereas those interacting with moving substances (blood) generate a phase shift that is processed separately and color coded to give information on the direction and velocity of blood flow that reflects the magnitude and direction of the Doppler shift. Color flow dramatically reduces the time required to perform duplex examinations by allowing more rapid identification of vessels to be examined. It appears essential for duplex examination of some vessels, such as tibial arteries and veins. Color flow and the ability of modern duplex scanners to detect blood flow velocities <5 cm/s make duplex scanning practical in virtually all areas of the body.

Basics of duplex ultrasound

A vibrating source produces an ultrasonic wave. In duplex ultrasound the vibrating source is the transducer. Ultrasound transducers are contained within scan heads. Scan heads steer and focus the sound beam produced by the transducer. The ultrasound image is derived from the returning echoes and is dependent on precise steering and focusing of the sound beam.

Transducers convert electrical into vibrational energy to produce the ultrasound wave. Transducers can also convert vibrational energy of returning echoes into electrical signals for analysis by the duplex machine’s software. The frequency of the vibration is determined by the design of the transducer and determines the wavelength of the sound wave. Frequency and wavelength are related, \(\lambda = \frac{c}{f} \), where \(\lambda \) is the wavelength, \(c \) is the speed of sound in tissue, and \(f \) is the frequency.

Speed of sound in soft tissues averages 1540 m/s. There is little variation in the soft tissues insonated in clinical use of duplex ultrasound. Wavelength is the principle determinant of how well an ultrasound beam penetrates tissue, and wavelength depends on the frequency of the transducer. The transducer frequency is determined by the design of the transducer and is thus controlled by the manufacturer. For examination of the carotid artery, transducer frequencies of 5 to 7.5 MHz provide optimal tissue penetration for clinical purposes.

As noted above, duplex refers to the combination of Doppler and B-mode ("B" stands for "brightness") ultrasound in the same device. Both require analysis of reflected echoes of the original sound beam created by the ultrasound transducer. B-mode analyzes the strength...
(intensity) and origin of the reflected echo. Doppler analyzes shifts in frequency of the original sound wave produced by the transducer.

B-mode ultrasound

As a sound wave passes through tissue and moves away from the transducer its strength depends upon how much the beam is scattered, attenuated, and reflected. Strength of reflected echoes depend, in part, upon differences in acoustic impedance between media. When there are major differences in acoustic impedance a large proportion of the sound beam is reflected back to the transducer. Small differences in acoustic impedances result in little reflection and the beam continues to propagate through the tissue.

In B-mode ultrasound, the brightness of the individual pixels comprising the ultrasound image is proportional to the strength of the returning echo. This is the ultrasound gray scale, and the resulting image is termed a gray-scale image. Very bright pixels in the gray-scale image indicate large differences in acoustic impedance between media. Less dramatic differences are represented by proportionally less-bright pixels. Thus gallstones, with dramatic differences in acoustic properties from soft tissue, produce strong echoes and proportionally very bright pixels on the ultrasound image, whereas blood, which differs little from soft tissue in acoustic characteristics, often cannot be distinguished from soft tissue with B-mode imaging.

The strength of the reflected echo is also dependent upon the strength of the sound beam at the point where it is reflected. Gray-scale images represent the absolute strength of the reflected echo arriving back at the transducer, not the percentage of the beam reflected. Therefore, if the sound beam is very weak at the point of reflection even areas of dramatic acoustic differences will not result in a bright pixel in the B-mode image.

The strength of the ultrasound beam at a specific point also depends on how much the beam has been attenuated passing through tissue. Attenuation depends upon both the tissue traversed and the frequency of the wave. Wave frequency depends upon the frequency of the transducer generating the wave (see discussion above and Equation 1). Higher-frequency sound waves are attenuated more rapidly than lower-frequency sound waves. Higher-frequency transducers therefore provide relatively weak echoes to be reflected from a deep structure. The image generated is comparatively poor compared with a lower-frequency transducer insonating a deeper structure.

Image quality also depends upon linear resolution. Linear resolution is dependent upon the ability to focus the beam. High-frequency sound waves are better focused than sound waves from low-frequency transducers and provide sharper and better quality B-mode images. Image quality is therefore a balance of the strength of the reflected echo and the ability to focus the sound beam. The carotid artery is superficial and higher-frequency transducers can be used to provide clear B-mode images. (Fig. 1.1A and B) Image quality is less when examining deep vessels such as renal or iliac arteries.

Doppler ultrasound

Continuous wave Dopplers have transducers that continually emit vibrations into tissue. Therefore, echoes are also continually reflected back to the transducer. Transducers cannot generate and receive echoes simultaneously. A continuous wave Doppler therefore must have separate transmitters and receivers to generate and receive echoes.

Duplex devices utilize pulse Doppler. Pulse Dopplers use a single transducer to generate and receive echoes. With a pulse Doppler it is possible to know when an

Figure 1.1 Gray-scale images of (A) mildly and (B) severely diseased bifurcations of the cervical carotid artery.