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Preface

In 2010, when Wiley-VCH Verlag GmbH asked me to edit a new book on high-
pressure applications, the first thought that came tomymind was whether there was
really a requirement for compiling such a reference book. In fact, numerous
conference proceedings and even some textbooks were available that illustrated
the state of the art and special applications of high-pressure processes in detail,
offering support for production of innovative products. However, the application of
high pressure covers many different industries – from basic material production,
mechanical engineering, energy management, chemical engineering to bioproces-
sing and food processing. In engineering education, these applications even
postulate different courses of study.

Based on this background, it is not surprising that a general and comprehensive
description of industrial high-pressure processes is hardly possible. Next to basic
knowledge, the aimwas now to especially include overall aspects such as the need for
applying high pressure, desirable and undesirable effects, and prospects and risks of
high-pressure processes. In this respect, my activities on high-pressure engineering
in industry and university since 1977 facilitated access to experts from various
different fields of industrial applications and scientific research who were willing
to contribute with their knowledge to special high-pressure applications.

The book is structured in three main parts. Part One is an introductory section
dealing with the history and the engineering basics of high-pressure techniques.
Part Two demonstrates classical and more recent high-pressure applications from
chemical engineering, energy management and technology, bioengineering and
food engineering, and manufacturing techniques. Part Three concentrated on
equipment, measurement, and safety devices in high-pressure processes. The
book concludes with a short survey and an evaluation of international rules that
are valid for the calculation and design of high-pressure vessels.

It is my pleasure to thank all the authors for their commitment and their highly
valuable and professional contributions. I also thank Wiley-VCH Verlag GmbH for
consistent assistance and patience.

Hamburg, June 2012 Rudolf Eggers
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1
Historical Retrospect on High-Pressure Processes
Rudolf Eggers

The historical development of high-pressure processes since the beginning of the
industrial period is based on two concepts: first, the transfer of the inner energy of
water vapor at elevated pressures into kinetic energy by the invention of the steam
engine; second, the movement of gas-phase reaction equilibrium at high pressures
enabling the production of synthetic products like ammonia. Thus, the industrial use
of high-pressure processes goes back to both mechanical and chemical engineering.
Beginning in the second half of the eighteenth century, the need of safe and gas-tight
steam vessels up to few megapascals became essential because that time many
accidents happened by bursting of pressure vessels. Chemical industry started high-
pressure synthesis processes in the early twentieth century. Compared to moderate
working pressures of steam engines, the pressure range now was extremely high
between 10 and 70MPa. As a consequence, a fast growing requirement for high-
pressure components like high-pressure pumps, compressors, heat transfer devices,
tubes and fittings, reliable sealing systems, and in particular new pressure vessel
constructions developed.

Besides,mechanical and chemical engineeringmaterial science has promoted the
development of new high-pressure processes by creating high ductile steels with
suitable strength parameter.

Finally, the safety of high-pressure plants is of outstanding importance. Thus, in
the course of development, national safety rules for vessels, pipes, and valves have
been introduced by special organizations. For example, in 1884, theAmericanSociety
of Mechanical Engineering (ASME) launched its first standard for the uniformity of
testingmethods of boilers. TheGerman society T€UVwas founded in 1869 in order to
avoid the devastating explosions of steam vessels.

The following list of year dates shows essential milestones of high-pressure
processes concerning their development and technical design:

1680: Papins construction of the first autoclave for evaporating water. The design
shows the idea of an early safety valve working on an adjustable counterbalance.
1769: James Watt introduced the steam engine transferring thermal energy in
motive power.
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1826: Jacob Perkins demonstrated the compressibility of water by experiments
above 10Mpa. Caused by the increasing application of steam engines, the boiling
curve of different media became of interest. It was observed that boiling
temperatures increase with rising pressure. That time one assumes a remaining
coexistence of liquid and gas phase up to any high pressure. It was the Irish
physicist and chemist Thomas Andrews who in 1860 disproved this assumption.
On the basis of experiments with carbon dioxide, he was able to demonstrate a
thermodynamic state with no difference between liquid and gas phase charac-
terized by a distinct value of temperature, pressure, and density. This point has
been called the �critical point.�
1852: J.P. Joule and W. Thompson discovered the cooling effect caused by the
expansion of gases during pressure release.
1873: J.D. van derWaals gives a plausible explanation for the behavior of fluids at
supercritical condition.
1900: W. Ostwald claimed a patent on the generation of ammonia by the
combination of free nitrogen and hydrogen in the presence of contacting
substances.
1913: F. Haber and C. Bosch: First commercial plant synthesizing ammonia
from nitrogen and hydrogen at 20Mpa and 550 �C. The reactors were sized at an
inner diameter of 300mm and a length of 8m. The productivity of one reactor
was 5 ton/day [1]. The pressure vessel was equipped with an in-line tube made
from soft iron and degassing holes in order to protect the pressure-resistant walls
against hydrogen embrittlement. This process was the forerunner of many
others that have been developed into commercial processes [2].
1920: First application of methanol synthesis as a conversion of carbon
monoxide and hydrogen at a pressure of 31MPa and temperatures between
300 and 340 �C.

High-pressure vessel

Solid wall Joint operation

Forged Welded

Shrinked design Multilayer design Filament winding design 

Ferrand
(Band) 

Mutiwall
(Struthers wells)
(Hitachi Zosen)

Schierenbeck
(BASF) 

Coillayer
(Mitsubishi) 

Plywall

(Krupp)(A.O. Smith)
(Thyssen) 

Figure 1.1 Survey on high-pressure vessel design [3].
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1924: First industrial plant for direct hydrolysis of fuel from coal at 70MPa based
on the Bergius process, which was claimed at 1913.
1953: Initiation of a polyethylene production at about 250MPa.
1978: First commercial decaffeination plant using supercritical carbon dioxide as
a solvent.

The development of high-pressure vessel design is characterized by the initiation
of seamless and forged cylindrical components. The two versions are the forged solid
wall construction and a group of different layered wall constructions. Among these,
the BASF Schierenbeck vessel plays an important role, because these vessels are
manufactured without welding joints. Figure 1.1 presents an overview.
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Figure 1.2 Working pressures of currently used high-pressure processes.
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Special high-pressure closures have been developed equipped with single or
double tapered sealing areas. Abreakthrough toward leak-tight high-pressure devices
was without doubt the �principle of the unsupported area� from Bridgman [2]. His
idea extended the accessibility of pressures up to 10 000MPa. Another concept is that
the metallic lens ring enabled safe connections of high-pressure tubes and fittings.

Up to now new high-pressure processes have been introduced constantly. Materi-
als like ceramics, polymers, or crystals having special properties are generated and
formed in high-pressure processes. The current increase in liquid natural gas (LNG)
plants is not possible with safe high-pressure systems. Also, the enhanced recovery of
oil and gas by fluid injection at very high pressures requires qualified compressors,
tubes, and safety valves. High-pressure fuel injection decreases the efficiency of
combustion engines.

An example of current development is the investigation of processes aiming
homogenization and even sterilization in industrial scale at high pressures up to
1000MPa. Figure 1.2 illustrates the pressure regimes of currently operated high-
pressure processes.
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2
Basic Engineering Aspects
Rudolf Eggers

2.1
What are the Specifics of High-Pressure Processes?

It is obvious that with increasing process pressure, the distances between mole-
cules of solid, liquid, or gaseous systems become smaller. Generally, such dimin-
ishing of distances results in alterations of both the phase behavior of the system
and the transport effects of the considered process. Consequently, in designing the
high-pressure processes, not only the knowledge of phase equilibriumdata for pure
and heterogeneous systems is needed from thermodynamics but also the reliable
data formaterial and transport properties at high pressures are of high importance,
because these can fluctuate strongly especially in the near-critical region of
a medium.

In Figure 2.1, an easily interpreted image illustrates the molecule distances
depending on pressure and temperature. The three phases – solid, liquid, and gas –
are differentiated by the phase transition lines for melting, evaporation, and
sublimation. At the critical point, the processes of condensation and evaporation
merge.

Besides the decreasing molecule distances at enhanced pressures, the diagram
reveals the continuous transfer from the gas phase into the liquid region by passing
the so-called supercritical region without any crossing of a phase change line.
Because this region is connecting the low-density region of gas and the high-density
region of liquid state, it is evident that the corresponding density gradients
without phase change are highest in the near-critical region. As a consequence,
highpressure enables theuse offluid phases as solventswith liquid-like densities and
gas-like diffusivities. Table 2.1 exemplifies that the basic engineering aspects of high-
pressure processes are based on phase equilibrium data and material properties
for both single and multicomponent systems and further they will be influenced by
relevant transport data.

Of course, plant engineering and vessel design are also basic aspects of
high-pressure processes. Due to their significance in industrial applications
of high-pressure processes, these aspects are discussed in Chapter 12. Nevertheless,
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this chapter focuses on the thermodynamic aspects of high-pressure phase equi-
librium and the influence of pressure on material and transport data for heat and
mass transfer at high pressures, including some information on basic measuring
principles, which are given in detail in Chapter 14.

Figure 2.1 Molecule distances dependent on pressure and temperature.

Table 2.1 High-pressure phase equilibrium: material properties and transport data in
corresponding phase state.
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2.2
Thermodynamic Aspects: Phase Equilibrium

In many industrial high-pressure processes, the involved mass flows are getting
in direct contact in order to enable heat and mass transport. The well-known
examples are extraction processes using supercritical fluids (see Chapter 8) or
liquefying processes of gas mixtures under pressure in combination with
transport and storage of natural gas [1]. Further examples are the carbon capture
and storage technology (CCS) (see Chapter 6), enhanced oil recovery processes
(see Chapter 7), refrigeration cycles, and renewable energy processes (see
Chapter 10).

Transport processes across phase boundaries of contacting phases are controlled
by driving gradients of pressure, temperature, and chemical potential of each
component inside a phase as long as phase equilibrium is not established and these
gradients are existing. A phase is defined as a homogeneous region without
discontinuities in pressure, temperature, and concentration. Thus, phase equilib-
rium is accomplished when the corresponding phases are of the same pressure
(mechanical equilibrium), of the same temperature (thermal equilibrium), and of
the same chemical potential (material equilibrium) for each component the system
contains [2]. The chemical potential of a single component represents the change of
internal energy of a systemwhen themolar mass of this component varies. Instead
of using the relative inaccessible chemical potential, it is possible to equalize the
fugacities of the different phases. As the fugacity demonstrates an adjusted
pressure considering the forces of interaction between the molecules in a real
system, this quantity is of high importance for phase equilibrium especially
in heterogeneous high-pressure systems [3]. The Gibbs phase rule predicts
the number of degrees of freedom F for a mixture of K coexisting phases and
n components:

F ¼ 2�K þ n ð2:1Þ

The phase equilibrium constitutes a thermodynamic limitation of transfer pro-
cesses. Therefore, the knowledge of phase equilibrium is an essential precondition
for specification and calculation of high-pressure processes.

High-pressure processes need the knowledge of phase equilibrium for pure
substances, binary systems, and multicomponent system. Nowadays data of high
precision are available for pure components like water [4] and for numerous
gases [5, 6] up to very high pressures. These data are computable by empirical
equations. So far, the calculation of phase equilibrium formixtures is recommended
by use of equations of state. As such there are modified Redlich–Kwong and
Peng–Robinson equations that have been proven for high-pressure systems [3].
Recently, the perturbation theory has attracted increasing research interest [7]. Thus,
the so-called PCSAFT equation is established for polymeric systems and further
application in high-pressure processing [8].
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2.3
Software and Data Collection

For modern industrial engineering, an increasing number of capable software tools
have been developed and are commercially available. Some of these are well-known
examples that have been proved of value for calculation of high-pressure phase
equilibrium: ASPEN PLUS (www.aspentech.com), Simulis Thermodynamics (www.
prosim.net), and PE 2000 Phase Equilibrium (www.sciencecentral.com). Further-
more, there are data banks with experimental data for pure components and even
multicomponent systems at high pressures (www.ddbst.com). Also, data onmaterial
properties are available, for instance, at www.dechema.de or webbook.nist.gov/
chemistry. Finally, thewell-experienced companies offer experimental determination
of unknown data for high-pressure processes.

As an example for high-pressure system properties, Figure 2.2 demonstrates the
phase behavior of CO2 and Figure 2.3 illustrates the different phases of the binary
system CO2–water [9].

2.4
Phase Equilibrium: Experimental Methods and Measuring Devices

Although the directmeasurement of equilibrium data formixtures at high pressures
requires detailed experimental experience and expensive equipment, it is still an
essential and reliableway in order to obtain the data needed for the evaluation of high-
pressure processes. Recently, Dohrn et al. [10] presented a classification of experi-
mental methods for high-pressure phase equilibria. Figure 2.4 illustrates the two
main groups: analytical methods and synthetic methods. In case of analytical
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Figure 2.2 p, T diagram for CO2.
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