Electron and Proton Kinetics and Dynamics in Flaring Atmospheres

Valentina Zharkova
Valentina Zharkova

Electron and Proton Kinetics and Dynamics in Flaring Atmospheres
Related Titles

Spatschek, K.-H.
High Temperature Plasmas
Theory and Mathematical Tools for Laser and Fusion Plasmas
2012
ISBN: 978-3-527-41041-5

Stock, R. (ed.)
Encyclopedia of Applied High Energy and Particle Physics
2009
ISBN: 978-3-527-40691-3

Smirnov, B. M.
Fundamentals of Ionized Gases
Basic Topics in Plasma Physics
2011
ISBN: 978-3-527-41085-9

Smirnov, B. M.
Plasma Processes and Plasma Kinetics
Worked-Out Problems for Science and Technology
2007
ISBN: 978-3-527-40681-4

Rehder, D.
Chemistry in Space
From Interstellar Matter to the Origin of Life
2010
ISBN: 978-3-527-32689-1

Stahler, S. W., Palla, F.
The Formation of Stars
2004
ISBN: 978-3-527-40559-6

Foukal, P. V.
Solar Astrophysics
2004
ISBN: 978-3-527-40374-5

Smirnov, B. M.
Cluster Processes in Gases and Plasmas
2010
ISBN: 978-3-527-40943-3

Woods, L. C.
Physics of Plasmas
2004
ISBN: 978-3-527-40461-2
Valentina Zharkova

Electron and Proton Kinetics and Dynamics in Flaring Atmospheres
Contents

Preface XI

Color Plates XV

1 **Observational Phenomena of Solar Flares** 1
1.1 Observational Constraints 1
1.2 Hard X-Ray Light Curves and Spectra 1
1.2.1 Light Curves 1
1.2.2 Photon and Electron Energy Spectra 2
1.2.3 Electron Numbers 4
1.3 Light Curves and Energy Spectra of Gamma-Rays 5
1.3.1 γ-Ray Light Curves 5
1.3.2 Energy Spectra and Abundances of Ions in Flares 6
1.3.3 Ion Numbers 6
1.4 Geometry of Hard X-Ray and Gamma-Ray Sources 7
1.4.1 Differences in Footpoint Spectral Indices 7
1.4.2 Hard X-Ray and Gamma-Ray Source Locations 9
1.5 Pre- and Postflare Hard X-Ray and Radio Emission 9
1.6 Magnetic Field Changes Associated with Flares 11
1.6.1 Local Magnetic Field Variations 11
1.7 UV and Optical Emission 15
1.8 Seismic Responses 16
1.9 Critical Issues 18

2 **Particle Acceleration in Flares** 21
2.1 Models of Particle Acceleration 21
2.1.1 Basic Physics 21
2.1.2 Magnetic Reconnection Models Associated with Flares 22
2.1.3 Particle Acceleration in a Reconnecting Current Sheet 26
2.1.4 Particle Acceleration by Shocks and Turbulence 29
2.2 Recent Theoretical Developments 33
2.2.1 Stochastic Acceleration 33
2.2.2 Electron Acceleration in Collapsing Current Sheets 35
2.2.3 Particle Acceleration in a Single 3-D RCS with Complicated Magnetic Topology 40
2.2.4 Estimations of Accelerated Particle Parameters 46
2.2.5 Comparison of the Parameters of Accelerated Particles 48
2.2.6 Particle Acceleration in 3-D MHD Models with Fan and Spine Reconnection 49
2.3 Limitations of the Test-Particle Approach 54
2.3.1 The Polarization Electric Field 55
2.3.2 Turbulent Electric Fields 55
2.4 Particle-in-Cell Simulation of Acceleration in a 3-D RCS 57
2.4.1 Problem Formulation 57
2.4.2 Test-Particle Simulations 60
2.4.3 PIC Simulation Results 62
2.5 Particle Acceleration in Collapsing Magnetic Islands 70
2.5.1 Tearing-Mode Instability in Current Sheets 70
2.5.2 Particle Acceleration in Magnetic Islands – PIC Approach 71
2.6 Limitations of the PIC Approach 74
2.7 Probing Theories versus Observations 76
2.7.1 Interrelation between Acceleration and Transport 76
2.7.2 Testing Acceleration Models against Observational Constraints 77

3 Electron-Beam Precipitation – Continuity Equation Approach 81
3.1 Introduction 81
3.2 Particle Energy Losses 82
3.2.1 Particle Trajectories at Scattering 82
3.2.2 Energy Loss and Momentum Variations 84
3.3 Continuity Equation Approach for Electrons: Pure Collisions 92
3.3.1 Solutions of Continuity Equation for Power-Law Beam Electrons 93
3.3.2 Beam Electron Densities 95
3.3.3 Mean Electron Spectra 96
3.3.4 Hard X-Ray Bremsstrahlung Emission by Beam Electrons 97
3.3.5 Heating Functions 102
3.4 Continuity Equation Approach for Electrons – Pure Electric Field 104
3.4.1 Estimation of the Ohmic Loss Effect 105
3.4.2 Kinetic Solutions for a Pure Electric Field 109
3.4.3 Estimations of Electron-Beam Stability 118

4 Electron Beam Precipitation – Fokker–Planck Approach 121
4.1 General Comments on Particle and Energy Transport 121
4.2 Problem Formulation 122
4.2.1 The Fokker–Planck Equation 122
4.2.2 Normalization of a Distribution Function 124
4.2.3 Dimensionless Equations 125
4.2.4 Integral Characteristics of an Electron Beam 127
4.3 Simulation Method 128
4.4 Stationary Fokker–Planck Approach \((d f/d t = 0) \) 129
4.4.1 Initial Condition 129
4.4.2 Beam Electron Distribution Functions 130
4.4.3 Electron-Beam Density Variations with Depth 140
4.4.4 Mean Electron Fluxes 142
4.5 Time-Dependent Fokker–Planck Equation 143
4.5.1 Initial and Boundary Conditions 144
4.5.2 Relaxation to a Steady State 145
4.6 Regime of a Stationary Injection 147
4.6.1 Distributions of Electron Beams with a Lower-Energy Part 147
4.6.2 Variations of Electron-Beam Density 153
4.6.3 Effects of Magnetic Field Convergence 155
4.6.4 Mean Electron Fluxes of a Steady Beam 159
4.6.5 Plasma Heating by a Stationary Beam in Converging Magnetic Field 159
4.7 Impulsive Injection 161
4.7.1 Mean Electron Flux for Beam Impulse 162
4.7.2 Energy Deposition by a Beam Impulse 164
4.8 Conclusions 167

5 Proton Beam Kinetics 169
5.1 Proton Beam Distribution Function 169
5.1.1 Effect of Coulomb Collisions on Proton Precipitation 169
5.1.2 Effect of a Self-Induced Electric Field on Proton Precipitation 172
5.1.3 Effect of Magnetic Field Convergence on Proton Precipitation 172
5.1.4 Effect of Wave–Proton Interaction 172
5.1.5 Collisions versus Kinetic Alfvén Waves: the Effect on Proton Precipitation 174
5.1.6 Fokker–Planck Equation for Proton Beams 176
5.2 Precipitation of Proton Beam: Numerical Simulations 177
5.2.1 Numerical Calculation of Proton Beam Distribution Function 177
5.2.2 Accepted Parameters 179
5.2.3 Proton Beam Distribution Functions 179
5.3 General Discussion of Proton and Electron Precipitation 182
5.3.1 Beam Spectra at Precipitation 182
5.3.2 Energy and Momentum Transfer 182

6 Hydrodynamic Response to Particle Injection 187
6.1 Hydrodynamic Equations 187
6.1.1 Additional Equations 188
6.1.2 Boundary Conditions 189
6.2 Hydrodynamic Responses to Heating by Electron Beams 190
6.2.1 The Heating Functions by High Energy Particles 190
6.2.2 Simulated Heating Functions 190
6.2.3 Hydrodynamics Caused by Electron Beams 192
6.2.4 Hydrodynamics Formed by Mixed Electron and Proton Beams 197
6.2.5 Momenta Delivered by Beams and Hydrodynamic Shocks 199
6.2.6 Comparison of Ambient Heating by Electrons and Protons for 28 October 2003 Flare 200
6.3 Case Study of a Hydrodynamics of the 25 July 2004 Flare 204
6.3.1 Observations 204
6.3.2 Hydrodynamics of Ambient Plasma 211
6.4 Conclusions 213

7 Hard X-Ray Bremsstrahlung Emission and Polarization 215
7.1 Introduction 215
7.2 Stokes Parameters for HXR Emission 216
7.2.1 Geometry of Observations 217
7.2.2 Nonrelativistic HXR Cross-Sections 219
7.2.3 Relativistic Angle-Dependent Cross-Sections 221
7.3 Simulation Results 223
7.3.1 Time-Dependent Hard X-Ray Photon Spectra for a Short Impulse 223
7.3.2 HXR Emission with Nonrelativistic Cross-Sections for Steady Injection 224
7.3.3 HXR Emission with Relativistic Cross-Sections for Steady Injection 229
7.3.4 HXR Bremsstrahlung Directivity and Polarization for a Steady Beam Injection 234
7.4 Comparison with Observations 239
7.4.1 HXR Bremsstrahlung Photon Spectra 239
7.4.2 HXR Bremsstrahlung Directivity and Polarization 241
7.4.3 Relationships between Electron and HXR Photon Spectra and Electron Numbers 244

8 Microwave Emission and Polarization 247
8.1 General Comments 247
8.2 Evaluation of Models for Electron Precipitation 249
8.3 Gyrosynchrotron Plasma Emissivity and Absorption Coefficient 251
8.4 Gyrosynchrotron Emission from a Homogeneous Source 253
8.4.1 Depth Variations of MW Emission 253
8.4.2 Gyrosynchrotron Emission from a Whole Coronal Magnetic Tube 260
8.5 Comparison with Observations 263
8.5.1 Flare of 23 July 2002 263
8.5.2 Flare of 10 March 2001 265
8.5.3 Simulated HXR and MW Emission 270
8.6 Conclusion 283

9 Langmuir Wave Generation by Electron Beams 287
9.1 Electron Beams and Their Stability 287
9.2 Basic Equations 289
9.2.1 Method of Solution and Model Parameters 290
Preface

Charged particles, electrons, protons, ions and neutral atoms are invisible but very powerful participants in all processes in plasmas of the Sun, stars, magnetospheres, interplanetary space and laboratory experiments. Their presence in theoretical research is very often masked behind macro descriptions of the plasma status by means of temperature, density, electric and magnetic fields and so on.

All of these are defined by some sort of ensembles of particles whose various properties (e.g. velocities, charges, masses, numbers or excitation-state status) define the macro parameters which are good descriptors of a plasma’s status in equilibrium. However, in many events on the Sun or stars or in interplanetary space, the atmospheres are well beyond equilibrium. The subject of this book is the investigation of processes of non-equilibrium in flaring atmospheres with a consideration of particle kinetics, dynamics and radiative processes.

The author’s PhD thesis, titled “Radiative transfer in solar quiescent prominences with filamentary structure”, investigated non-equilibrium radiative processes in cool, steady atmospheres and their effects on hydrogen lines and continuous emission. The research was done under the supervision of the late Prof. Nina Morozhenko (Solar Division, Main Astronomical Observatory, Ukraine), a researcher of the highest caliber, who taught well how to properly conduct research and test hypotheses with theoretical predictions. After completing her PhD, the author applied the approach used and knowledge gained during the writing of her thesis to the development of physical concepts in such dynamic events as solar flares.

The research in particle kinetics was initiated at the Astronomy Unit, State Kiev University, by the prominent plasma physicist Prof. Nikolaj Kotsarenko (1941–1993), former head of the Space Physics and Astronomy division in the Physics Department, National University of Kiev, Ukraine. This work was also kindly supported by the theoretical group Theory and Diagnostics of Physical Processes in Solar Flares, led by Prof. Boris Somov of Moscow Sternberg Astronomical Institution, Moscow State University, Russia, and the researchers comprising the group who now carry out their research at various institutions around the world. During annual gatherings of this group, the researchers had many fruitful talks and discussions, which helped the author to make significant progress in her knowledge
and understanding of the complex physical processes of particle acceleration and precipitation in solar flares.

My acquaintance with Prof. John Brown, Astronomer Royal for Scotland, University of Glasgow, Scotland, and his famous group, which consisted of Prof. Gordon Emslie, Drs. D. Alexander, A. MacKinnon and other researchers, gave the present author a better understanding of particle kinetics and dynamics developed by various groups in Russia, the United Kingdom and the United States. Very frequently our research seminars and talks sparked extensive debates which motivated further research to clarify the argued points. Such discussions helped the author to build, brick by brick, her knowledge and understanding of such complex phenomena as the physical processes in solar flares, for which the author is enormously grateful.

The idea of this book was conceived at one of the RHESSI workshops frequently devoted to particle acceleration and precipitation in flaring atmospheres on the Sun and their diagnostics from multi-wavelength observations. Particle kinetics is a rather complex topic which needs to be taught to younger scientists so that they may continue the research begun four decades ago with the pioneering works of Prof. Sergey Syrovatsky (Moscow Physical-Technical Institution, Russia), Prof. John Brown (Glasgow University, UK) and Dr. Olga Shmeleva (IZMIRAN, Russia).

The author is also very grateful to her PhD students, who were engaged in the study of various aspects of particle kinetics: Dr. Victor Kobylinskij V.A. (funded by Kiev University, 1989–1993), Dr. Dmitry Syniavskij (Kiev University, Ukraine) (funded by Kiev University, Ukraine, 1990–1994) and Dr. Mykola Gordovskyy (Bradford University, UK), whose study was funded by the Engineering and Physical Sciences Research Council (2002–2005). The students’ dedication to and thorough knowledge of their topics significantly advanced the subject to new levels of understanding, and their knowledge of the topic is reflected in the current book.

The research carried out with her students helped the author to produce a strong synergy between research in kinetics and the dynamics of solar flares and the helioseismology of the solar interior behind these events. The author wishes to acknowledge a very fruitful collaboration with Dr. Alexander Kosovichev (Stanford University, USA), which led to the discovery of sunquakes. These are seismic responses of the solar interior to processes occurring in solar flares. They were reported in a paper in Nature on 27 May 1998 and gained worldwide media coverage on 28 May 1998 by all major TV and radio stations and newspapers.

The author is very grateful to her younger collaborators: Dr. Taras Siversky, my former post-doctoral research assistant employed on a research grant funded by the Science, Technology and Facilities Council (2007–2009); Dr. Sergey Zharkov (son), employed on the European Framework 5 Grant EGSO (2002–2005), currently a Research Fellow at Mullard Space Science Laboratory (MSSL), University College London (UCL), UK; and Dr. Sarah Matthews, a Reader at MSSL, UCL, who helped the author to significantly advance the topics of particle acceleration and precipitation in flaring atmospheres, the generation of seismic responses (sunquakes) associated with solar flares, and the determination of the connection of these processes with the phenomenon of solar flares covering atmospheric heights from the corona to the solar interior.
The author also wishes to acknowledge the Russian collaborators from the Institute of Solar-Terrestrial Physics, Irkutsk, Russia (Prof. A. Altyntsev, Drs. L. Kashapova and N. Meshalkina), whose contribution to our joint research within the Royal Society Joint International Grant (2009–2011) made a reality of recent papers comparing our kinetic and dynamic simulations with multi-wavelength observations, which ultimately became an important part of this book.

And last but not least, the author appreciates the support of her family and partner which allowed her to stay focused on this project and complete the book.

The author hopes that this book will help researchers who are just beginning their study of the physical phenomena of flaring atmospheres on the Sun.

Bradford, January 2012

Valentina Zharkova
Figure 2.1 Topology of reconnecting magnetic field lines in vicinity of X null point $B_y = \pm \alpha B_z$.
Figure 2.9 Proton (blue lines) and electron (purple lines) trajectories in a 3-D RCS with a lateral magnetic field of $B_x = 10 \, \text{G}$ and a drift electric field of $E_y = 100 \, \text{V} \, \text{m}^{-1}$. From Zharkova and Agapitov (2009).
Figure 2.11 Views of current sheet for different values of α: 0.5, 0.7, 1.0, 1.5, 2.0, and 5.0, plotted by rows from (a) to (f). From Zharkova and Agapitov (2009).
Figure 2.16 Positions of particles at initial (a) and final (b) times for spine reconnection, color-coded according to their final energies. From Dalla and Browning (2006).

Figure 2.17 Positions of particles at initial (a) and final (b) times for fan reconnection, color-coded according to their final energies. From Dalla and Browning (2008).
Figure 2.18 Polarization electric field induced by the separation of protons and electrons accelerated in a 3-D current sheet with $B_0 = 10$ G, at various distances z from the null point. From Zharkova and Agapitov (2009).

Figure 2.19 Magnetic field topology and electric field used in PIC simulation model. The vertical rectangle shows the size of the simulation box, which is shifted along the z-axis to account for the different magnitudes of tangential magnetic field component B_x.
Figure 2.29 Electric field E_z induced by particles in PIC simulation ($B_{z0} = 10^{-3}$ T, $B_{y0} = 10^{-4}$ T, $B_{x0} = 4 \times 10^{-5}$ T, $E_{y0} = 250$ V m$^{-1}$, $m_p/m_e = 10$, $n = 10^6$ cm$^{-3}$).

Figure 2.31 Out-of-plane current density in 2.5-D PIC simulations of reconnection with a guiding field, for four consecutive time intervals from (a) to (b). The environment contains two current sheets and is characterized by the appearance of islands formed by the tearing instability. At the start there are only (a) large islands, followed at later times (b–d) by the formation of smaller magnetic islands. Note that such islands do not appear in 2-D PIC simulations of the same environment but without a guiding field. From Drake et al. (2006b).
Figure 2.33 Multiscale structure of electron diffusion region around an X-type null point of total length Δ_e and thickness δ_e, as derived from 3-D PIC simulations. The solid lines show the electron trajectories for the time $t \Omega_{ci} = 80$ (Ω_{ci} is the ion cyclotron frequency). In the inner region of length D_e there is a steady inflow of electrons and a strong out-of-plane current; the outer region is characterized by electron outflow jets. From Karimabadi et al. (2007).

Figure 2.34 Evolution of the current density over a region of extent $800d_i$ (where d_i is the ion inertial length), for different times t. White lines are the magnetic flux surfaces. A close-up of a region in which the formation of new islands is occurring is shown in (e). From Daughton et al. (2009).
Figure 6.5 Snapshots of hydrodynamic models to electron-beam injection with parameters $F_0 = 2 \times 10^{12}$ erg cm$^{-2}$ s$^{-1}$: electron temperature (a), ambient density (b), and macrovelocity profiles (c,d) vs. linear height above photosphere.

Figure 6.6 Snapshots of hydrodynamic models to the mixed beam injection (70% protons and 30% electrons in energy flux) with parameters $F_0 = 2 \times 10^{13}$ erg cm$^{-2}$ s$^{-1}$: electron temperature (a), ambient density (c), and macrovelocity profiles (c,d) vs. linear height above photosphere.
Figure 6.8 Close-up of Figure 6.7 of the temporal variations of macrovelocity in centimeters per second in a lower-temperature condensation, or a hydrodynamic shock (y-axis) vs. column depth in cm$^{-2}$ (x-axis), appearing in response to injection of mixed proton/electron beams (Figure 6.7d–f) after 10 s (black line), 30 s (red line), 50 s (burgundy line), 70 s (navy line), and 100 s (blue line).
Figure 6.14 Temperature (a), density (b), and macrovelocity (c) variations in the main flare event calculated from a hydrodynamic response to the injection of an electron beam with parameters derived from HXR emission.
Figure 7.1 Geometry of observation of HXR emission from a flare under viewing angle ψ with respect to electron and photon momenta and magnetic field direction: (a) geometry considered by Nocera \textit{et al.} (1985) and Zharkova \textit{et al.} (1995); (b) geometry accepted by Syniavskii and Zharkova (1994) and Zharkova \textit{et al.} (2010). See text for more details.
Figure 7.8 Intensity (in relative units) and polarization of the HXR emission for different energies. The initial power-law indices of the accelerated particles are $\gamma = 3$ (red lines) and $\gamma = 7$ (blue lines). The intensity plots for $\gamma = 3$ and $\gamma = 7$ are drawn using a different scaling; the intensity values are shown in the left ($\gamma = 3$) and right ($\gamma = 7$) margins. Dotted line: emission of downward propagating particles (with $\mu > 0$); dashed line: emission of upward propagating particles (with $\mu < 0$); solid line: total emission (downward + upward). The different panels (a–f) correspond to the different depths (ξ) indicated in the legends. The factors taken into account are collisions (C), self-induced electric field (E), and convergence of magnetic field (B).
Figure 7.9 Integrated by column depth intensity (in relative units) and polarization of HXR emission for different energies. The initial power-law indices of the beam electrons are $\gamma = 3$ (red lines) and $\gamma = 7$ (blue lines). The intensity plots for $\gamma = 3$ and $\gamma = 7$ are drawn by using different scaling; the intensity magnitudes are shown in the left ($\gamma = 3$) and right ($\gamma = 7$) margins. Different lines correspond to the different simulation models: solid line – pure collisions (C), dotted line – collisions and return current (C+E), dashed line – collisions and converging magnetic field (C+B), dash-dotted line – all factors taken into account (C+E+B).

Figure 7.10 Directivity and polarization of hard X-ray emission for different directions of observations. The emission parameters are integrated over all layers of coronal magnetic tube. The initial power-law indices of the accelerated particles are $\gamma = 3$ (red lines) and $\gamma = 7$ (blue lines). The different lines correspond to the different simulation models (see Figure 7.9).
Figure 9.5 3-D density of Langmuir wave energy (erg cm\(^{-4}\) s) vs. column depth simulated without (a) and with (b) a self-induced electric field for beams with the following parameters:

(a,b) \(\delta = 7\) and \(F_0 = 10^{10}\) erg cm\(^{-2}\) s\(^{-1}\); (b,f) \(\delta = 3\) and \(F_0 = 10^{10}\) erg cm\(^{-2}\) s\(^{-1}\); (c,g) \(\delta = 3\) and \(F_0 = 10^{11}\) erg cm\(^{-2}\) s\(^{-1}\); (d,h) \(\delta = 3\) and \(F_0 = 10^{12}\) erg cm\(^{-2}\) s\(^{-1}\).