EPD Congress 2012
Check out these new proceedings volumes from the TMS2012 Annual Meeting, available from publisher John Wiley & Sons:

3rd International Symposium on High Temperature Metallurgical Processing
CFD Modeling and Simulation in Materials Processing
Characterization of Minerals, Metals, and Materials
Electrometallurgy 2012
Energy Technology 2012: CO2 Management and Other Technologies
EPD Congress 2012
International Smelting Technology Symposium (Incorporating the 6th Advances in Sulfide Smelting Symposium)
Light Metals 2012
Magnesium Technology 2012
Supplemental Proceedings: Volume 1: Materials Processing and Interfaces
T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization

To purchase any of these books, please visit www.wiley.com.
TMS members should visit www.tms.org to learn how to get discounts on these or other books through Wiley.
Proceedings symposia sponsored by
the Extraction & Processing Division (EPD) of
The Minerals, Metals & Materials Society (TMS)

Held during the TMS 2012 Annual Meeting & Exhibition
Orlando, Florida, USA
March 11-15, 2012

Edited by
Lifeng Zhang
Joseph A. Pomykala
Arjan Ciftja

WILEY
A John Wiley & Sons, Inc., Publication
TABLE OF CONTENTS
EPD Congress 2012

EPD Council 2012 ... xiii
EPD Honors and Awards 2012 .. xv

Materials Processing Fundamentals

Physical Metallurgy of Steel

Influence of the Hot Rolling Process on the Mechanical Behaviour of Dual Phase Steel ... 9
 M. Asadi, and H. Palkowski

Continuous Casting Simulation of 2304 Duplex Stainless Steel Via Horizontal Directional Solidification Technique ... 17
 Q. Sun, H. Zhong, X. Chen, and Q. Zhai

Influence of Cooling Rates on Nitrogen Precipitation Behaviors and the Ferrite Fraction in Cast 2507 Super Duplex Stainless Steel 25
 D. Liang, H. Zhong, Z. Yin, and Q. Zhai

Microstructure and Corrosion Behaviour of TiC Reinforced Duplex Stainless Steels Matrix Composites Synthesized by Laser Melt Injection 33
 B. Obadele, P. Olubambi, and O. Johnson

Process Metallurgy of Metals

A Critical Review of the Modified Froude Number in Ladle Metallurgy 43
 K. Krishnapisharody, and G. Irons

Inclusion Characteristics in Stainless Steel Ingots ... 51
 S. Yang, L. Zhang, Y. Chen, J. Ge, G. Dowling, and G. Shannon

FEM Study of Centerline Defect Closure in Large Open-Die Forgings 63
 J. Zhou, J. Blackketter, and P. Nash

Effect of Mould Taper and Wall Thickness on Steel Ingots Soundness by 3-D Solidification Simulation .. 71
 P. Lan, Y. Li, J. Zhang, R. Zhang, J. Wang, and H. Zhang
Hydrometallurgical Study of Purifying MG Silicon Feedstock for Solar Cells Production...79
 Y. Liu, J. Xue, and J. Zhu

The Effect of Fe Addition on the Activity of Si in Liquid Cu-Si Alloys87
 Y. Kato, T. Yoshikawa, and K. Morita

Thermodynamic Properties of the Silicon Binary Melts..95
 J. Safarian, L. Kolbeinsen, and M. Tangstad

Application of Microwave, Magnet, Laser and Plasma Technology

Non-Contact Measurements in Liquid Metal Free-Surface Flow Using Time-of-Flight Lorentz Force Velocimetry ...105
 D. Jian, and C. Karcher

Modeling of Pulsed-Laser Superalloy Powder Deposition Using Moving Distributed Heat Source..113
 M. Mahapatra, and L. Li

Heat Transfer Characteristics of Magnetite under Microwave Irradiation121
 Z. Peng, J. Hwang, M. Andriese, Z. Zhang, and X. Huang

Refinement Effect of Pulse Magneto-Oscillation on Solidification Structure of Medium Carbon Steel ..129
 Y. Cheng, Z. Yin, X. Cao, Y. Gong, R. Li, and Q. Zhai

Solidification Structure Refinement of SUS430 Ferritic Stainless Steel by Electric Current Pulse ...135
 X. Cao, Z. Yin, Y. Cheng, R. Li, Y. Gong, and Q. Zhai

Metallurgy of Non-Ferrous Metals

Annealing Effect and Tensile Interface Fracture Mechanism of Pure Silver Bonding Wires ..145
 H. Hsueh, F. Hung, T. Lui, and L. Chen

Horizontal Directional Solidification of Zn-Sn Alloys153
 M. Zurco, C. Rodriguez, C. Schvezov, C. Mendez, and A. Ares
Dynamic Recovery during Low Temperature Deformation in an Al-0.1 Mg Alloy.................................161
 Y. Huang, and P. Prangnell

Challenges in Compound Forging of Steel-Aluminum Parts.......................169
 K. Kosch, and B. Behrens

Poster Session

Effect of Process Parameters on Powdering Characteristics of Galvannealed Materials ...179
 R. Singh, K. Khan, and S. Chakrabarti

Hot Deformation Behavior of Nb Microalloyed Coiled Tubing Steel..............185
 Z. Zhang, H. Zhou, X. Liu, S. Li, G. Si, and B. Zhang

Study on Inclusions in 65Mn Thin Slabs Produced by a CSP Process193
 Y. Tan, H. Li, H. Zhong, Z. Dan, X. Mao, and Q. Zhai

A Way to Control Distortion of Metal Parts during Heat Treatment Process...201
 Y. Lu, J. Kang, H. Long, G. Nie, and T. Huang

Investigation of the Relationship of the Melt Structures and Solidification Behaviors of Cu-Sb70 Alloy Explored by Electrical Resistivity Method......209
 Y. Xi, J. Yu, L. Mao, and F. Zu

Microstructure of Al$_2$O$_3$/YAG/ZrO$_2$ Eutectic In Situ Composite Prepared by Laser Floating Zone Melting ..217
 K. Song, J. Zhang, X. Jia, H. Su, L. Liu, and H. Fu

Net Shape Manufacturing of a Novel Cermet Using Self-Propagating High Temperature Synthesis...225
 A. Nabavi, A. Capozzi, S. Goroshin, D. Frost, and F. Barthelat

Recycling General Session

Electronics

Control of Gas Emission during Pyrolysis of Waste Printed Wiring Boards ...237
 A. Luyima, L. Zhang, and J. Kers
Leaching Studies for Metals Recovery from Waste Printed Wiring Boards (PWBs)

A. Luyima, L. Zhang, J. Kers, Y. Jiang, and T. Schuman

Effects of Inoculums Volume on Metals Extraction from Printed Circuit Boards of Computers by Bacterial Leaching

L. Yamane, D. Espinosa, and J. Tenório

Removal of Copper Cyanide Complexes from Solutions Formed in Silver/Gold-Cyanidation Recovery Process

J. Parga, J. Valenzuela, and L. Ramirez

Dissolution of Mixed Zinc-Carbon and Alkaline Battery Powders in Sulphuric Acid Using Ascorbic/Oxalic Acid as a Reductant

M. Kaya, and S. Kursunoglu

Selective Recovery of Precious Metals by Selective Adsorption on Garlic Peel Gel

K. Huang, S. Jiao, and H. Zhu

Separation of Si/SiC Wire Saw Cutting Powder Through Sedimentation by Adjusting the Solution pHs

K. Huang, H. Deng, J. Li, and H. Zhu

Metals

Advantages of Integrated and Long Term Aluminum Recycling Batch Planning in a Constrained Secondary Material Market

T. Brommer, B. Gihleengen, E. Olivetti, and R. Kirchain

Fabrication of Replicated Open-cell Aluminium Foams Using Recycled ADC12 Aluminium Alloy

S. Asavavisithchai, A. Srichaiyaperk, and N. Jareankieathbovorn

In-Process Separation of Mill Scale From Oil at Steel Hot Rolling Mills

N. Ma

Recycling of Electric Arc Furnace Dust: Evaluation of the Iron Metal Incorporation in Hot Metal Bath

V. Sobrinho, V. Telles, F. Grillo, J. Oliveira, J. Tenório, and D. Espinosa
Recycling of Electric Arc Furnace Dust in Iron Ore Sintering

V. Telles, D. Espinosa, and J. Tenório

Extraction of Iron Oxide and Concentration of Titanium Compounds in Red Mud

E. Magalhães, E. Macêdo, J. Souza, J. Quaresma, and D. Quaresma

Heat Treatment of Black Dross for the Production of a Value Added Material–A Preliminary Study

R. Beheshti, S. Akhtar, and R. Aune

Addition of Electric Arc Furnace Dusts in Hot Metal

F. Grillo, D. Espinosa, J. Oliveira, and J. Tenório

Building Materials

Ecological Recovery Process for Textile Waste

E. Carpus, E. Visileanu, and M. Stanescu

Technical Tools for Increasing the Eco-Efficiency of Textile Products

E. Visileanu, and E. Carpus

An Evaluation Study: Recent Developments and Processing of Glass Scrap Recycling

B. Ertug, and N. Ünlü

Recycling of Flat Glass Waste into Clayey Ceramic

T. da Costa Caldas, A. Cordeiro Morais, S. Neves Monteiro, and C. Fontes Vieira

Recycling of Styrene-Divinylbenzene Copolymer through Sequential Mass-Suspension Polymerization Process

N. Campelo, A. Umpierre, and F. Machado

Waste Utilization

Experimental Research on Acid Magenta Dye Decolor Dynamics

Y. Chen, L. Ding, and C. Liu

Recovery of Magnesium from Waste Effluent in Nickel Laterite Hydrometallurgy Process

N. Sun, J. Liu, K. Wang, A. Dong, and Y. Lu
Recycling of Reverted IN738LC with Reference to Mechanical Properties and Control of Chemical Composition ... 417
R. Rahimi, and M. Nili Ahmadabadi

A Kinetics Study on the Hydrometallurgical Recovery of Vanadium from LD Converter Slag in Alkaline Media .. 425
A. Shahnazi, F. Rashchi, and E. Vahidi

Poster Session

AMD Treatment Using Rice Husk as Biosorbent .. 437
F. Silvas, B. Medeiros, D. Buzzi, J. Oliveira, I. Schneider,
D. Espinosa, and J. Tenório

Salvinia sp Applied to AMD Treatment: Equilibrium Time and Biomass Characterization .. 443
F. Silvas, E. Gusmão, D. Buzzi, I. Schneider, J. Oliveira,
D. Espinosa, and J. Tenório

Solar Cell Silicon

Silicon Production

An Investigation into the Electrochemical Production of Si by the FFC Cambridge Process ... 455
E. Ergül, I. Karakaya, M. Erdogan, and F. Erden

Distribution of Boron and Phosphorus during Alloying and Slag Treatment of Metallurgical Grade Silicon ... 463
Y. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld,
and H. Kuntzel

The Kinetics of Boron Removal during Slag Refining in the Production of Solar-Grade Silicon ... 471
E. Krystad, S. Zhang, and G. Tranell

Raman Spectroscopic Study of the Structural Modifications Associated with the Addition of Calcium Oxide and Boron Oxide to Silica 481
J. Kline, M. Tangstad, and G. Tranell
Structure Silicon Deposits Obtained by Electrolysis SiO₂ in the Chloride-
Fluoride Melts..493
 O. Chemezov, A. Apisarov, A. Isakov, and Y. Zaikov

Refining and Characterization

High Frequency Electromagnetic Purification of Silicon499
 L. Damoah, and L. Zhang

Mono-Like Ingot/Wafers Made of Solar-Grade Silicon for Solar Cells
Application ...507
 S. Beringov, T. Vlasenko, S. Yatsuk, O. Liaskovskiy, and I. Buchovska

Thermodynamics of Phosphorous Distribution between Si and Fe-Si in
Solvent Refining of Silicon..513
 L. Tafaghodi Khajavi, and M. Barati

Imaging Techniques for the Characterization of Multi-Crystalline Silicon
Bricks and Wafers...521
 S. Johnston, F. Yan, K. Zaunbrecher, M. Al-Jassim, O. Sidelkheir,
 and A. Blosse

Thermodynamics on Boron Rejection during Metallurgical Grade Silicon
Oxidation by Silicon Dioxide ...529
 Y. Li, Y. Tan, J. Li, S. Wu, and Y. Liu

2D and 3D Numerical Modeling of Solidification Benchmark of Sn-3Pb
(\%wt.) Alloy under Natural Convection ..537
 R. Boussaa, O. Budenkova, L. Hachani, X-D. Wang, B. Saadi,
 K. Zaidat, H. Ben Hadid, and Y. Fautrelle

Author Index ...545

Subject Index ...549
EPD Council 2012

Adrian C. Deneys
Chairperson
Business Development Manager
Praxair Inc.

Thomas P. Battle
Past Chairperson
Senior Metallurgist
Midrex Technologies

Mark E. Schlesinger
Vice Chairperson
Professor
Missouri University of Science & Technology

Edgar E. Vidal
Content Development & Dissemination Committee Representative
Manager, Business Development
Materion Corporation

Kevin M. Jaansalu, PE
Membership & Student Development Committee
Associate Professor
Royal Military College

Andreas H. Siegmund
Program Committee Representative
Senior Vice President
Gas Cleaning Technologies LLC

Michael L. Free
Program Committee Representative
Professor
University of Utah

Robert W. Hyers
Public & Government Affairs Committee Representative
Associate Professor
University of Massachusetts

Rachel A. De Lucas
Education Committee Representative
Process Engineer
HC Starck Inc.

Adam C. Powell, IV
Materials and Society Committee Representative
Co-Founder and CTO
Metal Oxygen Separation Technologies
EPD Council 2012 (continued)

Antoine Allanore
Women in Science Committee Representative
MIT – DMSE / Sadoway Group

Antoine Allanore
Young Leaders Committee Representative
MIT – DMSE / Sadoway Group

Edouard Asselin
Young Leaders Committee Representative
University of British Columbia

Corby G. Anderson
Exhibit Liaison
Harrison-Western Professor of Metallurgical and materials Engineering
Colorado School of Mines

Neale R. Neelameggham
Symposium Sponsorship Committee Representative
Technical Development Manager
IND LLC

Cynthia K. Belt
Energy Committee Chair

Shijie Wang, PhD
Hydrometallurgy and Electrometallurgy Committee Chair
Principal Advisor
Rio Tinto Kennecott Utah Copper Corporation

Jiann-Yang Hwang
Materials Characterization Committee Chair
Director
Michigan Technological University Institute of Materials Processing

Lifeng Zhang
Process Technology and Modeling Committee Chair
Professor
Missouri University

Jerome P. Downey
Pyrometallurgy Committee Chair
Associate Professor
Montana Tech of the University of Montana

Gregory K. Krumdick
Recycling and Environmental Technologies Committee Chair
Principal Systems Engineer
Argonne National Laboratory
EPD Honors and Awards 2012

Distinguished Lecturer Award
Theodor Lehner
Boliden Mineral AB

Distinguished Service Award
Tzong Chen
CANMET-MMSL

Science Award
James E. Miller
Sandia National Labs

Mark D. Allendorf
Sandia National Labs

Richard B. Diver
Sandia National Labs

Anthony H. McDaniel
Sandia National Labs

Nathan P. Siegel
Sandia National Labs

Gary L. Kellogg
Sandia National Labs

Eric N. Coker
Sandia National Labs

Roy E. Hogan
Sandia National Labs

Andrea Ambrosini
Sandia National Labs

Ken S. Chen
Sandia National Labs

Daniel E. Dedrick
Sandia National Labs

Ellen B. Stechel
Sandia National Labs

Technology Award
Jiann-Yang "Jim" Hwang
Michigan Technological University

Xiang Sun
Michigan Technological University

Xiaodi Huang
Michigan Technological University
Materials Processing Fundamentals

Lead Organizer
Lifeng Zhang

Organizers
Antoine Allanore
Cong Wang
Foreword

The key interest areas to be covered in the symposium of Materials Processing Fundamentals are all aspects of the fundamentals, synthesis, analysis, design, monitoring, and control of metals, materials, and metallurgical processes and phenomena. Topics will include

- the experimental, analytical, physical and computer modeling of physical chemistry and thermodynamics;

- transport phenomena in materials and metallurgical processes involving iron, steel, non-ferrous metals, and composites;

- second phase particles in metals and processes, such as non-metallic inclusions and bubbles in metals (steel, aluminum, silicon, magnesium etc...) or gas bubbles in slag or electrolyte (foaming, gas evolution or injection...); the fundamentals (experimental studies or theoretical studies) on the nucleation, growth, motion and removal of these second phase particles from the molten metal or reactors;

- physical chemistry, thermodynamics and kinetics for the production and refining of rare earth metals.

For this year, around fifty abstracts and thirty 30 papers were received for this symposium. Five sessions were organized, including: 1) Process Metallurgy of Metals; 2) Physical Metallurgy of Steel; 3) Application of Microwave, Magnet, Laser and Plasma Technology; 4) Metallurgy of Non-Ferrous Metals; and 5) Poster Session.

Lifeng Zhang, Antoine Allanore, and Cong Wang
Editors

Dr. Lifeng Zhang currently is a professor and the dean of the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing. Lifeng received his Ph.D. degree from University of Science and Technology Beijing in 1998 and has 14 years teaching and research work at different universities – Missouri University of Science and Technology, Norwegian University of Science and Technology, University of Illinois at Urbana-Champaign, Technical University of Clausthal and Tohoku University. Lifeng has compound backgrounds in primary production, refining, casting, and recycling of metals, recycling of electronic wastes and solar grade silicon, and process modeling for metallurgical processes. Lifeng has published over 230 papers and gave over 160 presentations at meetings and conferences. He is Key Reader (Member of Board of Review) for three journals and a reviewer for over twenty-seven journals. Lifeng is a member of TMS, AIST, ISIJ and IEEE. He has received several best paper awards from TMS and AIST.

Dr. Antoine Allanore joined the Department of Materials Science and Engineering at the Massachusetts Institute of Technology in 2010. Currently project Leader in Professor D.R. Sadoway group, Dr. Allanore is in charge of projects related to metals extraction by electrolysis. He earned his engineer diploma and M.S degree in chemical and process engineering from Ecole Nationale Superieure des Industries Chimiques (ENSIC) in Nancy, France. In 2004, he joined ArcelorMittal R&D as research engineer focusing on the development of electrolytic processes for ironmaking in the frame of the ULCOS program. He received his PhD in electrochemical engineering from Nancy University-academically affiliated with the Reactions and Chemical Engineering Laboratory (LRGP, CNRS) in 2007. Lately, Dr. Allanore has been awarded the 2011 TMS Young Leader Professional Development Award and the 2012 TMS DeNora Prize.
Dr. Cong Wang is currently senior research engineer at the Alcoa Technical Center, Alcoa Inc. He earned both master's degree and a Ph.D. in Materials Science and Engineering from the Carnegie Mellon University, as well as a master's degree from the Institute of Metal Research, Chinese Academy of Sciences and his undergraduate degree from the Northeastern University, Shenyang, China.
Materials Processing Fundamentals

Physical Metallurgy of Steel

Session Chair
Antoine Allanore
Influence of the Hot Rolling Process on the Mechanical Behaviour of Dual Phase Steel

Mehdi Asadi1, Heinz Palkowski2

1Benteler Automotive, An der Talle 27-35, 33102 Paderborn, Germany
2Technical University of Clausthal, Institute of Metallurgy, Metal Forming and Processing
Robert-Koch-Str. 42, Clausthal-Zellerfeld, Germany

Keywords: Dual phase steel, hot deformation, mechanical properties, bake hardening

Abstract

In recent years, the increased demand for advanced high-strength steels (AHSS) mainly had been driven by the need of the automotive industry to reduce weight and to improve safety. Beside good ductility and high strength, those steels have a high bake hardening (BH) effect, giving additional contribution to the strength of structural parts, subjected to the paint baking process. In this paper we concentrate results gained for hot rolled dual phase (DP) steels.

For the simulation of changing process conditions within the final hot rolling the specimens were hot deformed using different schedules of temperatures and reductions, selected according to the non-recrystallization temperature (T_{nRX}). It was possible to refine the DP steel structure by controlling the deformation temperature and the amount of strain below T_{nRX} during the thermo-mechanical controlled processing (TMCP). This structure refinement resulted in an improvement of the strength and BH behaviour. A wide spectrum of mechanical properties could be obtained depending on the different hot deformation schedules. The best strength and BH levels were recorded for the deformation below T_{nRX} at the highest amount of strain.

Introduction

DP steels are characterized by a good formability, high strength and a good compromise between strength and ductility [1]. Moreover, the DP steels exhibit a continuous yielding behaviour, low yield point and a high strain-hardening coefficient [2]. Furthermore, the DP steels often show a large potential for bake hardening (BH). BH refers to the increase in yield strength as a result of the paint baking treatment of the shaped auto-body parts. The primary mechanism that causes the additional strengthening is the immobilization of dislocations by the segregation of interstitial atoms, known as classical static strain aging [3]. The increase of strength thus achieved allows a further reduction of sheet thickness and improves the crash safety and the dent resistance. The BH of special steel qualities is technically used in DP, where e.g. the increase in strength is realized in the final heat treatment [4]. Previous own investigations [5-6] stated that the BH effect of DP is much stronger than that one for conventional BH steels.

Traditionally, the main objective in conventional thermo-mechanical controlled processing (TMCP) of multiphase steels is to refine the ferrite grain size through

(i) refining prior austenite grains,

(ii) increasing grain boundary area per unit volume by changing the grain shape, e.g., pancaking, and

(iii) increasing boundaries.

Moreover, it has also been observed that the morphology of ferrite is related to the prior austenite [7]. In DP steels with the presence of ferrite and martensite in the microstructure, the other aim of TMCP is to refine the microstructure by the deformation in the non-recrystallized austenite region.
It has been reported that the bainite can be significantly refined by more than 50% deformation in the non-recrystallized region [8]. Furthermore, the TMCP schedule also influences the transformation behaviour, leading to different morphologies of the ferrite and martensite.

For the hot rolling of strip steel the rolling schedule and cooling scheme determine the final mechanical and geometrical properties of the strip. They can be strongly influenced by the setup of the mill, i.e. the amount of reduction, the reduction in the last stands, the rolling velocity and the temperature [9]. The hot rolled DP steels are typically produced on a hot strip mill, where the level of roughing and finishing depends on the mill's configuration as well as the starting and final thicknesses of the plates.

Prior to finishing, the austenite grain size varies, depending on the amount of reduction and the finishing temperatures. Hence, in the current work, a wide range of finishing strains and temperatures were used to clarify the effect of different TMCP schedules on the phase transformation kinetics, microstructure development, mechanical properties and BH behaviour of the DP steel. The optimized TMCP schedules are discussed in relation to the microstructure evolution and mechanical properties as well as the BH behaviour.

Material and Experiments

The DP steel used was delivered as a transfer bar with a thickness of 50 mm. Its chemical composition is listed in Table I.

<table>
<thead>
<tr>
<th>Steel</th>
<th>DIN 10336</th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Cr</th>
<th>Mo</th>
<th>Nb</th>
<th>P</th>
<th>N</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 600</td>
<td>HDT580X</td>
<td>0.06</td>
<td>0.10</td>
<td>1.30</td>
<td>0.60</td>
<td>0.005</td>
<td>0.002</td>
<td>0.04</td>
<td>0.006</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Simulation of Finishing Rolling

For studying the kinetics of phase transformation which takes place in the steels investigated during their TMCP as well as for simulation of last three deformation steps of hot rolling process a "Bähr TTS820" type deformation simulator was used. The experiments were performed using a flat compression setup mounted on the deformation simulator. Figure 1 shows this setup of the deformation simulator. In Figure 2 the dimensions of the flat compression sample are given. The heat transfer in the flat compression samples was reduced by two holes.

Figure 1. Experimental flat compression setup

Figure 2. Specimen's dimension for flat compression test

In the experimental setup, the flat compression specimen is placed on two pedestals and is only fixed in place with the aid of a clamping device during the punch return. The specimen is inductively heated by induction coils. Two deformation stamps, right and left on the specimen, are provided for deforming the flat compression specimen. Four gas coils with drilled holes faced to the
middle of the specimen’s sides are located symmetrically left and right to the specimen for quenching (Figure 1). Helium gas was used for cooling. Dilation across the sample width during experiment was measured with a laser extensometer.

In order to influence the shape and the size of the austenite grains before γ → α transformation, austenite conditionings were conducted using three different deformation schedules. The deformation part for the schedules was determined in such a way that all the three possibilities were covered, namely all deformations conducted above T_{αRX}, deformations below T_{αRX} and a mixture above and then below T_{αRX} (named above-below T_{αRX}). In a prior experiment T_{αRX} was determined by the method proposed by Jonas and co-workers [10] which is based on multistage torsion test. The estimated value was T_{αRX} = 855 °C.

Figure 3 shows the different schedules applied in this work. The upper and the lower limits of technological influencing parameters have been selected according to industrial processes. The finishing temperatures (T_f) in large scale production of hot rolled DP steels are between 780 and 900 °C. Therefore, the deformation temperatures and the amounts of strain varied close to this interval. Table II illustrates the selected schedules for the TMCP simulation. After austenitizing at 1000 °C for 3 min, the flat compression specimens were subjected to three defined deformations in three different temperature intervals. The strain rate for each deformation step was kept constant with φ = 10 1/s. Two cooling stages were taken during TMCP. First, the specimens were cooled after the last deformation step to fast cooling start temperature (T_{FC}) with 10 K/s until the required fraction of ferrite was obtained (γ → α transformation). Second, specimens were accelerated cooled below martensite start temperature (M_s) with a high cooling rate of ~110 K/s to achieve martensite from retained austenite (γ → α’ transformation). In order to determine T_{FC} temperatures the specimens were prior subjected to the same deformation schedules as TMCP (Table II) and subsequently cooled from the last deformation step to RT at a cooling rate of 10 K/s using the deformation / dilatometric tests. From the variation of the change in length as a function of temperature the transformed austenite fraction (f_y) was calculated employing the lever rule. From f_y vs. temperature T the T_{FC} temperatures for different schedules can be calculated.

As the amount of martensite in industrially produced DP steels is typically between 10% - 30%, martensite volume fraction MVF = 20% was aimed at in this research. Minimum three DP samples with prescribed amount of ferrite (80%) and martensite (20%) were prepared for each schedule.

![Figure 3. Schedules used for the simulation of the final steps in the finishing hot rolling process.](image-url)
Table II. Hot deformation schedules and values of influencing parameters;

<table>
<thead>
<tr>
<th>Number of schedule</th>
<th>T_1 [°C]</th>
<th>T_2 [°C]</th>
<th>T_3 [°C]</th>
<th>ϕ_1 [-]</th>
<th>ϕ_2 [-]</th>
<th>ϕ_3 [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sch. 1</td>
<td>930</td>
<td>900</td>
<td>855</td>
<td>0.45</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 2</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 3</td>
<td>900</td>
<td>900</td>
<td>855</td>
<td>0.45</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 4</td>
<td>900</td>
<td>900</td>
<td>855</td>
<td>0.40</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 5</td>
<td>900</td>
<td>900</td>
<td>855</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 6</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.45</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>Sch. 7</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.45</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>Sch. 8</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 9</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 10</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 11</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 12</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 13</td>
<td>900</td>
<td>855</td>
<td>830</td>
<td>0.40</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 14</td>
<td>855</td>
<td>830</td>
<td>800</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>Sch. 15</td>
<td>855</td>
<td>830</td>
<td>800</td>
<td>0.35</td>
<td>0.20</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Results and Discussion

Microstructure Evolution

The microstructural evolution of the thermo-mechanically produced DP specimens with defined f_a and f_c was studied. Figure 4 displays exemplarily the microstructure of two DP steels subjected to Sch. 1 (deformed above T_{arX}) and Sch. 11 (deformed below T_{arX}). The Nital etchant reveals the martensite dark while the ferrite remains light. During the first cooling stage after the last deformation step austenite progressively transforms to ferrite, whereas the remaining part transforms to martensite. All images show a classical DP microstructure with relatively globular martensite islands embedded in the ferrite matrix phase. The ferrite grains are equiaxed with average sizes depending on the applied hot deformation schedule. The MVF determined by the line intercept method is about 20% for all samples. Small amounts of retained austenite between 1 - 2% were found for all conditions. Martensite islands can be clearly observed in microstructure. They often display dark substructures either within or in their immediate surroundings. In addition, such a dark phase can also be observed at the boundaries between two neighbouring ferrite grains.

Figure 4. Microstructure of DP steels showing different ferrite grain sizes and martensite blocks obtained after TMCP when all the deformation steps were conducted: (a) above T_{arX} (Sch. 1) and (b) below T_{arX} (Sch.11)