CFD Modeling and Simulation in Materials Processing

Edited by
Laurentiu Nastac, Lifeng Zhang, Brian G. Thomas, Adrian Sabau, Nagy El-Kaddah, Adam C. Powell, and Hervé Combeau
CFD Modeling and Simulation in Materials Processing
Check out these new proceedings volumes from the TMS2012 Annual Meeting, available from publisher John Wiley & Sons:

- 3rd International Symposium on High Temperature Metallurgical Processing
- CFD Modeling and Simulation in Materials Processing
- Characterization of Minerals, Metals, and Materials
- Electrometallurgy 2012
- Energy Technology 2012: CO2 Management and Other Technologies
- EPD Congress 2012
- International Smelting Technology Symposium (Incorporating the 6th Advances in Sulfide Smelting Symposium)
- Light Metals 2012
- Magnesium Technology 2012
- Supplemental Proceedings: Volume 1: Materials Processing and Interfaces
- T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization

To purchase any of these books, please visit www.wiley.com.

TMS members should visit www.tms.org to learn how to get discounts on these or other books through Wiley.
TABLE OF CONTENTS

CFD Modeling and Simulation in Materials Processing

Preface ... xi
Editors... xiii

CFD Modeling and Simulation in Materials Processing

CFD Modeling in Materials Processing I

Fluid Flow, Solidification and Inclusion Entrapment during Steel Centrifugal Casting Process ... 3
 L. Zhang, Y. Wang, E. Martinez, and K. Peaslee

A Micro-Macro Model of a PEM Fuel Cell System 17
 T. Paramadhayalan, H. Pimpalgaonkar, and S. Sundarraj

Modeling the Effects of Tool Geometries on the Temperature Distributions and Material Flow of Friction Stir Aluminum Welds .. 25
 H. Mohanty, M. Mahapatra, P. Kumar, and P. Jha

Understanding Fuming during Metal Refining by CFD 33
 J. Olsen, M. Naess, and G. Tranell

CFD-Based Modelling on Interfacial Heat Transfer for Water Quenching 41
 G. Wang, and Y. Rong

Fuzzy Extraction Separation Optimized Process of Tm, Yb and Lu Enriched Oxides by Computer Simulation ... 49
 F. Yang, S. Yang, L. Wu, C. Tong, and M. Li
CFD Modeling in Materials Processing II

Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium .. 57
A. Powell, and S. Pati

Numeric Modeling for the Carbothermic Aluminum Process 65
D. Roha

A Coupled CFD-PBE Approach Applied to the Simulation of the Inclusion Behavior in a Steel Ladle ... 73
J. Bellot, V. De Felice, L. Lis Alves Daoud, A. Jardy, and S. Hans

Multiphysics CFD Modeling of a Free Falling Jet during Melt-Blowing Slag Fiberization .. 81
D. Gerogiorgis, D. Panias, and I. Paspaliaris

Numerical Simulation of Erosion Using Computational Fluid Dynamics 89
H. Grewal, H. Singh, and A. Agarwal

Modeling of Melting and Remelting Processes

A Multiscale Transient Modeling Approach for Predicting the Solidification Structure in VAR Processed Alloy 718 Ingots ... 99
L. Nastac

A Multiscale Model for the Simulation of V.A.R. Ingot Solidification 107
M. Revil-Baudard, A. Jardy, F. Leclerc, M. Zaloznik, V. Rebeyrolle, and H. Combeau

Mathematical Modeling of Fluid Dynamics and Vessel Vibration in the AOD Process ... 115
C. Wuppermann, A. Rückert, H. Pfeifer, H. Odenthal, and E. Hovestadt

Solute Redistribution, Liquid/Solid Interface Instability, and Initial Transient Regions during the Unidirectional Solidification of Ti-6-4 and Ti-17 Alloys ... 123
L. Nastac

Numerical Analysis of Electromagnetic Field in an Electroslag Remelting Process with Three-Phases Electrodes ... 131
B. Li, F. Wang, and M. Shan
Influence of the Frequency of the Applied AC Current on the Electroslag Remelting Process ...139
 A. Kharicha, M. Wu, A. Ludwig, M. Ramprecht, and H. Holzgruber

Modeling of Casting and Solidification Processes I

Modeling of Multiscale and Multiphase Phenomena in Material Processing...149
 A. Ludwig, A. Kharicha, and M. Wu

2D and 3D Numerical Modeling of Solidification Benchmark of Sn-3wt.% Pb Alloy under Natural Convection..163
 R. Boussaa, L. Hachani, B. Saadi, X. Wang, O. Budenkova,
 K. Zaidat, H. Ben Hadid, and Y. Fautrelle

Numerical Modeling of the Interaction between a Foreign Particle an Solidifying Crystalline Interface..171
 E. Agaliotis, M. Rosenberger, A. Ares, and C. Schvezov

Optimization of Tensile Test Pattern for Aluminum Alloys....................179
 E. Tan, A. Riza Tarakcilar, F. Syvertsen, and D. Dispinar

Modeling of Casting and Solidification Processes II

Modeling of Centrifugal Casting Processes with Complex Geometries189
 N. Humphreys, D. McBride, N. Croft, D. Shevchenko, N. Green,
 and M. Cross

CFD Modeling of Microstructural Development in the Scanning Laser Epitaxy Process ...197
 R. Acharya, R. Bansal, J. Gambone, and S. Das

Numerical Simulation of Macro-shrinkage and Micro-shrinkage in A356 Sand Mold Castings ...205
 L. Nastac

Defect Analysis by Casting Simulation Software in Rolling Roll Manufactured by GGG70 ...213
 E. Tan, A. Riza Tarakcilar, and D. Dispinar

SPH Model Approach Used to Predict Skin Inclusions into Semisolid Metal Castings ...219
 F. Pineau, and G. D'Amours
Vibrations Induced Flow in a Horizontal Centrifugal Casting227
A. Kharicha, J. Bohacek, A. Ludwig, and M. Wu

Inverse Modeling for Determination of Thermal Properties of the Investment
Casting Ceramic Mold ...235
M. Xu, S. Lekakh, V. Richards, and S. Dutler

Electromagnetic and Ultrasonic Processing of Materials

Modeling Magnetically Excited and Magnetically Damped Liquid
Metal Flow ..245
V. Bojarevics, and K. Pericleous

Numerical Analysis of the Influence of Melting and Application of
Electromagnetic Stirring Prior to Solidification on Macrosegregation
Formation during Casting of a Binary Alloy ..253
K. Omdal Tveito, M. M’Hamdi, H. Combeau, M. Založnik,
K. Zaidat, X. Wang, B. Saadi, and Y. Fautrelle

Multiscale Modeling of Ingot Solidification Structure Controlled by
Electromagnetic and Ultrasonic Stirring Technologies261
L. Nastac

Modeling the Case Hardening of Crankshafts ..269
T. Munikamal, and S. Sundarraj

Modeling of Steelmaking Processes

Transport and Entrapment of Particles in Steel Continuous Casting279
B. Thomas, Q. Yuan, R. Liu, S. Mahmood, and R. Chaudhary

Mathematical Modeling of a Compressible Oxygen Jet Interacting with a Free
Surface in a Basic Oxygen Furnace for Steel Production287
K. Pericleous, B. Lebon, G. Djambazov, and M. Patel

CFD Model for Prediction of Liquid Steel Temperature in Ladle during Steel
Making and Casting ...295
A. Tripathi, J. Saha, J. Singh, and S. Ajmani

Multiphase Flow in a Steelmaking Converter Using an Unconventional
Lance ...303
M. Barron, I. Hilerio, and A. de Ita
Fluid Flow and Inclusion Removal in Multi-Strand Tundish with Nozzle Blockage ...311
 P. Jha, S. Mishra, S. Sharma, S. Ajmani, and M. Mahapatra

CFD Modeling of Fluid Flow Behavior and Bath Surface Deformation in LD Converter ...319
 T. Kundu, and S. Pal

Effect of Thermal Buoyancy Force on the Flow, Temperature Distribution and Residence Time Distribution of Molten Steel in the Slab Casting Tundish327
 H. Sun, B. Yan, and J. Zhang

Time Zone Analysis of F-Curve for Intermixing during Ladle Change-Over .335
 P. Jha, S. Kant, P. Kumar, and A. Kumar

Author Index ...343

Subject Index ...345
Preface

Computational Fluid Dynamics (CFD) is a sophisticated method that uses mathematical equations and computer algorithms to simulate fluid flow, heat and mass transfer, and other related phenomena in a defined system. CFD modeling and simulation tools can successfully be tailored to capture multiscale and multiphase phenomena in complex material processing systems. Recently, CFD modeling and simulation technology has grown significantly in the manufacturing sector as often being the only efficient way to design, analyze and optimize complex manufacturing processes. We anticipate that more CFD tools will be implemented in the near future by industries related to materials processing to solve complex multiscale and multiphase engineering problems.

This book contains the proceedings of the symposium “CFD Modeling and Simulation in Materials Processing,” which was held during the TMS Annual Meeting and Exhibition, Orlando, FL, March 11-15, 2012. The objective of this symposium was to bring together experienced scientists and engineers that are involved in the modeling of multiscale and multiphase phenomena in material processing systems.

The symposium focused on the CFD modeling and simulation of metal processes including controlled melting and solidification processes such as EMS (electromagnetic stirring), UST (ultrasonic technology), and mold (mechanical) vibration, steelmaking processes, processes related to extractive metallurgy, advanced casting technologies (including refining of metals, foundry near-net-shape casting (such as investment casting and printing mold technologies), semisolid metal casting, ingot/roll casting, centrifugal casting, continuous casting), friction stir welding, heat treating (including water quenching), remelting (VAR/ESR/PAM/EBM) processes; multiscale modeling of PEM fuel cell systems, modeling of SOM electrolysis and recycling of Magnesium, CFD modeling of the carbothermic Aluminum process, environmental modeling (e.g., fuming during metal refining) and surface engineering processes (such as induction and scanning laser epitaxy processing). The symposium also dealt with applications of CFD to engineering processes and demonstrated how CFD can help scientists and engineers to better understand the fundamentals of engineering processes.

We expect that the papers collected in this book and ensuing discussions at the conference will continue to advance our understanding of various multiscale/multiphase/multicomponent phenomena occurring in materials processing systems and further promote the application of CFD models to solve complex engineering problems.

Finally, the editors of this book would like to acknowledge the efforts of all the contributors. Special thanks are due to Chris Wood and Matt Baker from TMS who supported our efforts of developing this symposium and helped us process all of the papers published in this book.

Laurentiu Nastac, Lifeng Zhang, Brian G. Thomas, Adrian Sabau, Nagy El-Kaddah, Adam C. Powell, and Hervé Combeau

xi
Editors

Dr. Laurentiu Nastac is currently a Professor at the University of Alabama, Metallurgical and Materials Engineering Department, Tuscaloosa, AL. For his teaching and research interests please visit his website: http://mte.eng.ua.edu/people/lnastac/. Laurentiu Nastac received the Diploma Engineering degree in Metallurgy and Materials Science from the University "Politehnica" of Bucharest, Romania in 1985 and the M.S. and Ph.D. degrees in Metallurgical and Materials Engineering from the University of Alabama, Tuscaloosa in 1993 and 1995, respectively. He has held various engineering, research, and academic positions in Romania and USA (1985-1996). At Concurrent Technologies Corporation (CTC) (1996-2011) he conducted research primarily in the area of advanced metalcasting and solidification processes with emphasis on the modeling and simulation of casting phenomena. In 1999, in recognition of his work on solidification of Ti and superalloy remelt ingots, he received the prestigious "Bunshah Best Paper Award" from the American Vacuum Society, Vacuum Metallurgy Division. More recently, he received the NMC (Navy Metalworking Center) achievement award and 2 CTC awards. Dr. Nastac developed 8 software tools, made over 100 presentations, co-authored 3 patents and over 125 publications in the materials science and manufacturing fields, and wrote 2 books, one is a monograph titled “Modeling and Simulation of Microstructure Evolution in Solidifying Alloys” published by Springer in 2004 (http://www.springer.com/materials/special+types/book/978-1-4020-7831-6). He is a Key Reader for Met Trans, a member of the Editorial Board of the International Journal of Cast Metals Research and of the ISRN Materials Science, and a member of the TMS Solidification Committee; he served in scientific committees and as an organizer for international conferences dedicated to CFD modeling and simulation in materials processing area and for casting and solidification processes.
Dr. Lifeng Zhang currently is a professor at the School of Metallurgical and Ecological Engineering at University of Science and Technology Beijing. Lifeng received his Ph.D. degree from University of Science and Technology Beijing in 1998 and has 14 years teaching and research work at different universities – Missouri University of Science and Technology, Norwegian University of Science and Technology, University of Illinois at Urbana-Champaign, Technical University of Clausthal and Tohoku University. Lifeng has compound backgrounds in primary production, refining, casting, and recycling of metals, recycling of electronic wastes and solar grade silicon, and process modeling for metallurgical processes. Lifeng has published over 230 papers and gave over 160 presentations at meetings and conferences. He is Key Reader (Member of Board of Review) for three journals and a reviewer for over twenty-seven journals. Lifeng is a member of TMS, AIST, ISIJ and IEEE. He has received several best paper awards from TMS and AIST.

Dr. Brian G. Thomas is the Gauthier Professor of Mechanical Engineering at the University of Illinois and Director of the Continuous Casting Consortium. His research efforts focus on computational models of continuous casting of steel and related processes. Specifically, he has developed new computational tools to study materials processes involving solidification, and applied those tools together with plant measurements to gain new understanding into the commercial processes to enable improvements in quality and productivity. He received his Bachelors of Metallurgical Engineering from McGill University, (Montreal, Canada) in 1979 and Ph.D. in Metallurgical Engineering in 1985 from the University of British Columbia, Canada. He has worked in the Research Departments of Algoma Steel, Sault Ste. Marie, Canada and BHP in Melbourne, Australia. Dr. Thomas has coauthored over 300 papers, and has been recognized with a Presidential Young Investigator Award from NSF, Outstanding Young Manufacturing Engineer Award from SME, Xerox Award from UIUC, Distinguished Scientist / Engineer, and Application to Practice Awards from TMS, Fellow of ASM International, and 13 best paper awards. He has given over 200 presentations worldwide and co-instructed many short courses to transfer technology to industry, including the annual Brimacombe Continuous Casting Course.
Adrian S. Sabau received an Inginer Diplomat of Mechanical and Materials Processing degree from the University of Craiova, Romania and PhD degree in Mechanical Engineering from Southern Methodist University in 1996. In 1999, Dr. Sabau joined Oak Ridge National Laboratory as a Research Staff Member of the Materials Science and Technology, where he currently is a Senior Research Staff Member since 2008. Dr. Sabau is the recipient of two R&D 100 awards in process sciences. Dr. Sabau seeks to advance the materials processing, metal casting, photonic processing, and materials for energy applications through the development of computational and experimental methodologies for the property measurement, process analysis, and materials behavior in response to conditions experienced in service, such as oxide exfoliation in steam boiler tubes. The algorithm for microporosity prediction during casting solidification was implemented in the commercial casting software ProCAST. Dr. Sabau published more than 108 technical papers.

Dr. Nagy El-Kaddah graduated with a B.Sc. in Metallurgical Engineering from Cairo University, Egypt in 1968, and received his Ph.D. in Metallurgy in 1976 from Imperial College, England. He started his academic career in 1977 at Cairo University as an assistant professor. During his tenure at Cairo University he took 4 years sabbatical at Massachusetts Institute of Technology, USA. In 1985 he joined the Department of Metallurgical Engineering at the University of Alabama as associate professor and was promoted to professor in 1991. Over the years, Dr. El-Kaddah has conducted significant research in the area of melting, refining and casting of metals, with particular emphasis on electromagnetic field applications in metals processing and on mathematical modeling of metallurgical processes. He has published more than 150 technical papers, edited four conference proceedings, and was awarded three patents.
Adam C. Powell, IV is CTO and Co-Founder of Metal Oxygen Separation Technologies, Inc. (MOxST, pronounced "most"), where he leads the company's IP strategy and R&D effort. Powell's technical background is in materials science with a focus on process technology, including applications in electrochemistry, metal processing, polymer membranes, mechanical behavior of materials, fluid mechanics, heat transfer, physical vapor deposition, computer modeling, and high-performance computing. He holds dual S.B. degrees in Economics and Materials Science and Engineering from MIT and a Ph.D. in Materials Engineering also from MIT. He is a co-author of the National Academies study on Integrated Computational Materials Engineering, and is on the Editorial Board of The Open Mineral Processing Journal. He authored nine open source computer programs for R&D and education, and is a Debian GNU/Linux Maintainer overseeing a suite of scientific software packages. Powell is an Instructor at Boston University, and a Foreign Cooperative Researcher at the University of Tokyo.

Hervé Combeau (born 1959) is MSc from the Institut National Polytechnique de Lorainne (INPL, 1981) and got his doctorate degree in mechanical engineering from the same university in 1986. Hervé Combeau started his career at university in 1986 as assistant professor at the Nancy 1 university (IUT Longwy) where he taught heat transfer, air treatment and thermodynamic. Then, he entered at the Ecole des Mines de Nancy in 1988 where he is presently professor. He teaches fluid mechanics, heat and mass transfer, modeling and numerical simulation, and combustion. Moreover, he is the head of the department: ‘Process, Energy and Environment’. His field of research is the mathematical modeling of transport phenomena occurring during solidification. He developed several software used by industry for microstructures, macrosegregations and microsegregations predictions. He is the author or co-author of 52 technical publications in refereed journals.
CFD Modeling and Simulation in Materials Processing

CFD Modeling in Materials Processing I

Session Chairs:
Lifeng Zhang
Raj Venturumilli
FLUID FLOW, SOLIDIFICATION AND INCLUSION ENTRAPMENT DURING STEEL CENTRIFUGAL CASTING PROCESS

Lifeng Zhang1,2, Yufeng Wang1, Edith Martinez1, Kent D. Peaslee1

1Department of Material Science & Engineering
Missouri University of Science and Technology (Missouri S&T)
223 McNutt Hall, Rolla, MO 65409-0330, USA
Tel: 573-341-4776, Email: zhanglife@mst.edu

2School of Metallurgical and Ecological Engineering
University of Science & Technology Beijing
Beijing 100083, China
Email: zhanglifeng@ustb.edu.cn

Keywords: Centrifugal Casting, Steel, Fluid Flow, Inclusions, Entrapment

Abstract

The current study investigated the multiphase fluid flow, heat transfer, solidification of the steel, and the motion and entrapment of inclusions during the centrifugal casting process using FLUENT software. User-defined functions (UDFs) were developed to add velocity with a value related to the rotation speed and radial distance to the solidified steel, to exert a centrifugal force to the motion of inclusions, and to add the entrapment condition of inclusions at the solidifying shell and export the entrapment locations of the inclusion. The calculation shows that there are two peaks of inclusions along the thickness of the produced tube: one at close to outer surface and another one close to the inner surface of the tube. With a larger rotation speed, inclusions tend to be entrapped more towards the inner surface. The calculation agrees well with the industrial measurements.

Introduction

Centrifugal casting is used to produce cylindrical or hollow products, such as tanks, pipes and poles. It is both gravity and pressure independent. For round billet casting, molten steel is poured into an open-ended, water-cooled mold. Via rotation, the centrifugal force is in effect “liquid forging” or pressure casting so that molten metal is forced against the mold wall under relatively high pressure. The centrifugal force along with the rapid cooling effect of the chilled mold induces directional solidification across the casting wall under forced feeding conditions. Horizontal centrifugal casting involves pouring molten metal into a cylindrical mold spinning around its axis of symmetry, as shown in Figure 1. The casting mold keeps rotating with a speed of 300-3000 rpm, which results in an acceleration of 100 times gravity within the liquid metal layer. Defects in conventional static casting (such as sand casting) like internal shrinkage, gas porosity and nonmetallic inclusions are less likely to occur in horizontal centrifugal casting. It has been reported that the process improved the density of cast metal and increased the actual mechanical properties of the casting by 10-15% while providing a uniform metallurgical structure. For horizontal centrifugal casting, the technological parameters influencing final product properties involve mold rotation speed (n), casting temperature (T), casting speed (V),
chemical composition and casting dimension. The rotation speed has the highest influence on the formation of microstructure and the quality of casting. Different studies have been carried out to investigate the distribution of inclusions in steel pipes produced by the centrifugal casting process \cite{4-6}. It was reported that the content and distribution of the nonmetallic inclusions in the centrifugal casting steel depended to a significant degree on the metal being formed and the field of the centrifugal force during solidification \cite{4}. Compared to the distribution of inclusions in the radial direction, segregation in axial direction is minor \cite{7}. The current authors have found inclusions at the fracture surface of the centrifugally cast steel product. Figure 2 shows an example of Al$_2$O$_3$-MnS inclusions at the fracture surface.

In addition to direct observations of steel samples of centrifugally cast products, there are other alternatives to investigate this complex phenomenon and provide more information on the operation of the casting process. Martinez et al investigated the stirring phenomena in horizontal centrifugal casting using water modeling \cite{8}. To determine the size of recirculation eddies, dusts were used as tracers that floated on the free surface and gathered along lines where fluid velocity was directed towards the external radial direction.

The current publication presents the fluid flow simulation and inclusion entrapment during the casting and solidification of horizontal centrifugally cast steel. Computational Fluid Dynamics (CFD) simulation was used. Several factors, such as flow pattern, rotation speed, temperature variation, and top surface profile, are discussed in order to evaluate the important operating parameters and enhance product quality.

Mathematical Formulation

Turbulent Flow Model

To simulate the motion of inclusions in a turbulent field, it is necessary first to calculate the turbulent fluid flow. This work modeled three-dimensional single-phase steady turbulent fluid flow in the horizontal centrifugally cast mold using the continuity equation and the Navier-Stokes equations in a standard two-equation turbulence model.

The continuity equation was

$$\frac{\partial (\rho u_j)}{\partial x_j} = 0$$

(1)
where ρ is density in kg/m3, u_j is a velocity component in the x_j direction in m/s. The momentum equation was

$$
\rho \frac{\partial (u_j u_j)}{\partial x_j} = -\frac{\partial p}{\partial x_j} + \frac{\partial}{\partial x_i} \left(\mu_{\text{eff}} \frac{\partial u_j}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(\mu_{\text{eff}} \frac{\partial u_j}{\partial x_j} \right) + \rho g + F.
$$

(2)

where p is pressure in Pascal, F is a momentum source/sink term in N, and μ_{eff} is the turbulence-adjusted effective viscosity in kg/m. The latter is calculated by

$$
\mu_{\text{eff}} = \mu_0 + \mu_t.
$$

(3)

where μ_0 is laminar fluid viscosity in kg/ms, and μ_t is turbulent fluid viscosity in kg/ms. The standard k-ε two-equation turbulence model was used to determine the effective viscosity μ_{eff}.

Volume of fluid (VOF) multiphase model was employed to track the interface between the molten steel and the air. The VOF multiphase model was used to track the free surface moving through the computational grid by simultaneously solving another parameter, the volume fluid per unit volume, ϕ. It requires the converging of an additional conservation equation (Eq.(4))10.

$$
\frac{\partial \phi}{\partial t} + \frac{\partial}{\partial x_i} \left(\phi u_i \right) = 0
$$

(4)

The following energy conservation equation was used to calculate the heat transfer in a casting mold,

$$
\frac{\partial}{\partial t} \left(\rho H \right) + \frac{\partial}{\partial x_j} \left(\rho u_j H \right) = \frac{\partial}{\partial x_j} \left(k_{\text{eff}} \frac{\partial T}{\partial x_j} \right) + Q
$$

(5)

where H is enthalpy or heat content in J/kg, k_{eff} is temperature-dependent effective thermal conductivity in W/m-K, T is the temperature field in K, and Q contains heat sources in W/m3.

Solidification Front Growth Model

Mushy zone is a zone in a solidifying alloy in which solid and liquid coexist. The growth of dendrites in this region can be modeled by several numerical models, such as the phase-field model, the cellular automaton model, and stochastic models, including the Monte Carlo Model. In the current study, the method of enthalpy-porosity 10 is used. For this method, instead of tracking the accurate liquid-solid front, it treats the liquid-solid mushy zone as a porous zone. Furthermore, it uses the liquid fraction (0.0 - 1.0) to describe the mushy zone. When the material is in a liquid state, the liquid fraction is 1.0; when it has fully solidified, the liquid fraction becomes 0. The liquid fraction, β, is defined as follows

$$
\beta = 0 \quad \text{if} \quad T < T_{\text{solidus}}
$$

(6)

$$
\beta = 1 \quad \text{if} \quad T > T_{\text{liquidus}}
$$

(7)

$$
\beta = \frac{T - T_{\text{solidus}}}{T_{\text{liquidus}} - T_{\text{solidus}}} \quad \text{if} \quad T_{\text{solidus}} < T < T_{\text{liquidus}}
$$

(8)

The heat transfer equation is the same as Eq.(5), while

$$
H = h_{nf} + \int_{T_{nf}}^{T_{ref}} C_p dT + \beta L
$$

(9)

where h_{nf} is the reference sensible enthalpy, L is the latent heat, T_{nf} is the reference temperature.
The mushy zone is treated as a porous medium. To consider the momentum loss in this region when liquid phase becomes solid phase, the loss is represented by adding a sink term to the end of the momentum equation. The momentum sink and the turbulent sink term can be described as

$$S = -\frac{(1-\beta)^2}{(\beta^2 + 0.001)} A_{mush} \phi$$

where A_{mush} is the mushy zone constant, and ϕ is the variables such as the velocity and the turbulence quantity.

A UDF subroutine was developed, by which once the liquid fraction is less than a certain value, for example, 0.3, then steel will be imposed a fixed x-velocity and y-velocity from the rotation speed as Eqs.(12) and (13) respectively. The z-velocity will be as it is.

$$V_x = -r \sigma \sin \alpha = -y \left(\frac{2\pi}{60} N \right)$$

$$V_y = r \sigma \cos \alpha = x \left(\frac{2\pi}{60} N \right)$$

Inclusion Motion and Entrapment Model

Particles were modeled using both Eulerian and Lagrangian approaches. The Eulerian approach considers particles a continuous phase, whereas the Lagrangian approach treats particles as a discrete phase. Due to the low volume fraction of particles, the Lagrangian approach is always used to calculate the trajectory of particles by considering the force balance acting on them

$$\frac{du_p}{dt} = \frac{18 \mu}{\rho_p d_p^2} C_i Re_p \left(u_i - u_p \right) + \frac{\rho_p - \rho}{\rho} g + \frac{1}{2} \frac{\rho_d}{\rho_p} \frac{d}{d_i} \left(u_i - u_p \right) + \frac{\rho}{\rho_p} \frac{2 d u_i}{\varepsilon_k}$$

where u_p is particle velocity at direction i in m/s, t is time in seconds, C_i is a dimensionless drag coefficient, Re_p is a particle Reynolds number, d_p is particle diameter in m, ρ_p is inclusion density in kg/cm3. The first term here is the drag force per unit of particle mass, the second term is gravitational force, the third term is the virtual mass force accelerating the fluid surrounding the particle, and the fourth term is the force stemming from the pressure gradient in the fluid.

To incorporate the stochastic effect of turbulent fluctuations on particle motion, the random walk model was used. In this model, particle velocity fluctuations are based on a Gaussian-distributed random number chosen according to the kinetic energy of the local turbulence. The random number is changed, to produce a new instantaneous velocity fluctuation at a frequency equal to the characteristic lifetime of the eddy. The instantaneous fluid velocity is then given by

$$u = \bar{u} + u'$$

$$u' = \xi \sqrt{u'^2} = \xi \sqrt{2k/3}$$

where \bar{u} is the mean fluid phase velocity in m/s, u' is random velocity fluctuation in m/s; ξ is a random number and k is the local level of turbulent kinetic energy in m2/s2.

As boundary conditions for the particle motion, particles were assumed to be entrapped when the temperature of the steel where the inclusion was located was below 1775 K, corresponding to a liquid fraction of 0.3, as shown in Figure 3. This entrapment was controlled by a UDF.
programmed by the authors. The entrapment locations of inclusions were exported to a separate file using the author developed UDF.

![Liquid Fraction](image)

Figure 3. Solidification fraction and inclusion entrapment

Calculation Parameters and Boundary Conditions

In the current study, the mold is 16 meters long and diameter is 0.288 m. Dimensions, parameters and boundary conditions are listed in Table 1. During an iteration, convergence is assumed to be reached if all the normalized un-scaled residuals \[\] are smaller than \(10^{-6} \). The mesh used is shown in Figure 4. In order to reduce the computation time, and improve computation quality, the mesh should be controlled to a reasonable number. In the current study, the entire domain contains 663,680 cells. FLUENT was used for the computation.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
<td>Value</td>
</tr>
<tr>
<td>Mold length</td>
<td>16 m</td>
</tr>
<tr>
<td>Viscosity of liquid steel</td>
<td>0.0067 kg/m·s</td>
</tr>
<tr>
<td>Mold radius</td>
<td>0.212 m</td>
</tr>
<tr>
<td>Density of liquid steel</td>
<td>7020 kg/m³</td>
</tr>
<tr>
<td>Mold inlet radius</td>
<td>6 cm</td>
</tr>
<tr>
<td>Thermal expansion coefficient</td>
<td>1×10^{-4} 1/K</td>
</tr>
<tr>
<td>Rotation speed</td>
<td>1000 rpm</td>
</tr>
<tr>
<td>Density of inclusion</td>
<td>5000 kg/m³</td>
</tr>
<tr>
<td>Inlet velocity</td>
<td>1.915 m/min</td>
</tr>
<tr>
<td>Latent heat</td>
<td>270000 J/kg</td>
</tr>
<tr>
<td>Turbulent energy</td>
<td>0.00001</td>
</tr>
<tr>
<td>Initial temperature</td>
<td>1853 K</td>
</tr>
<tr>
<td>Dissipation rate</td>
<td>0.00001</td>
</tr>
<tr>
<td>Liquidus temperature</td>
<td>1803.15 K</td>
</tr>
<tr>
<td>Pouring time</td>
<td>8.5 s</td>
</tr>
<tr>
<td>Solidus temperature</td>
<td>1763.15 K</td>
</tr>
<tr>
<td>Latent heat</td>
<td>270000 J/kg</td>
</tr>
<tr>
<td>Thermal conductive</td>
<td>34 W/m·K</td>
</tr>
<tr>
<td>Mold rotation speed</td>
<td>500-1000 rpm</td>
</tr>
</tbody>
</table>
The filling process lasted 8.5 seconds. After the filling process, fluid flow (3D-VOF multiphase), heat transfer and solidification were considered. The initial temperature of the liquid phase was 1853K, and temperature of the air phase inside the mold was assumed to be 1400K. For the heat transfer boundary condition at the mold wall, the wall boundary condition was either fixed at 1400K or a mixed heat transfer condition was assumed including the effect of conduction, convection and radiation from the wall with a 1000 W/m²-K heat transfer coefficient, a 12 W/m-K thermal conductivity of the wall material, a 323 K free steam temperature and 0.7 external emissivity.

For the motion of particles, the density of inclusions was assumed to be 5000 kg/m³. Around 50,000 inclusions of each size were initially randomly distributed in the liquid phase after filling and allowed to move with the motion of the liquid steel.

Three Dimensional Simulation Results

Distribution of Centrifugal Force

The centrifugal forces are created by the circumferential motion. The linear velocity of a point on a rotating rigid object at a distance from the axis of rotation represents the tangential velocity of that point. For rotation about a fixed pivot point, the path of any point on a revolving body is a circle, and its linear velocity at any moment is always tangent to that circle. Therefore, the centrifugal force per unit volume can be defined as follow,

\[f_c = \frac{Dv^2}{r} \]

(16)

where, \(f_c \) is the centrifugal force per unit volume, N/m³; \(\rho \) is the density of the mixture, kg/m³; \(v \) is the tangential velocity, m/s; and \(r \) is the radius from center to the point, m.

\[r = \sqrt{x^2 + y^2} \]

(17)

The centrifugal acceleration rate can be expressed by

\[a_c = \frac{v^2}{r} \]

(18)

The casting mold keeps rotating with a speed of 1000 rpm, which results in an acceleration of around 100 times gravity within the liquid metal layer. The distribution of centrifugal force is shown in Figure 5. The centrifugal force inside the liquid metal layer is much larger than other places in the pipe, which confines molten steel inside the thin layer and rotating with casting mold. From the Figure 5(b), we can see that the maximum centrifugal force on the mold wall is as large as \(1.63 \times 10^7 \) N/m²; however in the center of the pipe the centrifugal force is close to 0 N/m². Figure 6 shows the distribution of the centrifugal acceleration rate in the pipe. Since no density is involved here, the centrifugal acceleration rate decreases from the mold wall to the mold center, with a maximum value of 2320 m/s² at the mold wall.
Fluid Flow during Pouring and Rotation
In the current simulation, the ladle slide gate was assumed to be fully open resulting in a pouring time of 8.5 seconds. Figure 7 shows the pouring and rotating process during this period. At 0.3 s pouring, the molten steel touches the bottom of the tube mold. After that, the molten steel starts rotating with the tube, as shown in the Figure 7 (b). At 8.5 s, the molten steel covers the entire mold inner surface, and a liquid steel layer forms.
More detailed information is revealed by observing the interface between the air phase and the molten steel phase inside the mold, as shown in Figure 8. At the end of pouring, 8.5s, the interface between air and steel becomes rough. Metal droplets in air and air penetration into the molten steel are observed, which will induce serious reoxidation from the air and generate new oxide inclusions, especially near the middle length regions of the mold. The simulation shows that at 9.0 s, the interface is still rough implying air reoxidation. Therefore, more time is required to fully stabilize the air-steel interface during the rotating, cooling and solidification process.

Inclusion Motion during Filling

A simulation was done for the filling process together with injection of 50000 inclusions. In this simulation the heat transfer and solidification are not included. The time step is 0.0001 s. Four-
second filling was simulated together with the motion of these inclusions. The computation time is extremely large and could be up to 3 months to complete. The simulation results are shown in Figure 9. Inclusions are dispersed quickly with the filled steel.

Figure 9. Inclusion motion during filling (Iso-surface of 0.9 fraction of steel, and inclusion locations)

(a) 1 second

(b) 3 second

Figure 10 shows the interface between the steel phase and the air phase, the temperature on the interface, and inclusion entrapped locations (black dots) and motion locations at 10.90 s (2.40 s after the filling) with a fixed mold wall temperature as 1400 K. The interface was not flat, and fluctuated with time, and may tend towards a flat shape after a certain time, which will be
determined by future calculations. The black dots were the locations of entrapped inclusions, where the temperature of the steel reached the temperature 1775K, corresponding to a 0.3 liquid fraction. The green dots were the inclusions that still moved with the fluid flow. Some inclusions were entrapped close to the wall since the steel cooled there first. Certain amount of inclusions were also entrapped close the interface between the liquid steel and the air since the initial air phase was assumed to be 1400K.

Figure 10. The interface between the steel phase and the air phase, the temperature on the interface, and inclusion entrapped locations (black dots) and motion locations (green dots) at 10.90 s (0.90s after the filling) with a fixed mold wall temperature as 1400 K.

Figure 11 shows the position of inclusions changing with time, indicating that inclusion moved around with rotation of the domain and more and more inclusions were entrapped with time increasing. Figure 11b indicates that inclusions were always in the steel phase since our centrifugal force UDF reveals that once inclusions enter the air, the centrifugal force direction is outwards and thus inclusions move back to the steel phase.

Figure 11. The locations of entrapped inclusions (black dots) and moving inclusions (green dots) in the domain with a fixed mold wall temperature as 1400 K.