Light Metals 2012

Edited by
CARLOS E. SUAREZ
Light Metals 2012
Check out these new proceedings volumes from the TMS2012 Annual Meeting, available from publisher John Wiley & Sons:

- 3rd International Symposium on High Temperature Metallurgical Processing
- CFD Modeling and Simulation in Materials Processing
- Characterization of Minerals, Metals, and Materials
- Electrometallurgy 2012
- Energy Technology 2012: CO2 Management and Other Technologies
- EPD Congress 2012
- International Smelting Technology Symposium (Incorporating the 6th Advances in Sulfide Smelting Symposium)
- Light Metals 2012
- Magnesium Technology 2012
- Supplemental Proceedings: Volume 1: Materials Processing and Interfaces
- T.T. Chen Honorary Symposium on Hydrometallurgy, Electrometallurgy and Materials Characterization

To purchase any of these books, please visit www.wiley.com. TMS members should visit www.tms.org to learn how to get discounts on these or other books through Wiley.
TABLE OF CONTENTS

Light Metals 2012

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>About the Editor</td>
<td>xxiii</td>
</tr>
<tr>
<td>Program Organizers</td>
<td>xxv</td>
</tr>
<tr>
<td>Aluminum Committee</td>
<td>xxxi</td>
</tr>
<tr>
<td>Alumina and Bauxite</td>
<td></td>
</tr>
<tr>
<td>Bauxite Digestion</td>
<td></td>
</tr>
<tr>
<td>Characterization of Bauxite and its Minerals by Means of Thermoanalytical Methods</td>
<td>5</td>
</tr>
<tr>
<td>E. Post, B. Fidler, D. Kwiryn, and D. Rapp</td>
<td></td>
</tr>
<tr>
<td>Study on Application of a New Model for the Kinetics of Diaspore Leaching Process</td>
<td>9</td>
</tr>
<tr>
<td>L. Bao, T. Zhang, A. Nguyen, G. Lv, Z. Dou, and Y. Liu</td>
<td></td>
</tr>
<tr>
<td>Mechanical Activation of Al-Oxyhydroxide Minerals - Physicochemical Changes, Reactivity and Relevance to Bayer Process</td>
<td>15</td>
</tr>
<tr>
<td>T. Alex, R. Kumar, S. Roy, and S. Mehrotra</td>
<td></td>
</tr>
<tr>
<td>Research on Mechanically Activated Digestion Performance of Diasporic Bauxite and Kinetics</td>
<td>21</td>
</tr>
<tr>
<td>G. Lv, T. Zhang, X. Ke, A. Zhao, P. Ni, W. Mu, and L. Bao</td>
<td></td>
</tr>
<tr>
<td>Mechanochemical Activation to Bauxite</td>
<td>27</td>
</tr>
<tr>
<td>F. Silva, C. Barbato, R. Santos, D. Almeida, J. Sampaio, M. Medeiros, and F. Garrido</td>
<td></td>
</tr>
<tr>
<td>Effects of Roasting Pretreatment in Intense Magnetic Field on Digestion Performance of High Iron Bauxite</td>
<td>33</td>
</tr>
<tr>
<td>G. Lv, T. Zhang, X. Zhang, Y. Liu, Z. Dou, Y. Li, and J. He</td>
<td></td>
</tr>
<tr>
<td>Effect of Lime Addition on the Predesilication and Digestion Properties of a Gibbsitic Bauxite</td>
<td>39</td>
</tr>
<tr>
<td>X. Pan, H. Yu, B. Wang, S. Zhang, G. Tu, and S. Bi</td>
<td></td>
</tr>
<tr>
<td>Effect of Chamosite on Bayer Process of Special Diasporic Bauxite with High Silica</td>
<td>45</td>
</tr>
<tr>
<td>W. Cao, X. Zhang, W. Tian, and H. Zhong</td>
<td></td>
</tr>
<tr>
<td>The Economical Flexibility for Processing Diasporic Bauxite</td>
<td>51</td>
</tr>
<tr>
<td>B. Zhang, F. Zou, S. Guo, X. Liao, C. Ma, and Y. Dong</td>
<td></td>
</tr>
<tr>
<td>Turkey Morcukur Bauxite Processing at ETI Alumium</td>
<td>57</td>
</tr>
<tr>
<td>M. Baygul, S. Arslan, B. Ozen, S. Ertugral, and C. Suare</td>
<td></td>
</tr>
<tr>
<td>Red Mud Bauxite Residue</td>
<td></td>
</tr>
<tr>
<td>Bauxite Residue Management</td>
<td>63</td>
</tr>
<tr>
<td>K. Evans, E. Nordheim, and K. Tsesmelis</td>
<td></td>
</tr>
<tr>
<td>Tests with New Flocculant for Red Mud Decanting in Alunorte</td>
<td>67</td>
</tr>
<tr>
<td>T. Santos, J. Filho, A. Borges, H. Lima, J. Borges, F. Giust, and A. Rabaça</td>
<td></td>
</tr>
<tr>
<td>Red Mud Filtration Test Results using AFP IV™ Automatic Filter Press</td>
<td>71</td>
</tr>
<tr>
<td>M. Bach</td>
<td></td>
</tr>
</tbody>
</table>
Study on Dry-Method Volume Expansion Technology for Wet Red Mud Yard ... 75
 M. Li, and S. Xu

ETI Aluminum Red Mud Characterization and Processing ... 81
 G. Demir, S. Arslan, B. Çelikel, M. Baygül, and C. Suarez

Studies on Metal Flow from Khondalite to Bauxite to Alumina and Rejects from an Alumina Refinery, India 87
 B. Mohapatra, B. Mishra, and C. Mishra

Directions for Large Scale Utilization of Bauxite Residue ... 93
 A. Panov, G. Klimentenok, G. Podgorodetskiy, and V. Gorbunov

Production of Pig Iron from NALCO Redmud by Application of Plasma Smelting Technology 99
 P. Mukerjee, B. Bhoi, C. Mishra, R. Dash, B. Satapathy, and K. Jayasankar

Hydrate Precipitation, Calcination and Environment

Growth and Agglomeration of Boehmite in Sodium Aluminate Solutions .. 107
 Z. Wang, J. Zhang, R. Xu, and Z. Guo

Physical Simulation on Mixing Uniformity in Seed Precipitation Tank .. 113
 L. Yan, H. Zhao, T. Zhang, Q. Zhao, S. Wang, S. Gu, J. He, and C. Zhang

Kinetics of Boehmite Precipitation from Supersaturated Sodium Aluminate Solutions with Ethanol-Water Solvent ... 119
 Z. Wang, R. Xu, L. Yang, and Z. Guo

Effect of Crystal Growth Modifier on the Structure of Sodium Aluminate Liquors Analyzed by Raman Spectroscopy ... 125
 J. Yin, W. Li, Z. Liu, Z. Su, Z. Yin, and W. Xia

Precipitation Area Upgrade at ETI Aluminum .. 129
 M. Kayaci, B. Çelikel, G. Demir, M. Baygül, and C. Suarez

Flash- and CFB Calciners, History and Difficulties of Development of Two Calcination Technologies 135
 H. Schmidt, and F. Williams

A Specific Critical Analysis on the Life Time of Alumina Calciners Refractories .. 141
 B. Teider, B. Graham, J. Gallo, and V. Pandolfelli

The Key Technologies for Energy Efficient Al(OH)₃ Dilute Phase Fluidized Bed Roasting Furnaces 147
 Z. Li, H. Huang, X. Xue, X. Li, H. Wang, and X. Huang

Fabric Filter Operating Results with 10 m Long Bags and Low Purging Pressures 151
 C. Rasmussen, and H. Pedersen

Optimization of Preparation for Alpha-Alumina by Calcination from Aluminum Hydroxide Using Response Surface Methodology .. 157
 B. Zhang, J. Peng, L. Zhang, and S. Ju

Customer Impacts of Na₂O and CaO in SGA ... 163
 S. Lindsay

Options for Joint Ventures ... 169
 A. Kjar
Energy and Processing Alternative Rawmaterials

Decrease of Heat Consumption at Nepheline Processing to Alumina and By-Products ... 175
 V. Kazakov, and V. Lipin

Influence of Sodium Oxide on Phase Composition and Self-powder and Alumina Leaching Properties of
Calcium Aluminate Slag ... 181
 Y. Li, Z. Tong, and L. Lian

Influence of Titania on the Phase Composition and Self-Power and Alumina Leaching Properties of Calcium
Aluminate Slag ... 185
 Z. Tong, Y. Li, and L. Lian

Effect of Combined Forms of Al and Si on the Acid Leaching Performance of Fly Ash 189
 T. Zhang, G. Lv, Z. Dou, X. Nan, D. Song, Y. Li, and J. He

Study on the Effect of Si and Silicide on Leaching Al₂O₃ from Magnesium Smelting Reduction Slag.......... 195
 J. You, Y. Wang, N. Feng, J. Peng, and Y. Di

Extracting Alumina from Coal Fly Ash Using Acid Sintering-Leaching Process ... 201
 K. Liu, J. Xue, and J. Zhu

Production of Novel Zeolite of Type Na-P from Sodium Aluminate Liquor/Spent Liquor/Alumina Tri- Hydrate
of Nalco’s Alumina Refinery, Damanjodi, Orissa, India: A Unique Material for Detergent Formulation 207
 C. Mishra

Poster Session

Extracting Alumina from Coal Fly Ash with Ammonium Sulfate Sintering Process ... 215
 L. Li, X. Liao, Y. Wu, and Y. Liu

Study on Absorption of Low-Concentration SO₂ with Basic Slag Intensified by Ultrasonic Wave 219
 X. Nan, T. Zhang, and L. Zhang

Acid Cleaning of Titanium Based Scales Formed on Preheaters in the Bayer Process 225
 I. Akpınar, Y. Guldogan, O. Uysal, G. Demir, M. Baygul, and Y. Sahin

Aluminium Processing

Rolling

Comparative Microstructure and Texture Evolution in the AA1050 Aluminum Alloy Sheets Produced by DC and
CC Methods ... 233
 H. Otomar, and R. Plaut

Study on Mechanical Properties of 2024 Al Sheet Treated by SMAT and Hot/Cold Rolling 239
 K. Cheung, S. Shi, and J. Lu

Effects of Asymmetrical Roll Bonding on Microstructure, Chemical Phases and Property of Copper/Aluminum
Clad Sheet ... 245
 X. Li, G. Zu, P. Wang, and R. Xu
From Molten Metal to 3.2 mm Wire for Mechanical Applications .. 251
G. Marcantoni

General

Finite Element Simulation Analysis of the Ultrasonic Vibration Forging of an Aluminum Cylinder Workpiece 259
Y. Liu, Q. Han, and L. Hua

Refinement of Fe-Intermetallic Compounds by Caliber Rolling Process of Al-Mg-Si-Fe Alloys 265

Analytical and FEM Modeling of Aluminum Billet Induction Heating with Experimental Verification 269
M. Kennedy, S. Akhtar, J. Bakken, and R. Aune

The Evolution of Mechanical Properties and Microstructure in Early Stages of Natural Ageing on 2024 Plates..... 277
G. Dobra, I. Sava, C. Stanescu, and M. Petre

Casting

The In-Situ Technique for Preparing Al-TiB$_2$ and Al-Al$_3$Ti Composites ... 285
J. Wang, P. Li, C. Chen, and J. Xue

The Development and Validation of a New Thermodynamic Database for Aluminium Alloys 291
A. Markström, Y. Du, S. Liu, L. Zhang, L. Kjellqvist, J. Bratberg, P. Mason, A. Engström, and Q. Chen

Effect of Solid Particles on Fluidity of Semi-Solid Aluminum Alloy Slurry ... 297

Aluminum Alloys: Fabrication, Characterization and Applications

Development and Application

Precipitation of the θ (Al$_2$Cu) Phase in Al-Cu-Ag Alloys .. 307
J. Rosalie, L. Bourgeois, and B. Muddle

Near Net Shaped Casting of 7050 Al Wrought Alloy by CDS Process: Microstructure and Mechanical
Properties ... 313
S. Giaasiaan, A. Khalaf, X. Zeng, and S. Shankar

Solidification

Effects of Cu, Mg, and Sr Additions on the Mechanical Properties and Machinability of Near-Eutectic Al-11%S
Casting Alloys ... 321
Y. Zedan, A. Samuel, F. Samuel, and S. Alkahtani

Evolution of Iron Based Intermetallic Phases in Al-7wt%Si Hypoeutectic Alloy ... 327
A. Gorny, and S. Shankar

A New Approach to Producing Large-Size AA 7055 Aluminum Alloy Ingots ... 333
H. Zhang, J. Cui, and H. Nagaumi
Thermal Analysis and Microstructures of Modified Grain-Refined Al-7Si-Mg Cast Alloy 339
 A. Mohamed, F. Samuel, and S. Al Kahtanid

Effect of Solidification Velocity and Hydrogen Content on Porosity in Directionally Solidified A356 Castings 345
 H. Liao, Q. Wang, W. Song, L. Zhao, and R. Fan

Grain Refiner for Aluminium-Silicon Sand Casting Alloys ... 349
 M. Nowak, and H. Nadendla

Neutron Diffraction Analysis of Phase Precipitation in Solidification of Hypereutectic Al-Si Alloys With the
 Addition of Cu and Mg ... 355
 D. Sediako, and W. Kasprzak

Refinement of Primary and Eutectic Silicon Phases in the Shape Casting of Hyper-Eutectic Al-Si Alloys 365
 M. Shamsuzzoha

Analysis of Thermal and Structural Parameters and Microhardess Variations in Different Al-Cu Alloys
 Directionally Solidified ... 369
 C. Rodriguez, A. Candia, C. Schvezov, M. Rosenberger, and A. Ares

Thermal Mechanical Processing

Modeling of As-Cast A356 for Coupled Explicit Finite Element Analysis .. 377
 R. Roy, and D. Maijer

Observation of Structure Evolution during Annealing of 7xxx Series Al Deformed at High Temperature 383
 C. Parker, and D. Field

Study of Homogenization Treatments of DC Cast 5xxx Series Al-Mg-Mn Alloy Modified with Zn 387
 A. Halep, T. Radetic, M. Popovic, and E. Romhanji

Microstructure Evolution of 7003 Aluminum Alloy by Equal Channel Angular Extrusion Process 393
 Q. Shi, G. Yang, L. Chen, X. Wang, Z. Liu, J. Chen, and J. Yi

Increasing Mechanical Properties of AA 6082 by Optimizing Chemical Compositions and Processing Parameters
during Extrusion ... 397
 M. Tercelj, M. Fazarinc, G. Kugler, and I. Perus

Effect of Strain Rate on the Microstructural Development in DC Cast Al-15Si Alloy 403
 C. Wang, F. Yu, D. Zhao, X. Zhao, and L. Zuo

Influence of High-Pressure Torsion on Mechanical Properties and Microstructural Evolution in 2197
 Al-Li Alloy ... 407
 Y. Yuan, H. Lu, and X. Li

Solutioning and Aging Behaviours

The Role of Co-Clusters in the Artificial Aging of AA6061 and AA6060 ... 415
 S. Pogatscher, H. Antrekowitsch, T. Ebner, and P. Uggowitzer

Influence of Elastic Stress on Age Hardening of 7075 Aluminum Alloy ... 421
 J. Zhang, W. Guo, H. Li, M. Yang, and X. Wen

Influence of Mn in Solid Solution in Softening of AA3003 Alloy During Annealing 425
 D. Spathis, and J. Tsiros
The Influence of Solution-Treatment on the High-Temperature Strength of Al-Si Foundry Alloys with Ni.......431
 F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann, and P. Uggowitzer

The Effect of Artificial Aging Treatment on Microstructure and Tensile Properties of Al-12.7Si-0.7Mg Alloy435
 F. Liu, F. Yu, D. Zhao, and L. Zuo

Material Characterization

Studies on Flow Characteristics at High-Pressure Die-Casting...443
 C. Chimani, R. Kretz, S. Schneiderbauer, S. Puttinger, and S. Pirker

Electrohydraulic Sheet Metal Forming of Aluminum Panels ...449
 J. Bonnen, S. Golovoshchenko, S. Dawson, A. Mamutov, and A. Gillard

Metallurgical Characterization of Aluminum Alloys by Matrix Dissolution ...455
 M. Paes, F. Pinheiro, and M. Borodiak

Effect of Silicon Particles on the Tensile Properties of Heat Resistant Al-Si-Cu-Ni-Mg Alloy Pertaining to
Different Tensile Temperature ...461
 H. Chuang, T. Lui, and L. Chen

Factors Influencing Tensile Mechanical Properties of Al-7Si-Mg Casting Alloys A356/7467
 H. Moller, W. Stumpf, and G. Govender

Emerging Technologies

Effect of Tool Rotational Speed on the Microstructures and Tensile Properties of 7075 Aluminum Alloy Via
Friction Stir Process (FSP) ...475
 M. Ku, F. Hung, T. Lui, and L. Chen

Improving Microstructure of AISI H13 Extruding Dies Using Ion Nitriding ..481
 F. Montalvo, E. Velasco, and A. Canales

Influence of Titanium-Boron Additions on Grain Refinement of AA2219 Gas Tungsten Arc Welds487
 N. Babu, P. Dayou, S. Zheng, W. Jun, and M. Talari

Linear Friction Welding of a 2024 Al Alloy: Microstructural, Tensile and Fatigue Properties493
 A. Morri, L. Ceschinini, and F. Rotundo

The Effect of Friction Stir Welding on the Microstructure and Tensile Properties of Al 2139-T8 Alloys497
 T. Sano, J. Yu, C. Yen, K. Doherty, and J. Medintz

Friction Stir Welding of Al-Zn-Mg Alloy AA7039 ...503
 C. Sharma, D. Dwivedi, and P. Kumar

Post Weld Heat Treatment of Friction Stir Welded AA2017 ..509
 M. Ahmed, and B. Wynne

Poster Session

Energy Absorption of Aluminum Foam-Filled Tubes under Quasi-Static Axial Loading517
 H. Liu, G. Yao, and Z. Cao
Optimization of Process Parameters of Preparing Foamed Al-Si Alloy Based on Ga-Based Bp Neural Network ...521
 J. Xu, H. Lu, and Q. Li

A Study of Microstructural Stability of Friction Stir Welded Joints of Al-Mg Alloys during Subsequent Thermal Exposure ...527
 C. Lin, T. Lui, and L. Chen

Characterization of the Compressive Behaviour of an Al Foam by X-Ray Computerized Tomography533
 G. Costanza, F. Mantineo, S. Missori, M. Tata, and A. Sili

Aluminum Reduction Technology

Environment I

Development of Low Cost Video Emissions Monitoring Technique for Aluminum Smelting Applications541
 M. Gershenzon, N. Dando, N. Westendorf, and S. Lindsay

Electrolytic Cell Gas Cooling Upstream of Treatment Center ..545
 B. Cloutier, T. Malard, E. Bouhabila, P. Martineau, and H. Vendette

Jet Induced Boosted Suction System for Roof-Vent Emission Control: New Developments and Outlooks551
 J. Maltais, M. Meyer, M. Leduc, H. Rollant, and G. Girault

HF Emission Reduction from Anode Butts Using Covered Trays ..557
 J. Gagne, R. Minville, N. Dando, M. Gershenzon, S. Lindsay, H. Frenette, A. Moras, and G. Dufour

Energy Saving

Research and Application of Energy Saving Technology for Aluminum Reduction in China563
 N. Feng, J. Peng, Y. Wang, Y. Di, J. You, and X. Liao

Low Energy Cell Development on AP Technology™ ...569
 O. Martin, B. Allano, E. Barrioz, A. Escande, Y. Caratini, and N. Favel

 F. Liu, and S. Gu

Numerical Simulation on Coupled Multi-field of the Perforated Anode in Aluminium Reduction Cells under
Low Carbon Operation ...581
 H. Li, X. Cao, and Y. Tian

Improved Energy Management during Anode Setting Activity ..587
 A. Jassim, G. Meintjes, A. Kumar, J. Blasques, M. Sadiq, M. Al Jallaf, and A. Al Zarouni

The Transition Strategy at Alouette towards Higher Productivity with a Lower Energy Consumption591
 P. Coursol, J. Coté, F. Laflamme, P. Thibault, A. Blais, D. Lavoie, and S. Gosselin

Experimental Studies of the Impact of Anode Pre-Heating ..595
 O. Fortini, S. Garimella, E. Kuhn, Y. Ruan, B. Yacob, and J. Sorensen
Depth Analysis and Potentiality Exploitation on Energy-Saving and Consumption-Reduction of Aluminum Reduction Pot ... 601
 J. Zhou, M. Dupuis, J. Huang, X. Yi, and F. Yan

Development and Application of SAMI’s Low Voltage Energy-Saving Technology ... 607
 D. Zhou, X. Yang, and W. Liu

Twin Air Compressor for Energy Saving and Backup Capability ... 613
 A. Hequet

Anode Effect, Process Control

Latest Results from PFC Investigation in China ... 619
 X. Chen, W. Li, J. Yang, C. Hu, Y. Liu, D. Li, and H. Guo

Studies of Perfluorocarbon Formation on Anodes in Cryolite Melts ... 623
 O. Kjos, T. Aarhaug, E. Skybakmoen, and A. Solheim

Characteristics of In Situ Alumina PID Ore Feed Control ... 627
 M. Schneller

Towards On-Line Monitoring of Alumina Properties at a Pot Level .. 633
 J. Tessier, G. Tarcy, E. Batista, and X. Wang

Controlling the Variability of Pots KPVs: The Variability Matrix ... 639
 P. Baillot, J. Aussel, and A. de Vasselot

Multivariate Statistical Investigation of Carbon Consumption for HSS Reduction Cell ... 643
 P. Polyakov, T. Piskazhova, N. Sharypov, A. Krasovitskiy, and S. Sorokin

Experiences with Alstom’s New Alfeed System at Emal .. 649
 S. Ose, B. Leikvang, S. Mathew, G. Wedde, A. Sorhuis, and O. Bjarno

Computer Algorithm to Predict Anode Effect Events .. 655
 F. da Costa, L. Paulino, C. Braga, R. Ramada, and I. Sousa

Cell Fundamentals, Phenomena and Alternatives I

Influence of the Sulphur Content in the Carbon Anodes in Aluminium Electrolysis - a Laboratory Study 659
 S. Pietrzyk, and J. Thonstad

Concentration Gradients of Individual Anion Species in the Cathode Boundary Layer of Aluminium Reduction Cells ... 665
 A. Solheim

Electrochemical Behaviour of Carbon Anodes in Na3AlF6-K3AlF6-Based Low-Melting Electrolytes for Aluminium Electrolysis .. 671
 G. Wang, X. Sun, W. Zhao, and D. Yang

Operating Parameters of Aluminum Electrolysis in a KF-AlF3 Based Electrolyte .. 675
 O. Tkacheva, J. Hryn, J. Spangenberger, B. Davis, and T. Alcorn

Effect of KF Additions in Na3ALF6-AL2O3 Electrolytes on Expansion of Cathode Blocks 681
 Y. Zhang, N. Feng, J. Peng, Y. Wang, Y. Han, and X. Zhai
Preparating Aluminium-Scandium Inter-alloys during Reduction Process in KF-AIF₃-Sc₂O₃ Melts685
Q. Liu, J. Xue, J. Zhu, and C. Guan

Liquidus Temperatures of the System Na₃AlF₆-K₃AlF₆-AIF₃ ..691
Y. Lai, P. Xin, Z. Tian, C. Wei, D. Chen, and J. Lie

Cell Technology and Operation

DX+, An Optimized Version of DX Technology ...697
A. Al Zarouni, A. Al Zarouni, M. Reverdy, S. Akkmetov, L. Mishra, N. Ahli, I. Baggash,
M. Bastaki, and A. Al Jasmi

AP40: The Latest of the AP Technology™ Solutions ...703
L. Fiot, B. Champel, S. Fardeau, P. Bon, D. Munoz, and O. Martin

A Techno-Economic Optimization Model For Aluminium Electrolysis Production709
Y. Zhang, W. Li, J. Yang, D. Chai, S. Qiu, and J. Li

The Successful Implementation of DUBAL DX Technology at EMAL ...715
A. Al Zarouni, M. Reverdy, A. Al Zarouni, K. Al Aswad, N. Ahli, M. Bastaki, A. Al Jasmi,
B. Kakkar, D. Spencer, and W. Al-Sayed

Commissioning of Emirates Aluminium Smelter Potlines ...721
B. Kakkar, D. Spencer, W. Al-Sayed, and S. Abdulla

Update on the Development of D18 Cell Technology at Dubai ..727
D. Whitfield, T. Majeed, S. Akhmetov, M. Mohamed Al Jallaf, K. Al Aswad, I. Baggash,
and A. Al Zarouni

Prebake Potline Restart after Power Supply Interruption ...733
M. Lukin, and J. Johnson

The Restart of Two Idled Pot Lines at Ormet Primary Aluminum ..739
C. Smith, and M. Christman

Vertical Stud Soderberg Technology Development by UC RUSAL in 2004-2010743
V. Buzunov, V. Mann, E. Chichuk, N. Pitertsev, I. Cherskikh, and V. Frizorger

Uniform Cathode Current Collection / Distribution Effect on Cell Stability (Nine Months of Continuous
Treatment of a Sick Cell) ...755
H. Fanisalek

Cell Fundamentals, Phenomena and Alternatives II

Cryoscopic Data for Hall-Héroult Bath Containing Magnesium Fluoride, Calcium Fluoride, Potassium
Cryolite, and Sodium Chloride ...763
A. Solheim, L. Stoen, and J. Kvello

Potentiometric Fluoride Analysis with Improved Analytical Performance769
T. Aarhaug, K. Nagy, and K. Smith

Mechanism of Transport between the Anode-Bath Interface and the Active Bubble Generating Sites in
Hall-Héroult Cells ...773
S. Ponesak, and L. Kiss
Depolarized Gas Anodes for Electrowinning of Aluminium from Cryolite-Alumina Melts in a Laboratory Cell....779
G. Haarberg, S. Xiao, A. Ratvik, and T. Mokkelbost

Reduction of the Operating Temperature of Aluminium Electrolysis: Low-Temperature Electrolyte........783
A. Apisarov, J. Barreiro, A. Dedyukhin, L. Galán, A. Redkin, O. Tkacheva, and Y. Zaikov

Specific Molecular Features of Potassium-Containing Cryolite Melts...787
E. Antipov, D. Glukhov, A. Gusev, V. Laurinavichute, R. Nazmutdinov, D. Simakov, S. Vassilev,
T. Zinkicheva, and G. Tsirlina

Aluminum Flouride Purity Test by Different Techniques ...793
H. Al Halwachi

Micro-Raman Spectra Research on NaF-AlF$_3$-NaCl Melts...799
X. Hu, J. Liu, H. Li, B. Gao, Z. Shi, Y. Yu, and Z. Wang

Environment II

GHG Measurement and Inventory for Aluminum Production ..805
J. Marks, and C. Bayliss

Optimization and CFD Simulation in the Ventilation of AP60 Reduction Cell Buildings......................809
E. Baituch, and S. Baituch

HEX Retrofit Enables Smelter Capacity Expansion...815
H. Al Qassab, S. Aqeel Ali Mohd, G. Wedde, and A. Sorhuus

Experimental and Theoretical Study on the Fluidization of Alumina Fluoride Used in the Aluminum Smelter Processes..821
P. de Vasconcelos, and A. Mesquita

A Method for Comparing the HF Formation Potential of Aluminas with Different Water Contents........827
C. Sommerseth, K. Osen, C. Rosenkilde, A. Meyer, L. Kristiansen, and T. Aarhaug

Visualising the Sources of Potroom Dust in Aluminium Smelters...833
D. Wong, N. Tjahyono, and M. Hyland

Impurity Elements in Raw Gas Ultra-Fines from Aluminum Electrolysis Cells....................................839
H. Gaertner, A. Ratvik, and T. Aarhaug

Modelling I

Current Distribution and Lorentz Field Modelling Using Cathode Designs: A Parametric Approach........847
S. Das, and G. Littlefair

Electromagnetic and MHD Study to Improve Cell Performance of an End-to-End 86 kA Potline.............853
A. Gupta, M. Chulliparambil, S. Namboothiri, S. Mani, B. Basu, and J. Janardhanan

Study on the Influences of Potline Status on the Magnetic Fields of Aluminum Reduction Cells..............859
X. Qi

Modeling of Interface of Electrolyte/Aluminum Melt in Aluminum Reduction Cell with Novel
Cathode Structure...865
B. Li, F. Wang, X. Zhang, N. Feng, and F Qi
The Use of Vortex Method in the Analysis of Multiphase Flow in Aluminum Reduction Cells .. 869
 H. Zhang, H. Zhang, J. Li, Y. Xu, S. Yang, and Y. Lai

Anodic Bubble Behavior in Hall-Héroult Cells .. 875
 K. Einarsrud, S. Johansen, and I. Eick

Numerical Investigation of Bubble Dynamics in Aluminium Electrolytic Cells 881
 K. Zhang, Y. Feng, P. Schwarz, M. Cooksey, and Z. Wang

Equipment

Integrated Desalination and Primary Aluminium Production .. 889
 A. Sorhus, G. Wedde, D. Breschi, G. Girault, and N. Favel

Study of Busbar Displacement of Aluminum Reduction Cells .. 895
 X. Qi

Impact of Amperage Creep on Potroom Busbars: Thermal-Mechanical Aspects 899
 A. Schneider, D. Richard, and O. Charette

Effective Insulation Control Monitoring System: The CANDI™ Solution for a Safer Production 905
 A. Hequet

Maximize Efficiency and Safety of Smelters through Advanced Multipurpose Simulator Solution 909
 A. Hequet

Potline Open Circuit Protection ... 913
 L. Troubat, R. Mathevon, P. Marcellin, D. Lamant, M. Jacon, D. Duval, and A. Johnston

Simulating Traffic in a Potroom, Can this Bring Real Cost Savings? .. 917
 M. Meijer

Modelling II and Measurement

Modeling Cathode Cooling Due to Power Interruption .. 923
 M. Dupuis, and A. Tabereaux

Modeling the Mass and Energy Balance of Different Aluminium Smelting Cell Technologies 929
 V. Gusberti, D. Severo, B. Welch, and M. Skyllas-Kazacos

Current Efficiency Predictive Model and Its Calibration and Validation .. 935
 Z. Liu, W. Li, Q. Zhao, J. Zhou, and Y. Wang

Wireless and Non-Contacting Measurement of Individual Anode Currents in Hall-Héroult Pots; Experience and Benefits ... 939
 J. Evans, and N. Urata

Impacts of Anode Set on the Energy Re-distribution of PB Aluminum Smelting Cells 943
 C. Cheung, C. Menictas, J. Bao, M. Skyllas-Kazacos, and B. Welch

Dimensional Analysis in Cold Water Model Experiments of New Cathode Structure Aluminum Cell 949
 Y. Liu, T. Zhang, C. Li, Q. Zhao, S. Wang, N. Feng, and J. He

Flow Field Comparison between Traditional Cell and New Structure Cell by Chaclo by CFD Method 955
 Z. Liu, F. Liu, and Y. Wang
Cast Shop for Aluminum Production

Grain Refinement and Castings

Effect of Grain Refiner Amount on the Hot Tearing of 6xxx Alloys During DC Casting .. 963
 M. Chandia, A. Håkonsen, and J. Hafsås

Grain Refining of Pure Aluminum ... 967
 L. Han, C. Vian, J. Song, Z. Liu, Q. Han, C. Xu, and L. Shao

Study on the Microstructure Changes of Hypereutectic Aluminum Casting Alloy Using Ultrasonic Vibration Process... 973
 J. Song, and Q. Han

A Mathematical Model and Computer Simulations for Predicting the Response of Aluminum Casting Alloys to Heat Treatment .. 977
 C. Wu, and M. Makhlof

Understanding and Improving Chemical Capability in the Casthouse ... 983
 K. Halse, and A. Bowles

Effects of Water Content of Frozen Mold on Fluidity of Aluminum Alloy .. 989
 N. Omura, and S. Tada

Simulation Tools to Complement Cast House Design and Daily Operation ... 993
 L. Tikasz, R. McCulloch, S. Duvah Pentiah, and R. Baxter

Formation of Microstructure in Al-Si Alloys under Ultrasonic Melt Treatment .. 999
 L. Zhang, D. Eskin, A. Miroux, and L. Katgerman

Furnace

Automated Measurement of Liquid Metal Heel and Full Furnace Weight in Tilting Furnaces 1007
 J. Courtenay

Development of a New Generation Electromagnetic Metal Moving System ... 1013
 G. Guest, S. Williams, and P. Gastaldi

Six Years Experience from Low-Temperature Oxyfuel in Primary and Re-Melting Aluminium Cast Houses 1019
 H. Gripenberg, A. Johansson, and K. Torvanger

 R. Cullen, and K. McGowan

Quality Comparison between Molten Metal from remelted Sheets; Mill Finish and Coated 1031
 A. Kvithyld, A. Nordmark, D. Dispinar, S. Ghaderi, and K. Lapointe

Numerical Modeling of Oxy-Fuel and Air-fuel Burners for Aluminium Melting ... 1037
 J. Furu, A. Buchholz, T. Bergström, and K. Marthinsen
Dross and Melt Quality Control

A New Approach to Identify Aluminum Dross Reduction Opportunities using an Integrated Weighing System ... 1045
S. L’Heureux, V. Goutière, J. Langlais, D. Tremblay, and P. Waite

Statistical Analysis of Dross Data for Hydro Aluminium Casthouses .. 1051
C. Rosenkilde, I. Johansen, and A. Bowles

Wettability of Aluminium with Aluminium Carbide (Graphite) in Aluminium Filtration 1057
S. Bao, K. Tang, A. Kvithyld, T. Engh, and M. Tangstad

A New Fused Magnesium Chloride Containing Refining Flux Based on a Ternary System 1063
J. Courtenay

High Frequency Electromagnetic Separation of Inclusions from Aluminum .. 1069
L. Damoah, and L. Zhang

Measurement of Non-Metallic Inclusions in the Size Range of 10-20μm by LiMCA 1077
M. Badowski, and S. Instone

Relationship between the Permeability of the Porous Disk Filter and the Filtrate Weight-Time Curves Generated with the PoDFA / Prefil® Footprinter Method ... 1085
S. Instone, D. Krings, G. Gruen, R. Schmoll, and M. Badowski

Study of Ni-Impurity Removal from Al Melt ... 1091
M. Rhamdhani, M. Dewan, J. Mitchell, C. Davidson, G. Brooks, M. Easton, and J. Grandfield

Direct-Chill Casting and Microstructures

Improving Strip Surface Quality of AA6111 alloy using Different Casting Atmospheres for the Horizontal Single Belt Strip Casting (HSBC) Process .. 1101
D. Li, M. Isac, and R. Guthrie

Influence of Direct Chill Casting Process Variables on Surface Quality of Aluminum Alloy Sheet Ingots 1107
M. El-Bealy

Square Rolling Slabs from Start of Casting - the Elimination of Butt Swell .. 1113
A. Hakonsen, H. Ness, I. Steen, and T. Iveland

Residual Stresses in As-Cast Billets: Neutron Diffraction Measurement and Thermomechanical Modeling 1117
J. Drezet, T. Pirling, and C. Jaquerod

Can the Aluminium Industry Learn from Another Industry's Catastrophe? .. 1123
A. Lowery, T. Bateman, and J. Roberts

Deformation Behaviors of Pure Al and Al-4.5 Mass%Cu Alloy in Semi Solid State 1127
N. Sakaguchi

Chemical Additions to Reduce Hot Tearing in the Cast House ... 1133
L. Sweet, J. Taylor, M. Easton, M. Couper, and N. Parson
Electrode Technology for Aluminium Production

Paste Plant Design and Improvement

Adaptive Fuzzy Controller for Ball Mill in Anode Plant .. 1143
 E. Cruz

Use of under Calcined Coke to Produce Baked Anodes for Aluminium Reduction Lines 1147
 R. Garg, and D. Sulaiman

60 TPH Single Line Green Anode Plant Commissionned at Qatalum .. 1153
 C. Bouche, B. Somnard, and S. Bhajun

Improvement of Anode Paste Quality and Performance of ALCOA Lista .. 1159
 N. Saue, J. Ystgaard, J. Johannessen, M. Meier, and R. Perruchoud

Baked Anode Quality Improvement through Optimization of Green Anode Plant Ultra Fine Content in Ball
Mill Product and Process Parameters ... 1165
 R. Garg, D. Sulaiman, and M. Toorani

Baked Anode Quality Improvement through Optimization of Green Anode Processing 1169
 H. Xu, L. Fan, Y. Zhang, Y. Sun, and Y. Cui

Bake Oven Design and Improvement

Anode Quality and Bake Furnace Performance of EMAL .. 1175
 R. Akhtar, M. Meier, P. Sulger, W. Fischer, R. Friedrich, and T. Janousch

Experiences in FTC Design, Operation and Development ... 1181
 E. Dupon, P. Klut, and E. Engel

Boost of Anode Production at Voerde Aluminium by Advanced and Integrated Control Strategies 1185
 M. Schneider, C. Krupp, D. Maiwald, and D. Di Lisa

New Central Control System Architecture for Anode Baking Furnaces .. 1191
 N. Fiot, and X. Genin

Methods to Improve Fuel Utilization for Open Top Anode Baking Furnaces ... 1197
 R. Lin, S. Gao, L. Tang, and Y. Li

Energy Saving Technologies for Anode Manufacturing .. 1201
 J. Zhao, Q. Zhao, X. Miao, and L. Wang

Carbon Materials for Anode and Cathode

Evolution of Anode Grade Coke Quality .. 1207
 L. Edwards, N. Backhouse, H. Darmstadt, and M. Dion

Studies on Impact of Calcined Petroleum Coke from Different Sources on Anode Quality 1213
 B. Patra, and R. Barik

Prebaked Anode from Coal Extract (3) - Carbonization Properties of Hypercoal and its Blends with
Binder Pitch .. 1219
 M. Hamaguchi, N. Okuyama, N. Komatsu, N. Kikuchi, J. Koide, H. Kasahara, T. Shishido,
 K. Sakai, and T. Inoue
Importance of Primary Quinoline Insoluble in Binder Pitch for Anode .. 1223
M. Sakai, Y. Wang, T. Fukuoka, and H. Hatano

Investigation on Air Reactivity and Electrolysis Consumption of Anode Carbons with Anthracite Additions 1229
J. Xue, M. Han, J. Zhu, L. Feng, and H. Ma

Experiences on Anode Reconstruction Process in Soderberg Technology .. 1235
C. Zangiacomi, J. Garcia Garcia, A. De Abreu, and C. Kato

Cathode Performance Evaluation at Votorantim Metais - CBA ... 1241
J. Pardo, P. da Silva Pontes, T. Finotti, and A. Lima

Green, Safe and Clean Carbon Products for the Aluminium Electrolysis Pot .. 1247
B. Allard, and R. Paulus

A New Material for Collector Bar Sealing - LRM2 ... 1253
T. Simoes, M. Guimaraes, and M. Assuncao

Dry Barrier Mix in Reduction Cell Cathodes ... 1259
R. Jeltsch, and C. Cairong

Characterization of Anode Materials

Improving the Precision and Productivity of Green Coke Volatile Matter Analysis .. 1267
L. Edwards, K. Hon, J. Marino, and M. Lubin

Discrete Element Method Applied to the Vibration Process of Coke Particles ... 1273
B. Majidi, K. Azari, H. Alamdari, M. Fafard, and D. Ziegler

Vibrated Bulk Density using Semi-automated Device: Simplifying Sample Preparation while Improving
Accuracy and Precision ... 1279
J. Panchal, and J. Rolle

Characterization of Pre-Baked Carbon Anode Samples Using X-Ray Computed Tomography and Porosity
Estimation ... 1283
D. Picard, H. Alamdari, D. Ziegler, B. Dumas, and M. Fafard

Diagnosing Anode Quality Problems Using Optical Macroscopy ... 1289
B. Sadler

Properties and Production Conditions Affecting Crack Formation and Propagation in Carbon Anodes 1293
O. Frosta, A. Ratvik, and H. Øye

New Method for Representative Measurement of Anode Electrical Resistance ... 1299
M. Chollier-Brym, D. Laroche, A. Alexandre, M. Landry, C. Simard, L. Simard, and D. Ringuette

Increasing Coke Impurities - Is this Really a Problem for Metal Quality? .. 1303
G. Jha, F. Cannova, and B. Sadler

Aluminum Electrolysis Anti-Oxidation Coating Carbon Anode .. 1307
S. Yang, F. Yang, Z. Wang, Z. Shi, B. Gao, L. Wu, M. Li, and X. Hu

Characterization of Cathode Materials

Spent Potlining: an Update .. 1313
R. Pawlek
Analysis of Porous Structures of Graphitic Cathode Materials and the Correlation to Penetrated Sodium 1319
 X. Li, J. Xue, J. Zhu, and Q. Zhang

Characterization of Carbon Cathode Materials by X-Ray Microtomography .. 1325
 M. Brassard, M. Lebeuf, A. Blais, L. Rivoal, M. Désilets, and G. Soucy

New Observations in Creep Behavior of Ramming Paste in Aluminium Electrolysis Cell 1331
 S. Orangi, D. Picard, H. Alamdari, D. Ziegler, and M. Fafard

Wetting of KF-AlF₃-Based Melts on Graphite Cathode Materials for Aluminium Electrolysis 1337
 Y. Zhang, J. Xue, J. Zhu, and X. Li

Fundamentals of Aluminum Carbide Formation .. 1343
 B. Novak, K. Tschöpe, A. Ratvik, and T. Grande

Investigation of the Cathode Wear Mechanism in a Laboratory Test Cell .. 1349
 K. Tschöpe, A. Store, S. Rorvik, E. Skybakmoen, T. Grande, A. Ratvik, and A. Solheim

Study on Graphitization of Cathode Carbon Blocks for Aluminium Electrolysis ... 1355
 F. Gao, N. Feng, Q. Niu, H. He, L. Han, and J. Yang

Inert Anode and Wettable Cathode Materials

Electrolysis Expansion Performance of Modified Pitch Based TiB₂-C Composite Cathode in [K₃AlF₆/Na₃AlF₆]-
AlF₃-Al₂O₃ Melts .. 1361
 Z. Fang, J. Xu, J. Hou, L. Lo, and J. Zhu

Development of the Technology of Producing an Aluminium-Wetted Coating on the Cathode by
Electrodeposition .. 1367
 G. Arkhipov, and E. Gorlanov

Pulse Electrodeposition of TiB₂ onto Graphite from TiO₂-B₂O₃-KF-LiF Melts ... 1373
 B. Li, L. Jiang, H. Wang, Z. Weng, and Z. Zhao

Ball-Milled Cu-Ni-Fe-O Materials as Inert Anodes for Aluminium Electrolysis in Low-Temperature KF-AlF₃
Electrolyte ... 1377
 S. Helle, B. Davis, D. Guay, and L. Roué

Effect of Nanopowder Content on Properties of NiFe₂O₄ Matrix Inert Anode for Aluminium Electrolysis 1381
 Z. Zhang, Y. Liu, G. Yao, D. Wu, and J. Ma

Effect of MnO₂ Addition on Early-Stage Sintering Behavior and Properties of NiFe₂O₄ Ceramics 1385
 J. Du, Y. Liu, G. Yao, X. Long, and X. Zhang

Study on the Inert Anode for Al Electrolysis Based on the NiFe₂O₄ Spinel Ceramics .. 1389
 Y. Liu, M. Zhao, and J. Li

Author Index ... 1395

Subject Index ... 1401
I am honored to present you with Light Metals 2012 and welcome you to TMS 2012 Annual Meeting and Exhibition in Orlando, Florida. This year’s meeting is held at the Disneyworld premises where we get to appreciate the results of sustained development, creativity and innovation in different areas of technology and human endeavors.

TMS Light Metals 2012 includes the latest technology advances and process improvements in Alumina and Bauxite, Aluminum Reduction Technology, Cast Shop for Aluminum Production, Electrode Technology for Aluminum Production and our Plenary Session “Aluminum Industry Technology 2020 – A Look Ahead”.

Several years have passed since I attended my first TMS event in 1984. I have observed like the rest of you how our technical community and contributors have shaped the Light Metals industry of today. A lot of effort has been put in research and development as well as in other areas that support this industry such as health, safety and environmental, the management of our operations and the overall impact on our communities.

Today we continue facing the challenges of tomorrow, sustainability and energy. A new generation of scientists and technologists is growing in the Light Metals industry with tools, talent and determination like we have never seen before. The quest for the unknown, the questioning of the prevailing and the vision of what could be should nurture and forge their dreams of the future.

There are a multitude of mentors and colleagues that I would like to thank for having contributed to my journey and that of others in this industry. Among others: Peter Greenway, Edmund Jordine, Hans Breu, Hans Schenk, Carlos Leon Sucre, Ian Sherwin, Arvind Bahsin, Warren Pedersen, Eric Black, Joe Anjier, Paul Guelfo, Seymour Brown, Paul Bledsoe, Williams Kirsch, B.J. Foster, Gene Miller, David Kirkpatrick, Lynn Blankenship, Bud Garcia, Ramon Gil, Bob Schoen, Paul Zeringue, Patrick James, John Shim You, David Chinloy, Egon Linton, Richard Gayle, Robert Francki, Jason Berzanski, Gary Rudowski, John Visneski, Derrick Ingram, Peter McIntosh, Ian Bond, Ivan Anich, Ender Suvaci, Mehmet Arkan, Ekrem Cengiz, Everett Phillips, Geoffrey Bearne, Stephen Lindsay and John Johnson.

As previous years TMS Light Metals 2012 has been the result of collaboration between the outstanding and focused TMS staff led by Louise Wallach and the team of volunteer Subject Chairs responsible for organizing the sessions, reviewing and accepting the manuscripts. A special recognition is given to all the authors and co-authors that have found the time to write about their dedicated work that continue shaping and providing background to our industry technological development and advances.

I would like again to offer my gratitude to the authors and co-authors for their contribution, the TMS staff, the TMS Light Metals Aluminum Committee for their support and specially TMS 2012 Light Metals Subject Chairs: Benny E. Raahauge, Kai Karhausen, Edward Williams, Subodh Das, Zhengdong Long, Tongguang Zhai, Olivier Martin, Trond Furu, and Morten Sorlie. Also, a special thank goes to our “Aluminum Industry Technology 2020 – A Look Ahead” presenters: Stephan Broek, Ender Suvaci, Roberto De Andrade, Claude Vanvoren and Subodh Das.

Carlos E. Suarez
EDITOR’S BIOGRAPHY

CARLOS E. SUAREZ
LIGHT METALS 2012 EDITOR

Carlos Suarez has been associated with the aluminum industry and particularly with the alumina and bauxite areas for over 30 years. He has been a member of TMS since 1984. Carlos attended the University of Oklahoma where he obtained a degree of Science in Chemical Engineering. He also earned a Master Degree in Business Administration from the University of Phoenix. Carlos has been involved in all aspects of alumina refining for producers such as Bauxilum, Gove Alumina, Vialco Gramercy Alumina and ETI Aluminum in the areas of Process Safety, Quality, Training and Development, Technical Sales, Plant Operations, Research and Development, Commissioning and Start-Ups, Knowledge Management, Organizational Development, Technology Transfer, Business Development and Performance Improvements. Carlos also worked for Hatch where he was member of the leadership for Light Metals and senior process consultant. Carlos is currently the Technical Manager for the Alcoa Maaden JV at the Ras Al Khair Alumina Refinery in Saudi Arabia. Carlos has been an active member of TMS. He has contributed with several technical papers and was one of the instructors for the first Alumina Refinery Fundamentals and Practice course sponsored by TMS in 2008. Carlos is also member of the editorial committee of the future book “Essential Readings on Alumina and Bauxite” to be published by TMS.
PROGRAM ORGANIZERS

ALUMINA and BAUXITE

Benny E. Raahauge graduated as MSc, Chemical Engineering from Danish Technical University (DTU), Lyngby, 1972 and his current position is General Manager, Pyro & Alumina Technology at FLSmidth, Minerals Denmark. Benny has worked for FLSmidth since 1974 and has more than 36 years experience with Calcination, covering R&D, Process Development & Design, Engineering, and Dynamic Simulation of Gas Suspension Calciner (GSC) for Alumina. Headed the FLSmidth commissioning team for the 3 x 4500 tpd GSC units at Queensland Alumina, Australia, in 2004-05, currently the world largest and first alumina calciner units equipped with Bag-house instead of Electrostatic precipitators. Benny was responsible for the joint Alcan – FLSmidth project development of the Solid Liquid Calcination technology for liquor purification and destruction of salt cake. Prior to joining FLSmidth, Benny worked as Plant Engineer for the Danish Sugar Factories. Benny is the holder of several patents and has submitted several technical papers on calcination to TMS since 1980 and acted as Session Chair on Alumina and Bauxite sessions on several occasions. Benny is also co-editor of the future book "Essential Readings on Alumina and Bauxite", to be published by TMS.

Jim Metson graduated with PhD in Chemistry from Victoria University of Wellington, New Zealand, before taking up a position at Surface Science Western, University of Western Ontario Canada. He then moved to the University of Auckland, New Zealand, where he is a Professor, the Associate Director of the Light Metals Research Centre and Head of the Department of Chemistry. He is a Director of the New Synchrotron Group Ltd, a councillor of the Australian Institute of Nuclear Science and Engineering and chairs the Research Infrastructure Advisory Group (RIAG) for the New Zealand Government. His research interests are in materials and particularly surface science, with an emphasis on applications in the aluminium industry including alumina calcination and evolution of microstructure, smelting technology and in particular the impacts of alumina properties, and the surface science of aluminium metal. He has had more than 20 years of engagement with the aluminium industry and has been a regular participant at the Annual TMS meeting. He is a past Light Metals Award winner and has co-ordinated a course “Alumina from a Smelter Perspective” held as part of the 2004 TMS meeting and was a presenter in the 2009 course “Alumina Refinery Fundamentals and Practice".
Kai Friedrich Karhausen is department manager for process technology at the central Rolled Products R&D of Hydro Aluminium in Bonn, Germany. Dr. Karhausen earned his doctorate at the RWTH Aachen and worked in the industrial aluminum research for 15 years both in Norway and Germany. His principal work is focused on the modeling and optimization of materials behavior in industrial production processes. Dr. Karhausen has issued 75 scientific presentations and publications. In 2003 he was awarded the Georg-Sachs-Preis of the German Materials Society (DGM) for important achievements in the field of integrated modeling of metal forming and materials behavior.
Dr. Subodh Das is the founder and CEO of Phinix, LLC. Dr. Das has over 35 years of global experience in industrial, academic and entrepreneurial sectors covering the entire spectrum of aluminum production, fabrication, product development and recycling segments. With numerous published papers, patents, presentations and blogs, Dr. Das - a global thought leader - is a frequent invited speaker at many international aluminum conferences with focus on industrial trends, recycling-friendly alloy development, recycling and carbon management. He is currently writing a John-Wiley Inc. / TMS contracted book on: “Carbon Management for the Global Metals Industry”.
ALUMINUM REDUCTION TECHNOLOGY

Olivier Martin joined Aluminium Pechiney Smelter R&D Center (LRF) in St Jean de Maurienne in 1988 as a R&D engineer. His main fields of interest were busbar design, MHD modelling and development of the AP30 and AP50 prototype cells. After 5 years in R&D, he held several operational positions as Reduction Manager in Greece (Aluminium De Grece) and France (Saint Jean de Maurienne). In 2002, he was appointed as Pechiney mission Leader for the start up of Mozal 2 smelter in Mozambique. Since 2005, he is back in Rio Tinto Alcan Technology group as Senior Technology Advisor, head of the Cell Development group for the Rio Tinto Alcan smelters and for AP technology (AP40, AP60 and APXe). Olivier has contributed to TMS through the submission of numerous technical papers since 1992 and as session chairman. Olivier holds a master degree in Chemistry and Materials from the National School of Chemistry in Paris.

Mohammed Mahmood holds Master degree in Process Engineering from Strathclyde University in Scotland in 1989. He began his career with Aluminium Bahrain (ALBA) more than thirty years ago, rose through the ranks to various managerial positions, from Manager of Potlines, Manager Process & Quality Control to Manager Human Resources & Development and then to General Manager Metal Production from 2004 – 2009 and finally in 2009 to his present position as Chief Operating Officer. Among the major milestone in his career has been the retrofitting of pot lines 1-3 that increased the production by 21%, lead the team to further improvement and achieve 2.7% higher productivity and improve pot operation age by 16%. Being a prominent figure in Bahrain, Mohamed is very often invited to speak at International Conferences both Technical and People Development related. He is the head of the Alba Community Service Committee where his role encouraged the spirit of philanthropy amongst Alba employees and enhanced kingdom wide appreciation of Alba’s corporate social responsibility initiatives. His main passion is the development of youth to become future leaders.