SATELLITE COMMUNICATIONS PAYLOAD AND SYSTEM
SATELLITE COMMUNICATIONS PAYLOAD AND SYSTEM

TERESA M. BRAUN
To Walter and Amy

Cover image: KA-SAT drawing courtesy of Eutelsat, color by T. M. Braun

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved
Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
Braun, T. M., 1949–
Satellite Communications Payload and System/T.M. Braun.
 pages cm
1. Artificial satellites in telecommunication. 2. Artificial satellites—Electronic equipment.
3. Artificial satellites—Radio antennas. 4. High altitude platform systems (Telecommunication)
5. Digital communications. 1. Title.
TK5104.B765 2012
621.3841'56—dc23
2012000091

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1
CONTENTS

PREFACE xix
ACKNOWLEDGMENTS xxi
ABOUT THE AUTHOR xxiii
ABBREVIATIONS xxv

1 INTRODUCTION 1

1.1 What This Book Is About / 1
1.2 Payload / 3
 1.2.1 Bent-Pipe Payload Transponder / 4
 1.2.2 Processing Payload / 5
 1.2.3 Overall Payload Architecture / 6
1.3 Conventions / 6
1.4 Book Sources / 7
1.5 Summary of Rest of the Book / 7
References / 9

PART I PAYLOAD

2 PAYLOAD’S ON-ORBIT ENVIRONMENT 13

2.1 What Determines Environment / 13
 2.1.1 Orbit / 13
3.2.8 Reconfigurability / 47
3.2.9 On-Orbit Environment and Its Mitigation / 47

3.3 Single-Beam Reflector Antenna / 48
	3.3.1 Reflector Antenna Concepts / 48
	3.3.2 Single-Reflector Single-Beam Antenna / 50
	3.3.3 Dual-Reflector Single-Beam Antenna / 51
		3.3.3.1 Center-Fed / 51
		3.3.3.2 Offset-Fed / 53

3.4 Horn / 54
	3.4.1 Types of Horn / 54
	3.4.2 Horn as Antenna / 55
	3.4.3 Horn as Feed for Single-Beam Reflector Antenna / 56

3.5 Antenna Array / 57
	3.5.1 Array Principle / 57
	3.5.2 Antenna Array Characteristics / 58
	3.5.3 Array Antenna / 59
	3.5.4 Array Radiating Elements / 60
	3.5.5 Passive and Active Arrays / 61
	3.5.6 Beam-Forming / 63
	3.5.7 Semiactive Array with Multimatrix Amplifier / 64

3.6 Reflector-Based Multibeam Antenna / 64
	3.6.1 Reflector MBA Concepts / 64
	3.6.2 Reflector MBA with Feed Cluster / 65
	3.6.3 Reflector MBA with Array Feeds / 67
	3.6.4 Reflector MBA with Overlapping Feeds / 67

3.7 Autotrack / 68
 Appendix 3.A / 70
	3. A.1 Decibel / 70
	3. A.2 Antenna Pattern of General Aperture / 71
	3. A.3 Antenna Pattern of Antenna Array / 72

References / 73

4 FILTER AND PAYLOAD-INTEGRATION ELEMENTS / 79

4.1 Introduction / 79
4.2 Impedance Mismatch / 80
4.3 RF Lines for Payload Integration / 82
	4.3.1 Coaxial Cable / 83
		4.3.1.1 Coax Construction / 83
		4.3.1.2 Coax Performance / 85
4.3.1 Coax Environmental / 85
4.3.1.4 Connector and Adapter / 86
4.3.1.5 Propagation in Coax / 87
4.3.2 Waveguide / 88
4.3.2.1 Rectangular Waveguide Construction / 88
4.3.2.2 Rectangular Waveguide Performance / 90
4.3.2.3 Waveguide Environmental / 91
4.3.2.4 Flange and Waveguide Assemblies / 91
4.3.2.5 Propagation in Rectangular and Circular Waveguide / 91
4.4 Other Payload-Integration Elements Aside from Switch / 94
4.5 Filter / 97
4.5.1 General / 97
4.5.1.1 Filter Types / 97
4.5.1.2 Filter-Response Families / 98
4.5.1.3 Resonator in General / 99
4.5.1.4 Filter in General / 99
4.5.2 Filter Technology / 101
4.5.2.1 Empty-Cavity Waveguide Filter / 101
4.5.2.2 Dielectric-Resonator Filter / 103
4.5.2.3 Coaxial-Cavity Combline Filter / 104
4.5.3 Filter Unit and Assemblies / 107
4.5.3.1 Preselect Filter / 107
4.5.3.2 Multiplexer in General / 108
4.5.3.3 Input Multiplexer / 108
4.5.3.4 Output Multiplexer / 109
4.5.3.5 Summary of Filter-Technology Application / 110
4.5.4 Filter Specification / 110
4.6 Switch and Redundancy / 111
4.6.1 Switch / 111
4.6.2 Redundancy / 112
Appendix 4.A / 116
4.A.1 Filter Poles and Zeros / 116
References / 117

5 LOW-NOISE AMPLIFIER AND FREQUENCY CONVERTER 123
5.1 Introduction / 123
5.2 Low-Noise Amplifiers and Frequency Converters in Payload / 124
5.2.1 Architecture in Payload / 124
5.2.2 Redundancy Scheme / 124
5.2.3 Combining / 125
5.3 Intermodulation Products / 126
5.4 Low-Noise Amplifier / 127
 5.4.1 LNA Unit Architecture and Technology / 127
 5.4.2 LNA Linearity / 128
 5.4.3 LNA Environmental / 129
 5.4.4 LNA Specification / 130
5.5 Frequency Converter / 132
 5.5.1 Frequency Conversion Architecture / 132
 5.5.2 Phase Noise Introduction / 133
 5.5.3 Frequency-Converter Unit Architecture and Function / 134
 5.5.4 Mixer / 136
 5.5.5 Reference Oscillator / 137
 5.5.6 Local Oscillator / 138
 5.5.6.1 Phase-Locking Introduction / 138
 5.5.6.2 Dielectric-Resonator Oscillator and Coaxial-Resonator Oscillator / 139
 5.5.6.3 Frequency Synthesizer / 140
 5.5.7 Frequency Converter Linearity / 140
 5.5.8 Frequency Converter Environmental / 141
 5.5.9 Frequency Converter Specification / 141
Appendix 5.A / 142
 5.A.1 Formula for Integrating Phase Noise Spectrum / 142
References / 143

6 PREAMPLIFIER AND HIGH-POWER AMPLIFIER 147

6.1 Introduction / 147
6.2 High-Power Amplifier Concepts and Terms / 148
 6.2.1 HPA Nonlinearity Description / 148
 6.2.2 HPA Nonlinearity Specification Parameters / 151
 6.2.3 Power Efficiency / 153
6.3 Traveling-Wave Tube Amplifier versus Solid-State Power Amplifier / 153
6.4 Traveling-Wave Tube Amplifier Subsystem / 155
 6.4.1 Introduction / 155
 6.4.2 TWTA Subsystems in Payload / 156
CONTENTS

6.4.2.1 Architecture in Payload, Traditional and Flexible / 156
6.4.2.2 Combining / 157
6.4.2.3 Redundancy Scheme / 158

6.4.3 TWTA Subsystem Architecture / 159

6.4.4 Channel Amplifier / 159
6.4.4.1 (L)CAMP Unit Architecture and Technology / 159
6.4.4.2 CAMP Specification / 161

6.4.5 Linearizer / 161
6.4.5.1 Linearizer Architecture and Technology / 161
6.4.5.2 LTWTA Nonlinear Performance / 163

6.4.6 TWTA / 164
6.4.6.1 Electronic Power Conditioner / 164
6.4.6.2 TWT Architecture and Technology / 164
6.4.6.3 (L)TWTA Specification / 167

6.4.7 TWTA Subsystem Performance / 167

6.4.8 Flexible TWTA Subsystem / 168

6.4.9 TWTA Subsystem Environmental / 169
6.4.9.1 Temperature / 169
6.4.9.2 Radiation / 169
6.4.9.3 Aging / 169

6.5 Solid-State Power Amplifier / 170
6.5.1 SSPAs in Payload / 170
6.5.1.1 Architecture in Payload, Traditional and Flexible / 170
6.5.1.2 Redundancy Scheme / 172

6.5.2 SSPA Unit Architecture and Technology / 172

6.5.3 Linearized SSPA / 173
6.5.4 Flexible SSPA / 173
6.5.5 SSPA Environmental / 174

6.5.6 SSPA Specification / 175

References / 176

7 PAYLOAD’S COMMUNICATIONS PARAMETERS / 181

7.1 Introduction / 181

7.2 Gain Variation with Frequency / 184
7.2.1 What Gain Variation with Frequency Is / 184
7.2.2 Where Gain Variation with Frequency Comes From / 185
7.2.3 How Gain Variations with Frequency at Unit Level Carry to Payload Level / 186
7.2.4 How to Verify Gain Variation with Frequency / 187
7.3 Phase Variation with Frequency / 187
 7.3.1 What Phase Variation with Frequency Is / 187
 7.3.2 Where Phase Variation with Frequency Comes From / 188
 7.3.3 How Phase Variations with Frequency at Unit Level Carry to Payload Level / 189
 7.3.4 How to Verify Phase Variation with Frequency / 189
7.4 Channel Bandwidth / 189
7.5 Phase Noise / 190
7.6 Frequency Stability / 190
7.7 Spurious Signals from Frequency Converter / 191
7.8 High-Power Amplifier Nonlinearity / 192
7.9 Spurious Signals from High-Power Amplifier Subsystem / 192
 7.9.1 What HPA-Subsystem Spurious Signals Are / 192
 7.9.2 Where HPA-Subsystem Spurious Signals Come From / 193
 7.9.3 How HPA-Subsystem Spurious Signals Carry to Payload Level / 194
 7.9.4 How to Verify HPA-Subsystem Spurious Signals / 194
7.10 Stability of Gain and Power-Out of High-Power Amplifier Subsystem / 194
 7.10.1 What Gain Stability and Power-Out Stability Are / 194
 7.10.2 Where Gain Stability and Power-Out Instability Come From / 194
 7.10.3 How Gain Stability and Power-Out Stability Carry to Payload Level / 195
 7.10.4 How to Verify Gain Stability and Power-Out Stability / 195
7.11 Equivalent Isotropically Radiated Power / 195
7.12 Figure of Merit G/T_s / 196
 7.12.1 What G/T_s Is / 196
 7.12.2 How to Verify G/T_s / 198
7.13 Self-Interference / 199
 7.13.1 What Self-Interference Is / 199
 7.13.2 Where Self-Interference Comes From / 199
 7.13.3 How Self-Interference Carries to Payload Level / 200
 7.13.4 How to Verify Self-Interference / 200
7.14 Passive Intermodulation Products / 201
Appendix 7.A / 201
7.A.1 Antenna Testing / 201
7.A.2 Relation of Gain and Phase Ripple / 202
7.A.3 Independence of G/Ts on Reference Location / 203
References / 204

8 MORE ANALYSES FOR PAYLOAD DEVELOPMENT 207

8.1 Introduction / 207
8.2 How to Deal with Noise Figure / 208
 8.2.1 Defining Noise Figure / 208
 8.2.2 Noise Temperature at Input and Output of Passive Element / 209
 8.2.3 Gain and Noise Figure of Two-Element Cascade / 209
 8.2.4 Playing Off Gains and Attenuations / 209
8.3 How to Make and Maintain Payload Performance Budgets / 211
 8.3.1 Example Budget without Uncertainty: Signal and Noise Levels / 211
 8.3.2 Dealing with Uncertainty in Budgets / 214
 8.3.2.1 Two General Ways of Dealing with Uncertainty / 214
 8.3.2.2 Types of Line-Item Uncertainty / 214
 8.3.2.3 Easy Dealing with Some Uncertainty Types / 215
 8.3.2.4 Dealing with Error in Power Measurement / 216
 8.3.2.5 Specifying Environment in Lifetime on Which Payload Performance Must Be Met / 217
 8.3.2.6 Dealing with Uncertainty from Aging and Radiation / 217
 8.3.2.7 Converting Thermal Environment in Lifetime into Unit Temperature Variations / 217
 8.3.2.8 Dealing with Performance Variation with On-Orbit Temperature / 219
 8.3.2.9 Nominal Value / 220
 8.3.2.10 Combining Line-Item Uncertainties / 221
 8.3.3 Keeping Margin in Budgets / 222
 8.3.4 Maintaining Budget Integrity / 223
8.4 High-Power Amplifier Topics / 223
 8.4.1 How to Know If HPA Nonlinearity Should Be Specified on C/3IM or NPR / 223
 8.4.2 What HPA Nonlinearity Does to Signal / 224
8.4.2.1 HPA in Terms of Intermodulation Products / 225
8.4.2.2 HPA in Terms of Spectrum-Spreading / 227
8.4.2.3 HPA in Terms of Power Robbing / 227
8.4.3 How to Ease Payload Integration of Combined TWTAs / 228
8.5 How to Avoid Monte Carlo Simulations on Gaussian Random Variables / 231
Appendix 8.A / 232
8.A.1 Elements of Probability Theory for Payload Analysis / 232
8.A.2 Definition of Random Variable and Probability Density Function / 232
8.A.3 Mean, Standard Deviation, and Correlation / 233
8.A.4 Sum of Random Variables / 234
8.A.5 Gaussian Probability Density Function / 235
8.A.7 Standard Deviation of Drift of Unknown Magnitude and Direction / 238
References / 239

9 PROCESSING PAYLOAD

9.1 Introduction / 241
9.2 Capabilities of Current Processing Payloads / 242
9.3 Digital-Processing Elements Common to Both Nonregenerative and Regenerative Payloads / 245
9.3.1 A-to-D Converter / 245
9.3.2 D-to-A Converter / 246
9.3.3 Digital Filtering / 247
9.4 Nonregenerative Processing-Payload / 248
9.4.1 Payload Architecture / 248
9.4.2 Analog Channelizer and Router / 248
9.4.3 Digital Channelizer and Router / 249
9.4.4 Digital Beam-Former / 249
9.5 Regenerative Payload / 250
9.5.1 Introduction / 250
9.5.2 Current Regenerative Payloads in TV Broadcast Network / 251
9.5.3 Current Regenerative Payloads in Mesh Network / 253
References / 254
PART II PAYERLOAD IN END-TO-END COMMUNICATIONS SYSTEM

10 PRINCIPLES OF DIGITAL COMMUNICATIONS THEORY 259

10.1 Introduction / 259
10.2 Communications Theory Fundamentals / 260
 10.2.1 Signal Representation / 260
 10.2.1.1 RF Signal Representation / 260
 10.2.1.2 RF Signal Equivalent Baseband Representation / 260
 10.2.2 Spectrum Fundamentals / 262
 10.2.3 Filtering Fundamentals / 264
 10.2.3.1 Filter Representation / 264
 10.2.3.2 Types of Filter Bandwidth / 266
 10.2.4 End-to-End Communications System Fundamentals / 267
10.3 Modulating Transmitter / 268
 10.3.1 Architecture / 268
 10.3.2 Encoder / 269
 10.3.3 Baseband Modulator / 270
 10.3.3.1 Modulation Schemes / 271
 10.3.3.2 Gray Coding / 274
 10.3.4 Pulse Filter and Signal Spectrum / 274
 10.3.4.1 Introduction / 274
 10.3.4.2 Rectangular Pulse / 275
 10.3.4.3 Root Raised-Cosine Pulse / 277
 10.3.4.4 MSK Pulse / 277
10.4 Filters / 278
 10.4.1 Definitions of Even, Odd, Conjugate Symmetric, and Conjugate Antisymmetric Functions / 278
10.4.2 Real and Imaginary Impulse Responses and Intersymbol Interference / 279
10.5 Demodulating Receiver / 281
 10.5.1 Architecture / 281
 10.5.2 Carrier Recovery / 281
 10.5.3 Detection Filter and Sampler / 283
 10.5.3.1 What to Use as Detection Filter / 283
 10.5.3.2 What Detection Filter Output from Signal Looks Like / 285
 10.5.3.3 Timing Recovery / 289
 10.5.3.4 Sampling / 290
12 PROBABILISTIC TREATMENT OF MULTIBEAM DOWNLINKS 321

12.1 Introduction / 321
12.2 Multibeam-Downlink Payload Specifications / 322
12.3 Repeater-Caused Variation of C and C/I_{self} and Nominal Value / 324
 12.3.1 Introduction / 324
 12.3.2 Variation Contributions from CAMP / 326
 12.3.2.1 CAMP Settability Resolution / 326
 12.3.2.2 CAMP Temperature Compensation / 327
 12.3.2.3 CAMP Maximum-Power Variation Due to Aging and Radiation / 327
 12.3.3 Variation and Nominal-Value Contributions from TWTA / 327
 12.3.3.1 P_{out} Nominal Value from Temperature / 327
 12.3.3.2 P_{out} Variation Due to Aging and Radiation / 328
 12.3.4 Measurement Uncertainty in P_{out} / 328
 12.3.5 Variation Contribution from OMUX / 329
 12.3.6 Variation Contribution from Other Post-TWTA Hardware Besides OMUX / 330
 12.3.7 Summary of Repeater Units’ Variation and Nominal-Value Contribution / 330
 12.3.8 Repeater-Caused Variation and Nominal Value of C and C/I_{self} / 331
 12.3.8.1 Repeater-Caused C Variation and Nominal Value / 331
 12.3.8.2 Repeater-Caused C/I_{self} Variation and Nominal Value / 333
12.4 Combining Antenna-Caused Variation into Repeater-Caused Variation / 333
 12.4.1 Contribution from Antenna-Gain Inaccuracy / 334
 12.4.2 Contribution from Antenna-Pointing Error / 334
 12.4.3 Payload-Caused C Variation / 335
 12.4.4 Payload-Caused C/I_{self} Variation / 336
12.5 Payload-Caused Variation of $C/(I+N)$ / 337
12.6 Combining Atmosphere-Caused Variation into Payload-Caused Variation / 337
12.7 Optimizing Multibeam-Downlink Payload Specified on Link Availability / 339
 Appendix 12.A / 340
 12.A.1 Iteration Details for Optimizing Multibeam Payload Specified on Link Availability / 340
12.A.1.1 Approximate Rain-Attenuation Function and Its Inverse / 340
12.A.1.2 Atmospheric Attenuation Function and Its Inverse / 341
12.A.1.3 Details of Iteration / 341

12.A.2 Pdf of Diurnal Variation in Delta of East and West Panel Illumination / 342

References / 342

13 END-TO-END COMMUNICATIONS SYSTEM MODEL WITH FOCUS ON PAYLOAD / 343

13.1 Introduction / 343
13.2 Considerations for Both Software Simulation and Hardware Emulation / 344
 13.2.1 System Model / 344
 13.2.2 Know the Whole Communications System / 345
 13.2.3 What Results Modeling Can Provide / 346
 13.2.4 Generating Symbol Stream Plus Noise / 346
 13.2.5 Modeling Other Signals Present / 347
 13.2.5.1 Applying Central Limit Theorem / 348
 13.2.5.2 Approximating Sinewave Interferer by Noise-Like Interferer / 349
 13.2.5.3 Approximating Modulated-Signal Interferer by Noise-Like Interferer / 350
 13.3 Additional Considerations for Simulation / 352
 13.3.1 Pitfalls of Simulation / 352
 13.3.2 System Model Specialized to Simulation / 354
 13.3.3 When a Signal Distortion Can Be Ignored / 354
 13.3.4 Simulating Additive Noise / 355
 13.3.5 Simulating Other Parameters That Vary / 356
 13.3.6 HPA Simulation / 356
 13.3.7 Coding, Decoding, and Interleaving Simulation / 357
 13.3.8 Basic Signal-Processing Considerations / 358
 13.4 Additional Considerations for Emulation / 359
 13.4.1 Emulating Uplink / 359
 13.4.2 Emulating Downlink / 360
 13.4.3 Matching Gain Tilt and Parabolic Phase / 361

References / 362

INDEX
This book is about the payload of communications satellites. Several books have been written about the satellite bus or platform, particular satellites, general satellite communications, and applications of satellite communications, but the payload has been covered only briefly in these books. Detailed books on how to design the various payload units, for example, antennas and filters, exist, but no book focuses on unit performance at a level appropriate for payload systems engineering.

This book is a unique combination of practical payload systems engineering and applied communications theory. As the payload is desired to have higher and higher capability, it becomes larger and more complex. More complicated analyses are required. The payload systems engineer is called upon to deal with things he never had to before or deal with the old things in a more exact way, to squeeze out higher performance. The engineer about to model the end-to-end communications system needs to fully understand the payload subtleties, new or old. The writer of the payload part of the proposal needs to realize that the formulations or values of some requirements may have to be rethought out. A satellite customer new to the business may be mystified by discussions with the payload manufacturer and need more knowledge to be able to get what he wants. Today it takes on the order of 10 years to “know” the payload. This book can accelerate learning.

The intended audience of this book is the following people who work with communications satellites:

- Payload systems engineers, at all stages in their careers
- Satellite-communications system designers and analysts
- Satellite proposal-writers
- Satellite customers
• Payload unit engineers
• Satellite control-center engineers, electrical and software
• Satellite bus engineers who need a payload reference now and then.

Prerequisite for full understanding of most of the chapters is knowledge of the Fourier transform and the duality of the time and frequency domains. However, without that almost of the book can still be understood.

My “love” for the satellite payload started from a rather early work experience. As a beginning engineer, armed with mathematical and some theoretical engineering knowledge, I attended a technical Space Shuttle meeting. One of the topics discussed was the screws on a unit. I felt disdain. Ten or 15 years later, for the first time being a systems engineer on a payload subsystem development, I learned that screws are fascinating—I saw the results of the unit’s mechanical analysis. From then on I knew that things only seem boring when I do not know anything about them. Every bit of the satellite payload has to meet such stringent electrical and mechanical requirements that it has an intricate story behind it.

TERESA M. BRAUN
I would like to express my deepest thanks to my husband, Walter Braun, who taught me communications theory on the job at LinCom Corp. in Los Angeles in the 1970s and 1980s and who has lovingly supported me and encouraged me in the writing of this book. Walter has a Ph.D. in Electrical Engineering with specialty in communications theory. I would also like to especially thank my Ph.D. advisor, Dr. Ezio Biglieri, for being so helpful and kind in the late 1980s when I was his graduate student and, a few years ago now, for his wonderful suggestion to write a book. I will always be grateful to all the wonderful engineers I have worked with over the years, especially Richard Hoffmeister and Dr. Charles Hendrix, who were instrumental in my career development. Almost all of the engineers I have worked with have been passionate about their work and willing to help others learn, and they have made mine such an interesting career. Of all the companies I have worked at, two stand out for having provided me limitless opportunities to do good work: Space Systems/Loral and William Lindsey’s LinCom Corp. of 30 years ago. My career has spanned the time since the American equal-opportunity laws were being implemented at federal contractors, and I have gone from being an oddity in the engineering workplace to feeling at home among many women colleagues, in California, anyway. I wish to thank the colleagues who reviewed the book and provided corrections, suggestions, and explanations: my husband, who has read all of it and performed simulations; Richard Hoffmeister and Dr. Charles Hendrix, for reading most of it; Eddy Yee for Chapter 2; Gary Schennum for Chapter 3; Stephen Holme for the filter section of Chapter 4; James Sowers for Chapter 5; Dr. Messiah Khilla and Reinwald Gerhard for Chapter 6; Dr. Chak Chie for Chapters 8, 9, 11, and 13; and Dr. Ezio Biglieri for Chapter 10.

T. M. B.

xxi
ABOUT THE AUTHOR

Dr. Teresa M. Braun received the B.A. in Mathematics from the University of California, San Diego, in 1970; and from the University of California, Los Angeles, the M.A. in Mathematics in 1973, the M.S. in Systems Science in 1977, and the Ph.D. in Electrical Engineering in 1989 with dissertation on modulation and coding. She has also taken short courses on computer networks. She has been employed for 23 years in satellite communications and 3 years in satellite navigation. In California, from 1973 to 1976 she worked on GPS development at The Aerospace Corp.; from 1977 to 1986 on analysis and simulation of end-to-end satellite communications at LinCom Corp. (now LinQuest Corp.); from 1989 to 1997 in development of new payload technology in communications and navigation at Hughes Space & Communications (now Boeing Satellite Development Center); from 1997 to 1999 in development of new payload and ground-receiver technology and on a satellite constellation at Lockheed Martin’s Western Development Laboratory (now part of LM’s Management & Data Systems); and from 1999 to 2003 as a payload manager and department manager of payload systems analysis at Space Systems/Loral. After moving to Switzerland in 2003, she has worked in project management, supplier management, modem algorithm development, and payload analysis. She is still often in the US. She was née Thesken and also formerly named McKenzie. She has worked on NASA, defense, commercial, and ESA programs.
ABBREVIATIONS

- Convolution
- * Complex conjugation
- ≈ Is approximately equal to
- △ Is defined as
- ≪ Is much less than
- ≫ Is much greater than
- ∝ Is proportional to

\(\varphi(f) \) Phase of transfer function in radians, a function of frequency \(f \); also called “phase response”

\(\phi \) Azimuth angle in spherical coordinates

\(\sigma \) Standard deviation

\(\theta \) Polar angle in spherical coordinates

\(\theta(t) \) Signal phase in radians as a function of time \(t \)

8PSK 8-ary phase-shift-keying

16QAM 16-ary quadrature amplitude modulation

AC Alternating current

ADC Analog-to-digital converter

A/D Analog-to-digital converter

\(A(f) \) Signal-amplitude multiplication function of a filter as a function of frequency \(f \); called for shorthand the “amplitude function” of the filter

AIAA American Institute of Aeronautics and Astronautics, Inc.

ALC Automatic level control

A-to-D Analog-to-digital (converter)

AWGN Additive white Gaussian noise

\(B \) Bandwidth in Hz
ABBREVIATIONS

BER Bit error rate
BFN Beam-forming network
\(B_L \) Loop bandwidth (one-sided baseband) of phase-locked loop
BOL Beginning of life
BPF Bandpass filter
BPSK Binary phase-shift-keying
\(C \) Carrier or signal power in a given bandwidth
CAMP Channel amplifier
CC Conduction-cooled
coax Coaxial cable
CONUS Continental US
CP Circularly polarized
CRO Coaxial-resonator oscillator
CW Continuous wave, that is, a sinewave
C/3IM Ratio of carrier power to 3rd-order IMP power when nonlinearity’s input is two equal-power carriers
\(D \) Directivity; antenna aperture diameter
DAC Digital-to-analog converter
D/A Digital-to-analog converter
dB Decibels
dBm 10 times log of milliwatts
DC Direct current
D/C Downconverter
DEMUX Demultiplexer
DRC Direct-radiation-cooled
DRO Dielectric-resonator oscillator
D-to-A Digital-to-analog (converter)
DUT Device under test
DVB Digital Video Broadcast
DVB-RCS DVB–Return Channel Satellite
DVB-S DVB–Satellite
\(E \) Electrical field vector
\(E_b \) Energy per bit
EHF Extremely high frequency (between 30 and 300 GHz)
\(E_s \) Energy per modulation symbol
EIRP Equivalent isotropically radiated power
EOC Edge of coverage
EOL End of life
EPC Electronic power conditioner
\(E_s \) Energy per modulation symbol
ESA European Space Agency
ETSI European Telecommunications Standards Institute
E–W East-west; east and west
F Flight
\(F \) Noise figure
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>Frequency in Hz; focal length</td>
</tr>
<tr>
<td>f/D</td>
<td>Ratio of focal length to aperture diameter, for a paraboloidal reflector antenna</td>
</tr>
<tr>
<td>FDM</td>
<td>Frequency-dimension multiplexing</td>
</tr>
<tr>
<td>FGM</td>
<td>Fixed-gain mode</td>
</tr>
<tr>
<td>FIR</td>
<td>Finite-impulse response</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of view</td>
</tr>
<tr>
<td>G</td>
<td>Gain</td>
</tr>
<tr>
<td>GaAs</td>
<td>Gallium arsenide</td>
</tr>
<tr>
<td>GEO</td>
<td>Geostationary orbit</td>
</tr>
<tr>
<td>$G(f)$</td>
<td>Filter gain, a function of frequency f; also called “gain response”</td>
</tr>
<tr>
<td>G/T_s</td>
<td>Antenna gain divided by system noise temperature</td>
</tr>
<tr>
<td>H</td>
<td>Horizontal linear polarization; hybrid coupler</td>
</tr>
<tr>
<td>H</td>
<td>Magnetic field vector</td>
</tr>
<tr>
<td>HEO</td>
<td>Highly elliptical orbit</td>
</tr>
<tr>
<td>HF</td>
<td>Harmonic filter</td>
</tr>
<tr>
<td>$H(f)$</td>
<td>Filter transfer function, a function of f</td>
</tr>
<tr>
<td>HPA</td>
<td>High-power amplifier</td>
</tr>
<tr>
<td>HPF</td>
<td>High-pass filter</td>
</tr>
<tr>
<td>$h(t)$</td>
<td>Filter impulse response, a function of t</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz, unit of frequency</td>
</tr>
<tr>
<td>I</td>
<td>Interference power in a given bandwidth; in-phase component of baseband signal</td>
</tr>
<tr>
<td>IBO</td>
<td>Input backoff</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers, Inc.</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate frequency</td>
</tr>
<tr>
<td>Im</td>
<td>Function that takes the imaginary part of a complex number</td>
</tr>
<tr>
<td>IMP</td>
<td>Intermodulation product</td>
</tr>
<tr>
<td>IMUX</td>
<td>Input multiplexer</td>
</tr>
<tr>
<td>InP</td>
<td>Indium phosphide</td>
</tr>
<tr>
<td>ISI</td>
<td>Intersymbol interference</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>j</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>LCAMP</td>
<td>Linearizer-CAMP unit</td>
</tr>
<tr>
<td>LEO</td>
<td>Low earth orbit</td>
</tr>
<tr>
<td>LHCP</td>
<td>Left-hand circularly polarized</td>
</tr>
<tr>
<td>ln</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>LNA</td>
<td>Low-noise amplifier</td>
</tr>
<tr>
<td>LO</td>
<td>Local oscillator</td>
</tr>
<tr>
<td>log</td>
<td>Logarithm base 10</td>
</tr>
<tr>
<td>LP</td>
<td>Linearly polarized</td>
</tr>
<tr>
<td>LPF</td>
<td>Low-pass filter</td>
</tr>
<tr>
<td>LTWTA</td>
<td>Linearized TWTA</td>
</tr>
<tr>
<td>(L)CAMP</td>
<td>CAMP that may or may not contain the linearizer function</td>
</tr>
<tr>
<td>(L)TWTA</td>
<td>TWTA that may or may not be linearized</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium-access control</td>
</tr>
<tr>
<td>MBA</td>
<td>Multibeam antenna</td>
</tr>
<tr>
<td>MEO</td>
<td>Medium earth orbit</td>
</tr>
<tr>
<td>MF</td>
<td>Matched filter</td>
</tr>
<tr>
<td>MLO</td>
<td>Master local oscillator</td>
</tr>
<tr>
<td>MPA</td>
<td>Multiport amplifier</td>
</tr>
<tr>
<td>MPEG</td>
<td>Moving Picture Experts Group</td>
</tr>
<tr>
<td>MPM</td>
<td>Microwave power module</td>
</tr>
<tr>
<td>MRO</td>
<td>Master reference oscillator</td>
</tr>
<tr>
<td>MUX</td>
<td>Multiplexer</td>
</tr>
<tr>
<td>N</td>
<td>Noise power in a given bandwidth</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>N_0</td>
<td>One-sided RF or IF power-spectral-density of noise</td>
</tr>
<tr>
<td>NF</td>
<td>Noise figure</td>
</tr>
<tr>
<td>NPR</td>
<td>Noise-[to]-power ratio. Ratio of IMP power in one slot to carrier power in a slot, when input to HPA is a large number of equal-power, equally spaced carriers with one missing in center slot</td>
</tr>
<tr>
<td>N–S</td>
<td>North-south; north and south</td>
</tr>
<tr>
<td>OBO</td>
<td>Output backoff</td>
</tr>
<tr>
<td>OBP</td>
<td>Onboard processor</td>
</tr>
<tr>
<td>OCXO</td>
<td>Oven-controlled crystal oscillator</td>
</tr>
<tr>
<td>OMUX</td>
<td>Output multiplexer</td>
</tr>
<tr>
<td>OQPSK</td>
<td>Offset QPSK</td>
</tr>
<tr>
<td>P</td>
<td>Long-term average of signal power. Average is over a time much, much longer than inverse of signal’s noise bandwidth</td>
</tr>
<tr>
<td>P2dB</td>
<td>Amplifier’s 2-dB compression point</td>
</tr>
<tr>
<td>$p(x)$</td>
<td>Probability density function of a random variable, a function of its values x</td>
</tr>
<tr>
<td>pdf</td>
<td>Probability density function</td>
</tr>
<tr>
<td>P_{in}</td>
<td>Power input to amplifier</td>
</tr>
<tr>
<td>$P_{in \text{ sat}}$</td>
<td>Power input to amplifier that saturates amplifier</td>
</tr>
<tr>
<td>pk-pk</td>
<td>Peak-to-peak</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase-locked loop</td>
</tr>
<tr>
<td>PM</td>
<td>Phase modulation</td>
</tr>
<tr>
<td>PN</td>
<td>Pseudo-noise</td>
</tr>
<tr>
<td>P_{op}</td>
<td>Amplifier’s operating point</td>
</tr>
<tr>
<td>P_{out}</td>
<td>Power output by amplifier</td>
</tr>
<tr>
<td>$P_{out \text{ sat}}$</td>
<td>Power output by amplifier when saturated</td>
</tr>
<tr>
<td>Pr</td>
<td>Probability</td>
</tr>
<tr>
<td>Preamp</td>
<td>Preamplifier</td>
</tr>
<tr>
<td>PS</td>
<td>Power supply</td>
</tr>
<tr>
<td>psd</td>
<td>Power spectral density</td>
</tr>
<tr>
<td>PSK</td>
<td>Phase-shift-keyed</td>
</tr>
<tr>
<td>$P(t)$</td>
<td>Instantaneous power of signal as a function of time t. Equal to signal’s square magnitude averaged over carrier cycle</td>
</tr>
</tbody>
</table>