
Chemical Sensors and Biosensors

Fundamentals and Applications

Florinel-Gabriel Bănică

Chemical Sensors and Biosensors

Chemical Sensors and Biosensors

Fundamentals and Applications

Florinel-Gabriel Bănică

Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Editorial Advisor

Professor Arnold George Fogg, Visiting Professor, University of Bedfordshire

This edition first published 2012 © 2012 John Wiley & Sons, Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

The publisher and the author make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of fitness for a particular purpose. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for every situation. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of experimental reagents, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each chemical, piece of equipment, reagent, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. The fact that an organization or Website is referred to in this work as a citation and/or a potential source of further information does not mean that the author or the publisher endorses the information the organization or Website may provide or recommendations it may make. Further, readers should be aware that Internet Websites listed in this work may have changed or disappeared between when this work was written and when it is read. No warranty may be created or extended by any promotional statements for this work. Neither the publisher nor the author shall be liable for any damages arising herefrom.

Library of Congress Cataloging-in-Publication Data

Banica, Florinel-Gabriel.

Chemical sensors and biosensors: fundamentals and applications / Florinel-Gabriel Banica, Department of Chemistry, Norwegian University of Technology, Norway.

Technology, Norway.

pages cm
Includes bibliographical references and index.
ISBN 978-0-470-71066-1 (cloth) – ISBN 978-0-470-71067-8 (pbk.) 1.
Chemical detectors. 2. Biosensors. I. Title.
TP159.C46B36 2012
543–dc23

2012028141

A catalogue record for this book is available from the British Library.

HB ISBN: 9780470710661 PB ISBN: 9780470710678

Set in 10/12pt Times by Thomson Digital, Noida, India

Summary Contents

1	What are Chemical Sensors?	1
2	Protein Structure and Properties	21
3	Enzymes and Enzymatic Sensors	28
4	Mathematical Modeling of Enzymatic Sensors	50
5	Materials and Methods in Chemical-Sensor Manufacturing	66
6	Affinity-Based Recognition	101
7	Nucleic Acids in Chemical Sensors	118
8	Nanomaterial Applications in Chemical Sensors	135
9	Thermochemical Sensors	157
10	Potentiometric Sensors	165
11	Chemical Sensors Based on Semiconductor Electronic Devices	217
12	Resistive Gas Sensors (Chemiresistors)	246
13	Dynamic Electrochemistry Transduction Methods	258
14	Amperometric Enzyme Sensors	314
15	Mathematical Modeling of Mediated Amperometric Enzyme Sensors	332
16	Electrochemical Affinity and Nucleic Acid Sensors	347
17	Electrical-Impedance-Based Sensors	367
18	Optical Sensors – Fundamentals	404
19	Optical Sensors – Applications	435
20	Nanomaterial Applications in Optical Transduction	454
21	Acoustic-Wave Sensors	473
22	Microcantilever Sensors	507
23	Chemical Sensors Rased on Microorganisms Living Cells and Tissues	518

Contents

		lgments abols		xix xxi xxiii	
List	of Acr	onyms		xxxi	
1	What	That are Chemical Sensors?			
	1.1	Chemic	eal Sensors: Definition and Components	1	
	1.2	Recogn	ition Methods	2	
		1.2.1	General Aspects	2	
		1.2.2	Ion Recognition	3	
		1.2.3	Recognition by Affinity Interactions	3	
		1.2.4	Recognition by Nucleic Acids	3	
		1.2.5	Recognition by Enzymes	4	
		1.2.6	Recognition by Cells and Tissues of Biological Origin	4	
		1.2.7	Gas and Vapor Sorption	4	
	1.3	Transdi	action Methods	4	
		1.3.1	General Aspects	4	
		1.3.2	Thermometric Transduction	5	
		1.3.3	Transduction Based on Mechanical Effects	5	
		1.3.4	Resistive and Capacitive Transduction	5	
		1.3.5	Electrochemical Transduction	5	
		1.3.6	Optical Transduction	6	
	1.4		Configuration and Fabrication	6 7	
	1.5	Sensor Calibration			
	1.6		Figures of Merit	8	
		1.6.1	Reliability of the Measurement	9	
		1.6.2	Selectivity and Specificity	10	
		1.6.3	Detection and Quantification Capabilities	10	
		1.6.4	Response Time	11	
	1.7	Sensor	·	11	
		1.7.1	Quantitative Analysis by Cross-Sensitive Sensor Arrays	11	
		1.7.2	Qualitative Analysis by Cross-Sensitive Sensor Arrays	12	
		1.7.3	Artificial Neural Network Applications in the Artificial Nose/Tongue Outlook	13	
	1.0	1.7.4		14	
	1.8		s in Flow Analysis Systems	14	
	1.9	1.9.1	ations of Chemical Sensors Environmental Applications of Chemical Sensors	14 15	
			* *	15	
		1.9.2	Healthcare Applications of Chemical Sensors Application of Chemical Sensors in the Food Industry, Agriculture and Biotechnology	16	
		1.9.3	Chemical Sensors in Defense Applications	16	
	1.10		are on Chemical Sensors and Biosensors	17	
	1.11		zation of the Text	17	
	1.11	Referen		19	
2	Prote	in Struc	ture and Properties	21	
	2.1	Amino		21	
	2.2	Chemic	cal Structure of Proteins	22	
	2.3		mation of Protein Macromolecules	22	
	2.4	Noncov	valent Chemical Bonds in Protein Molecules	24	
	2.5		ition Processes Involving Proteins	25	
	2.6	Outlool		26	
		Referer	nces	27	

		Content	ts ix
3	Engr	mes and Engraphetic Concerns	20
3		mes and Enzymatic Sensors	28
	3.1	General Classification	28
	3.2	Enzyme Nomenclature and Classification	29
	3.3	Enzyme Components and Cofactors	30
	3.4	Some Enzymes with Relevance to Biosensors	32
		3.4.1 Oxidases	32
		3.4.2 Dehydrogenases	33
		3.4.3 Hydrolases	34
		3.4.4 Lyases	35
	2.5	3.4.5 Outlook	35
	3.5	Transduction Methods in Enzymatic Biosensors	36
		3.5.1 Transduction Methods	36
	2.6	3.5.2 Multienzyme Sensors	37
	3.6	Kinetics of Enzyme Reactions	38
		3.6.1 The Michaelis–Menten Mechanism	38
		3.6.2 Other Mechanisms	40
		3.6.3 Expressing the Enzyme Activity	41
		3.6.4 pH Effect on Enzyme Reactions	42
		3.6.5 Temperature Effect on Enzyme Reactions	43
		3.6.6 Outlook	43
	3.7	Enzyme Inhibition	44
		3.7.1 Reversible Inhibition	44
		3.7.2 Irreversible Inhibition	46
		3.7.3 Enzymatic Sensors for Inhibitors: Design and Operation	46
	2.0	3.7.4 Applications of Enzyme-Inhibition Sensors	46
	3.8	Concluding Remarks	48
		References	48
4	Math	nematical Modeling of Enzymatic Sensors	50
	4.1	Introduction	50
	4.2	The Enzymatic Sensor under External Diffusion Conditions	50
		4.2.1 The Physical Model	50
		4.2.2 The Mathematical Model	51
		4.2.3 The Zero-Order Kinetics Case	52
		4.2.4 The First-Order Kinetics Case	52
		4.2.5 The Dynamic Range and the Limit of Detection under External Diffusion Conditions	54
	4.3	The Enzymatic Sensor under Internal Diffusion Control	55
		4.3.1 The Steady-State Response	55
		4.3.2 The Transient Regime and the Response Time under Internal Diffusion Conditions	58
	4.4	The General Case	60
		4.4.1 The Model	60
		4.4.2 Effect of the Biot Number	61
		4.4.3 Effect of Partition Constants and Diffusion Coefficients	63
		4.4.4 Experimental Tests for the Kinetic Regime of an Enzymatic Sensor	63
	4.5	Outlook	64
		References	64
_			
5		rials and Methods in Chemical-Sensor Manufacturing	66
	5.1	Introduction Noncovelent Immedilization at Solid Symfogos	66
	5.2	Noncovalent Immobilization at Solid Surfaces	66
	5.3	Covalent Conjugation	68
		5.3.1 Zero-Length Crosslinkers	68
		5.3.2 Bifunctional Crosslinkers 5.3.2 Laurachilization by Protein Crosslinking	69
	<i>~</i> 4	5.3.3 Immobilization by Protein Crosslinking	69
	5.4	Supports and Support Modification	70
		5.4.1 General Aspects	70
		5.4.2 Natural Polymers	71
		5.4.3 Synthetic Polymers	72
		5.4.4 Coupling to Active Polymers	72
		5.4.5 Coupling to Inactive Polymers	72

x Contents

		5.4.6	Inorganic Supports	73
		5.4.7	Carbon Material Supports	73
		5.4.8	Metal Supports	75
		5.4.9	Semiconductor Supports	76
	5.5		Reactions	77
	5.6	Thin M	olecular Layers	78
		5.6.1	Self-Assembly of Amphiphilic Compounds	78
		5.6.2	Bilayer Lipid Membranes	79
		5.6.3	Alternate Layer-by-Layer Assembly	80
	5.7	Sol-Gel	Chemistry Methods	81
	5.8	Hydrog	els	83
		5.8.1	Physically Crosslinked Hydrogels	84
		5.8.2	Chemically Crosslinked Hydrogels	84
		5.8.3	Redox Hydrogels	84
		5.8.4	Responsive Hydrogels	84
	5.9	Conduc	ting Polymers	86
	5.10	Encapsu	ulation	88
	5.11	Entrapn	nent in Mesoporous Materials	89
	5.12	Polyme	r Membranes	90
		5.12.1	Deposition of Polymers onto Solid Surfaces	90
		5.12.2	Perm-Selective Membranes	91
	5.13	Microfa	abrication Methods in Chemical-Sensor Technology	92
		5.13.1	Spot Arraying	92
		5.13.2	Thick-Film Technology	92
		5.13.3	Thin-Film Techniques	94
		5.13.4	Soft Lithography	95
		5.13.5	Microcontact Printing of Biocompounds	95
	5.14		ding Remarks	97
		Referen	•	97
6	Affini	itv-Based	Recognition	101
6			Recognition Principles	101 101
6	6.1	General	Principles	101
6		General Immuno	Principles osensors	101 101
6	6.1	General Immuno 6.2.1	Principles osensors Antibodies: Structure and Function	101 101 101
6	6.1	General Immuno 6.2.1 6.2.2	Principles osensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity	101 101 101 103
6	6.1	General Immuno 6.2.1 6.2.2 6.2.3	Principles Description Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications	101 101 101 103 103
6	6.1	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4	Principles Desensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors	101 101 101 103 103 104
6	6.1	General Immund 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5	Principles osensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors	101 101 101 103 103 104 104
6	6.1 6.2	General Immund 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6	Principles osensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay	101 101 101 103 103 104 104
6	6.1 6.2	General Immund 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay	101 101 101 103 103 104 104 105
6	6.1 6.2 6.3 6.4	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay	101 101 101 103 103 104 104 105 106
6	6.1 6.2 6.3 6.4 6.5	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays	101 101 101 103 103 104 104 105 106 106
6	6.1 6.2 6.3 6.4 6.5 6.6	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio	Principles Desensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay Ilization Methods in Immunosensors Dassay Formats and Peptide Microarrays cal Receptors	101 101 103 103 104 104 105 106 106 109
6	6.1 6.2 6.3 6.4 6.5	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologic Artificia	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays cal Receptors al Receptors	101 101 103 103 104 104 105 106 106 109 110
6	6.1 6.2 6.3 6.4 6.5 6.6	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologic Artificia 6.7.1	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors cassay Formats and Peptide Microarrays cal Receptors Cyclodextrins and Host—Guest Chemistry	101 101 103 103 104 104 105 106 106 109 110
6	6.1 6.2 6.3 6.4 6.5 6.6	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays cal Receptors Al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes	101 101 101 103 103 104 104 105 106 106 109 110 111
6	6.1 6.2 6.3 6.4 6.5 6.6 6.7	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs)	101 101 103 103 104 104 105 106 106 109 110 111 111
6	6.1 6.2 6.3 6.4 6.5 6.6	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs)	101 101 101 103 103 104 104 105 106 106 109 110 111
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors eassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs)	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113
7	6.1 6.2 6.3 6.4 6.5 6.6 6.7	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors eassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs)	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) acces in Chemical Sensors Acid Structure and Properties	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115 115
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Nucleo	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologic Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen Pick Acids Nucleic Nucleic	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) Common Chemical Sensors Acid Structure and Properties Acid Analogs	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115 115
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologic Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen Pick Acids Nucleic Nucleic Nucleic	Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors bassay Formats and Peptide Microarrays cal Receptors Al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) Acces in Chemical Sensors Acid Structure and Properties Acid Analogs Acids as Receptors in Recognition Processes	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115 115
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Nucleo	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologic Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen Pick Acids Nucleic Nucleic Nucleic 7.3.1	Principles Desensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors Dassay Formats and Peptide Microarrays cal Receptors Al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) Control of Chemical Sensors Acid Structure and Properties Acid Analogs Acids as Receptors in Recognition Processes Hybridization: Polynucleotide Recognition	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115 115
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Nucleo	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen Pice Acids Nucleic Nucleic Nucleic Nucleic 7.3.1 7.3.2	Principles Desensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay dization Methods in Immunosensors Dassay Formats and Peptide Microarrays cal Receptors Al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) Control Co	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115 115
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Nucle 7.1 7.2 7.3	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen Pice Acids Nucleic Nucleic 7.3.1 7.3.2 7.3.3	Principles osensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay Ilization Methods in Immunosensors sassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) Control of Chemical Sensors Acid Structure and Properties Acid Analogs Acids as Receptors in Recognition Processes Hybridization: Polynucleotide Recognition Recognition by Nucleic Acid Aptamers	101 101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 113 115 115 115 118 122 122 122 123 124
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Nucleo	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen Pic Acids Nucleic Nucleic Nucleic 7.3.1 7.3.2 7.3.3 Immobi	Principles osensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay Ilization Methods in Immunosensors sassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) Coces in Chemical Sensors Acid Structure and Properties Acid Analogs Acids as Receptors in Recognition Processes Hybridization: Polynucleotide Recognition Recognition by Nucleic Acid Aptamers Ilization of Nucleic Acids	101 101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115 115 115 118 118 121 122 122 123 124 126
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Nucle 7.1 7.2 7.3	General Immuno 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 Immobi Immuno Protein Biologio Artificia 6.7.1 6.7.2 6.7.3 Outlook Referen Pice Acids Nucleic Nucleic 7.3.1 7.3.2 7.3.3	Principles osensors Antibodies: Structure and Function Antibody—Antigen Affinity and Avidity Analytical Applications Label-Free Transduction Methods in Immunosensors Label-Based Transduction Methods in Immunosensors Enzyme Labels in Immunoassay Ilization Methods in Immunosensors sassay Formats and Peptide Microarrays cal Receptors al Receptors Cyclodextrins and Host—Guest Chemistry Calixarenes Molecularly Imprinted Polymers (MIPs) Control of Chemical Sensors Acid Structure and Properties Acid Analogs Acids as Receptors in Recognition Processes Hybridization: Polynucleotide Recognition Recognition by Nucleic Acid Aptamers	101 101 103 103 104 104 105 106 106 109 110 111 111 113 113 115 115 115

			Contents	xi
		7.4.3 Immobilization by Polymerization		127
		7.4.3 Immobilization by Polymerization7.4.4 Covalent Immobilization on Functionalized Surfaces		127 128
		7.4.4 Covalent Infinostrization on Functionalized Surfaces 7.4.5 Coupling by Affinity Reactions		128
		7.4.5 Coupling by Armity Reactions 7.4.6 Polynucleotides—Nanoparticles Hybrids		129
	7.5	Transduction Methods in Nucleic Acids Sensors		129
	7.5	7.5.1 Label-Free Transduction Methods		129
		7.5.2 Label-Based Transduction		129
		7.5.3 DNA Amplification		130
	7.6	DNA Microarrays		131
	7.7	Outlook		132
		References		133
8		material Applications in Chemical Sensors		135
	8.1	Generals		135
	8.2	Metallic Nanomaterials		136
		8.2.1 Synthesis of Metal Nanoparticles		136
		8.2.2 Functionalization of Gold Nanoparticles8.2.3 Applications of Metal Nanoparticles in Chemical Sensors		137138
	8.3	8.2.3 Applications of Metal Nanoparticles in Chemical Sensors Carbon Nanomaterials		138
	0.5	8.3.1 Structure of CNTs		139
		8.3.2 Synthesis of CNTs		140
		8.3.3 Chemical Reactivity and Functionalization		140
		8.3.4 CNT Applications in Chemical Sensors		142
		8.3.5 Carbon Nanofibers (CNFs)		142
	8.4	Polymer and Inorganic Nanofibers		144
	8.5	Magnetic Micro- and Nanoparticles		145
		8.5.1 Magnetism and Magnetic Materials		145
		8.5.2 Magnetic Nanoparticles		146
		8.5.3 Magnetic Biosensors and Biochips		146
		8.5.4 Magnetic Nanoparticles as Auxiliary Components in Biosensors		148
		8.5.5 Outlook		148
	8.6	Semiconductor Nanomaterials		149
		8.6.1 Synthesis and Functionalization of Quantum Dots		149
		8.6.2 Applications of Quantum Dots		151
	8.7	Silica Nanoparticles		151
	0.0	8.7.1 Synthesis, Properties, and Applications		151
	8.8	Dendrimers		152
	0.0	8.8.1 Properties and Applications		152
	8.9	Summary		153
		References		153
9	Ther	mochemical Sensors		157
	9.1	Temperature Transducers		157
		9.1.1 Resistive Temperature Transducers		157
		9.1.2 Thermopiles		157
	9.2	Enzymatic Thermal Sensors		158
		9.2.1 Principles of Thermal Transduction in Enzymatic Sensors		158
		9.2.2 Thermistor-Based Enzymatic Sensors		159
		9.2.3 Thermopile-Based Enzymatic Sensors		160
		9.2.4 Multienzyme Thermal Sensors		160
	0.2	9.2.5 Outlook		161
	9.3	Thermocatalytic Sensors for Combustible Gases		162
		9.3.1 Structure and Functioning Principles References		162163
4.0				
10		Introduction		165
	10.1	Introduction The Colvenie Cell at Equilibrium		165
	10.2	The Galvanic Cell at Equilibrium 10.2.1 Thermodynamics of Electrolyte Solutions		165
		10.2.1 Thermodynamics of Electrolyte Solutions10.2.2 Thermodynamics of the Galvanic Cell		166167
		10.2.2 Thermodynamics of the Galvanic Cell		107

11

10.3	Ion Dist	ribution at the Interface of Two Electrolyte Solutions	170
	10.3.1	Charge Distribution at the Junction of Two Electrolyte Solutions.	
		The Diffusion Potential	170
	10.3.2	Ion Distribution at an Aqueous/Semipermeable Membrane Interface	172
10.4		ometric Ion Sensors – General	173
	10.4.1	Sensor Configuration and the Response Function	173
	10.4.2	Selectivity of Potentiometric Ion Sensors	175
	10.4.3	The Response Range of Potentiometric Ion Sensors	177
	10.4.4	Interferences by Chemical Reactions Occurring in the Sample	177
	10.4.5 10.4.6	The Response Time of Potentiometric Ion Sensors Outlook	178 178
10.5		ly Soluble Solid Salts as Membrane Materials	178
10.5	10.5.1	Membrane Composition	178
	10.5.2	Response Function and Selectivity	179
10.6		lembrane Ion Sensors	181
	10.6.1	Membrane Structure and Properties	181
	10.6.2	Response Function and Selectivity	182
	10.6.3	Chalcogenide Glass Membranes	183
10.7	Ion Sens	sors Based on Molecular Receptors. General Aspects	184
10.8	Liquid I	on Exchangers as Ion Receptors	185
	10.8.1	Ion Recognition by Liquid Ion Exchangers	185
	10.8.2	Charged Receptor Membranes	185
	10.8.3	Response Function and Selectivity	186
	10.8.4	Outlook	187
10.9		Ion Receptors (Ionophores)	187
	10.9.1	General Principles	187
	10.9.2	Chemistry of Ion Recognition by Neutral Receptors	188
	10.9.3	Effect of Bonding Multiplicity, Steric, and Conformational Factors	189
	10.9.4	Neutral Receptor Ion-Selective Membranes: Composition, Selectivity and	100
	1005	Response Function	190
	10.9.5	Neutral Noncyclic Ion Receptors Magneyelia Cation Receptors	192
	10.9.6 10.9.7	Macrocyclic Cation Receptors	193
	10.9.7	Macrocyclic Anion Receptors Neutral Receptors for Organic Ions	194 194
	10.9.8	Porphyrins and Phthalocyanines as Anion Receptors	194
		Outlook	196
10 10		larly Imprinted Polymers as Ion-Sensing Materials	197
		ting Polymers as Ion-Sensing Materials	198
		ontact Potentiometric Ion Sensors	198
		rization of Potentiometric Ion Sensors	199
		s with Potentiometric Ion Sensors	200
		Advances in Potentiometric Ion Sensors	201
10.16	Potentic	ometric Gas Sensors	203
10.17	Solid El	ectrolyte Potentiometric Gas Sensors	204
	10.17.1	General Principles	204
	10.17.2	Solid Electrolyte Potentiometric Oxygen Sensors	205
	10.17.3	Applications of Potentiometric Oxygen Sensors	206
	10.17.4	Types of Solid Electrolyte Potentiometric Gas Sensors	207
	10.17.5	Mixed Potential Potentiometric Gas Sensors	208
		Outlook	209
		ometric Biocatalytic Sensors	210
		ometric Affinity Sensors	211
10.20	Summai		212
	Referen	ces	213
Chen	nical Sens	sors Based on Semiconductor Electronic Devices	217
11.1		nic Semiconductor Devices	217
	11.1.1	Semiconductor Materials	217
	11.1.2	Band Theory of Semiconductors	218
	11.1.3	Metal-Insulator-Semiconductor (MIS) Capacitors	219

			Contents	xiii
		11.1.4 Metal-Insulator-Semiconductor Field Effect Transistors (MISFETs)		221
		11.1.5 Outlook		224
	11.2	FED Ion Sensors and Their Applications		224
		11.2.1 Electrolyte-Insulator-Semiconductor (EIS) Devices		224
		11.2.2 FED pH Sensors		226
		11.2.3 pH ISFET-Based Gas Probes		228
		11.2.4 Membrane-Covered ISFETs		229
		11.2.5 Light-Addressable Potentiometric Sensors (LAPS)		230
		11.2.6 Reference Electrodes for ISFET Sensors		231
		11.2.7 Enzymatic FET Sensors (EnFETs)		232
		11.2.8 Outlook		232
	11.3	FED Gas Sensors		234
		11.3.1 FED Hydrogen Sensors		234
		11.3.2 Metal Gate FED Sensors for Other Gases		235
		11.3.3 Organic Semiconductors as Gas-Sensing Materials		236
		11.3.4 Organic Semiconductors FED Gas Sensors11.3.5 Response Mechanism of FED Gas Sensors		237 238
		11.3.5 Response Mechanism of FED Gas Sensors11.3.6 Outlook		239
	11.4	Schottky-Diode-Based Gas Sensors		240
	11.5	Carbon-Nanotube-Based Field-Effect Transistors		242
	11.6	Concluding Remarks		243
	11.0	References		244
12		tive Gas Sensors (Chemiresistors)		246
	12.1	Semiconductor Metal Oxide Gas Sensors		246
		12.1.1 Introduction		246 246
		12.1.2 Gas-Response Mechanism12.1.3 Response to Humidity		247
		12.1.5 Response to Humanty 12.1.4 Sensor Configuration		248
		12.1.5 Synthesis and Deposition of Metal Oxides		249
		12.1.6 Synthesis and Deposition of Metal Oxides 12.1.6 Fabrication of Metal-Oxide Chemiresistors		249
		12.1.7 Selectivity and Sensitivity		250
		12.1.8 Outlook		251
	12.2	Organic-Material-Based Chemiresistors		252
	12.3	Nanomaterial Applications in Resistive Gas Sensors		253
	12.4	Resistive Gas Sensor Arrays		254
	12.5	Summary		255
		References		256
13	Dvna	mic Electrochemistry Transduction Methods		258
10	13.1	Introduction		258
	13.2	Electrochemical Cells in Amperometric Analysis		258
	13.3	The Electrolytic Current and its Analytical Significance		260
		13.3.1 Current–Concentration Relationships		260
		13.3.2 The Current–Potential Curve: Selecting the Working Potential		262
		13.3.3 Irreversible Electrochemical Reactions		264
		13.3.4 Sign Convention		265
		13.3.5 Geometry of the Diffusion Process		265
		13.3.6 Outlook		265
	13.4	Membrane-Covered Electrodes		266
	13.5	Non-Faradaic Processes		267
		13.5.1 Origin of Non-Faradaic Currents		267
		13.5.2 The Electrical Double Layer at the Electrode/Solution Interface		268
		13.5.3 The Charging Current		269
	13.6	13.5.4 Applications of Capacitance Measurement in Chemical Sensors		270
	13.0	Kinetics of Electrochemical Reactions 13.6.1 The Reaction Rate of an Electrochemical Reaction		270 270
		13.6.2 Current–Potential Relationships		270
		13.6.3 Mass-Transfer Effect on the Kinetics of Electrochemical Reactions		273
		13.6.4 Equilibrium Conditions		274
		1"		

		13.6.5	The Electrochemical Reaction in the Absence of Mass-Transfer Restrictions	275
		13.6.6	Polarizable and Nonpolarizable Electrodes	276
		13.6.7	Achieving Steady-State Conditions in Electrochemical Measurements	277
		13.6.8	Outlook	278
	13.7	Electroc	hemical Methods	280
		13.7.1	Steady-State Methods	280
		13.7.2	Constant-Potential Chronoamperometry	280
		13.7.3	Polarography	281
		13.7.4	Linear-Scan Voltammetry (LSV) and Cyclic Voltammetry (CV)	282
		13.7.5	Pulse Voltammetry	285
		13.7.6	Square-Wave Voltammetry (SWV)	286
		13.7.7	Alternating-Current Voltammetry	287
		13.7.8	Chronopotentiometric Methods	288
		13.7.9	Electrochemistry at Ultramicroelectrodes	289
			Current Amplification by Reactant Recycling	291
			Scanning Electrochemical Microscopy	292
	12.0		Outlook	293
	13.8		le Materials Carbon Electrodes	294
		13.8.1 13.8.2		295 296
		13.8.3	Noble-Metal Electrodes Metal-Oxide Films	290 297
		13.8.4	Electrode Fabrication	297
		13.8.5	Carbon Nanomaterial Applications in Electrochemistry	298
		13.8.6	Outlook	298
	13.9		s in Electrochemical Reactions	299
	13.7	13.9.1	Homogeneous Redox Catalysis	299
		13.9.2	Homogeneous Mediation in Electrochemical Enzymatic Reactions	300
		13.9.3	Catalysis by Immobilized Enzymes	301
		13.9.4	Heterogeneous Redox Catalysis	302
		13.9.5	Surface Activation of Electrochemical Reactions	304
		13.9.6	Outlook	304
	13.10		metric Gas Sensors	306
		-	The Clark Oxygen Sensor	306
			Nitric Oxide Sensors	307
		13.10.3	Other Types of Amperometric Gas Sensors	308
		13.10.4	Galvanic Cell-Type Gas Sensors	309
		13.10.5	Solid Electrolyte Amperometric Gas Sensors	309
		Reference	ces	310
14	Ampe	rometric	Enzyme Sensors	314
	14.1	First-Ge	neration Amperometric Enzyme Sensors	314
	14.2	Second-	Generation Amperometric Enzyme Sensors	316
		14.2.1	Principles	316
		14.2.2		317
		14.2.3		317
		14.2.4		319
		14.2.5	Electron-Transfer Mediation by Redox Polymers	320
		14.2.6	Sensing by Organized Molecular Multilayer Structures	321
	14.3		diator as Analyte	322
	14.4		ring Polymers in Amperometric Enzyme Sensors	323
	14.5		lectron Transfer: 3 rd -Generation Amperometric Enzyme Sensors	324
		14.5.1	Conducting Organic Salt Electrodes	324
		14.5.2	Direct Electron Transfer with FAD-Heme Enzymes	325
	146	14.5.3	Achieving Direct Electron Transfer by Means of Nanomaterials ADH ⁺ as Mediator in Biosensors	326
	14.6			327
	14.7	Summar Reference		328 328
		Keieren	ecs	328
15			Modeling of Mediated Amperometric Enzyme Sensors	332
	15 1	External	Diffusion Conditions	332

				Contents	χv
		15.1.1 Model Fo	ormulation		332
			esponse: Limiting Cases		334
			amic Range and the Limit of Detection		336
		•	eoretical Models		338
		15.1.5 Outlook			338
	15.2	Internal Diffusion	Conditions		339
			ormulation		339
			onless Parameters and Variables		340
			Conditions		342
			he Differential Equations. The Case Diagram		343
		15.2.5 Kinetic C			343
		15.2.6 Diffusion	Currents		343
		15.2.7 Outlook			345
		References			345
16	Electi	ochemical Affinity	and Nucleic Acid Sensors		347
	16.1	Amperometric Affi			347
			abels in Amperometric Immunosensors		347
			Linked Amperometric Immunosensors		347
		•	onless Amperometric Immunosensors		349
			erials Applications in Amperometric Immunosensors		350
			l Polymers in Amperometric Affinity Sensors		351
		16.1.6 Outlook	a roughtour amperoment animaly someone		353
	16.2		ucleic Acid-Based Sensors		354
	10.2		nemical Reactions of Nucleobases		354
			netric Nucleic Acid Sensors Based on Self-Indicating Hybridization		355
			ting Redox Indicators		357
			ly Bound Redox Indicators in Sandwich Assays		357
			ly Bound Redox Indicators in Spatially Resolved Transduction		359
			Labels in Amperometric Nucleic Acid Sensors		359
		•	nemical DNA Arrays		361
			Acids as Recognition Materials for Non-Nucleotide Compounds		361
			Amperometric Sensors		361
		16.2.10 Outlook	1		363
		References			364
17	Electi	ical-Impedance-Ba	ased Sensors		367
	17.1		ce: Terms and Definitions		367
	17.2		npedance Spectrometry		369
			ncepts and Definitions		369
			adaic Processes		370
		17.2.3 Faradaic			372
		17.2.4 Probing t	he Electrode Surface by Electrochemical Impedance Spectrometry		373
	17.3	_	npedance Affinity Sensors		375
			nemical Impedance Transduction in Affinity Sensors		375
			ation of Impedimetric Biosensors		376
		17.3.3 Capacitiv	ve Biosensors		377
		17.3.4 Signal Aı	mplification		379
		-	Receptor-Based Impedimetric Sensors		379
			ons of Impedimetric Affinity Sensors		380
	17.4	Biocatalytic Imped			381
	17.5	Outlook			382
	17.6	Nucleic Acid Impe	dimetric Sensors		383
			daic Impedimetric DNA Sensors		383
			Impedimetric DNA Sensors		384
			etric Aptasensors		385
	17.7	Conductometric Se	ensors		386
		17.7.1 Conducti	vity of Electrolyte Solutions		386
			ance Measurement		388
		17.7.3 Conducto	ometric Transducers		389

xvi Contents

		17.7.4	Conductometric Enzymatic Sensors	389
		17.7.5	Conductometric Transduction by Chemoresistive Materials	391
		17.7.6	Ion-Channel-Based Conductometric Sensors	394
		17.7.7	Outlook	394
	17.8	_	netric Sensors for Gases and Vapors	395
		17.8.1	Humidity: Terms and Definitions	395
		17.8.2	Resistive Humidity Sensors	396
		17.8.3	Capacitive Humidity Sensors	397
		17.8.4	Capacitive Gas Sensors	399
		17.8.5	Integrated Impedimetric Gas Sensors and Sensor Arrays	399
		17.8.6	Outlook	400
		Reference	ces	400
18	Optic		rs – Fundamentals	404
	18.1		nagnetic Radiation	404
	18.2	_	Waveguides in Chemical Sensors	405
		18.2.1	Optical Fibers: Structure and Light Propagation	406
		18.2.2	1	407
		18.2.3	Active Fiber Optic Sensor Platforms	407
		18.2.4	e	408
		18.2.5	Capillary Waveguides	409
		18.2.6	Outlook	409
	18.3	-	chemical Transduction Methods	409
		18.3.1	Light Absorption	409
		18.3.2	Diffuse Reflectance Spectrometry	410
		18.3.3	Luminescence	411
		18.3.4	Fluorescence Spectrometry	412
		18.3.5	Steady-State Fluorescence Measurements	413
		18.3.6	Time-Resolved Fluorimetry	414
		18.3.7	Fluorescence Quenching	416
		18.3.8	Resonance Energy Transfer	417
		18.3.9	Chemiluminescence and Bioluminescence	417
			Electrochemically Generated Chemiluminescence	418
			Raman Spectrometry	419
	10.4		Outlook	420
	18.4		ction Schemes in Spectrochemical Sensors	421
		18.4.1	Direct Transduction	421
		18.4.2	Indirect (Competitive-Binding) Transduction	423
	10.5	18.4.3	Outlook	424
	18.5		ptic Sensor Arrays	424
	18.6		ree Transduction in Optical Sensors	425
		18.6.1	Surface Plasmon Resonance Spectrometry	425
		18.6.2	Interferometric Transduction	426
		18.6.3	The Resonant Mirror	428
		18.6.4	Resonant Waveguide Grating	429
	107	18.6.5	Outlook	429
	18.7		ction by Photonic Devices	430
		18.7.1	Optical Microresonators	430
		18.7.2	Photonic Crystals	431
		18.7.3 Reference	Outlook ces	433 433
10	Ontic	al Canac	as Applications	425
19	_		rs – Applications Sensors Resed on Acid. Rese Indicators	435
	19.1	_	Sensors Based on Acid–Base Indicators	435
		19.1.1	Optical pH Sensors Optical Sensors for Acidic and Resig Goses	435
	10.2	19.1.2	Optical Sensors for Acidic and Basic Gases	437
	19.2	19.2.1	Ion Sensors Direct Onticel Ion Sensors	438
			Direct Optical Ion Sensors	438
	10.2	19.2.2	Indirect Optical Ion Sensors	439
	19.3	Optical (Oxygen Sensors	440

				Contents	xvii
	10.4	0-4:11	Englandia Sanara		442
	19.4		Enzymatic Sensors		442
		19.4.1	Principles and Design		442
		19.4.2 19.4.3	Optical Monitoring of Reactants or Products		442 443
		19.4.3 19.4.4	Coenzyme-Based Optical Transduction Outlook		443
	19.5		Affinity Sensors		443
	19.5	19.5.1	Optical Immunosensors		444
		19.5.2	Optical Sensors Based on Biological Receptors		445
		19.5.3	Outlook		446
	19.6		DNA Sensors and Arrays		447
	-,	19.6.1	Fluorescence Transduction in Nucleic Acid Sensors		447
		19.6.2	Fiber Optic Nucleic Acid Sensors		448
		19.6.3	Fiber Optic Nucleic Acid Arrays		450
		19.6.4	Optical DNA Microarrays		451
		19.6.5	Outlook		451
		Reference	ces		452
20	Nano	material .	Applications in Optical Transduction		454
	20.1		nductor Nanocrystals (Quantum Dots)		454
		20.1.1	Quantum Dots: Structure and Properties		454
		20.1.2	Applications of Quantum Dots in Chemical Sensing		456
		20.1.3	Outlook		461
	20.2	Carbon 1	Nanotubes as Optical Labels		462
		20.2.1	Light Absorption and Emission by CNTs		462
		20.2.2	Raman Scattering by CNTs		464
		20.2.3	CNT Optical Sensors and Arrays		464
		20.2.4	Outlook		466
	20.3		anoparticle in Optical Sensing		466
		20.3.1	Optical Properties of Metal Nanoparticles		466
		20.3.2	Optical Detection Based on Metal Nanoparticles		467
	20.4	20.3.3 Porous S	Metal Nanoparticles in Optical Sensing		468 470
	20.4		scent Lanthanide Compound Nanomaterials		470
	20.5	Summar	<u> •</u>		471
	20.0	Reference			471
21		stic-Wave			473
	21.1		zoelectric Effect		473
	21.2		ckness–Shear Mode Piezoelectric Resonator		474
		21.2.1 21.2.2	The Quartz Crystal Microbalance		474
		21.2.2	The Unperturbed Resonator QCM Loading by a Rigid Overlayer. The Sauerbrey		476
		21.2.3	Equation		477
		21.2.4	The QCM in Contact with Liquids		478
		21.2.5	The QCM in Contact with a Newtonian Liquid		479
		21.2.6	The QCM in Contact with a Viscoelastic Fluid		480
		21.2.7	Modeling the Loaded TSM Resonator		480
		21.2.8	The Quartz Crystal Microbalance with Dissipation		
			Monitoring (QCM-D)		485
		21.2.9	Operation of QCM Sensors		486
			Calibration of the QCM		487
			Outlook		488
	21.3		as and Vapor Sensors		489
	21.4		ffinity Sensors		489
		21.4.1	QCM Immunosensor		490
		21.4.2	Amplification in QCM Immunosensors		491
		21.4.3	Determination of Small Molecules Using Natural Receptors		492
		21.4.4	QCM Sensors Based on Molecularly Imprinted Polymers		492
		21.4.5 21.4.6	QCM Sensors Based on Small Synthetic Receptors Outlook		494 494
		∠1. 4. U	Outlook		サブ 4

	Contents
XVIII	

	21.5	QCM Nucleic Acid Sensors	495
		21.5.1 Hybridization Sensors	495
		21.5.2 Piezoelectric Aptasensors	496
		21.5.3 Outlook	497
	21.6	Surface-Launched Acoustic-Wave Sensors	497
		21.6.1 Principles	497
		21.6.2 The Surface Acoustic Wave	498
		21.6.3 Plate-Mode SLAW Devices	498
		21.6.4 SLAW Gas and Vapor Sensors	499
		21.6.5 Liquid-Phase SLAW Sensing	501
		21.6.6 Outlook	502
	21.7	Summary	503
	21.7	References	504
22	Micro	ocantilever Sensors	507
	22.1	Principles of Microcantilever Transduction	507
		22.1.1 The Microcantilever	507
		22.1.2 Static Deformation Transduction	508
		22.1.3 Resonance-Mode Transduction	509
	22.2	Measurement of Cantilever Deflection	510
	22.2	22.2.1 Optical Measurement of Cantilever Deflection	510
		22.2.2 Electrical Measurement of Cantilever Deflection	510
	22.3	Functionalization of Microcantilevers	512
	22.4	Microcantilever Gas and Vapor Sensors	513
	22.5	Microcantilever Affinity Sensors	513
	22.3	22.5.1 General Aspects	513
		22.5.1 General Aspects 22.5.2 Microcantilever Protein Sensors	513
		22.5.2 Microcantilever Pathogen Sensors 22.5.3 Microcantilever Pathogen Sensors	514
		e	514
	22.6	,	
	22.6	Enzyme Assay by Microcantilever Sensors	515
	22.7	Microcantilever Nucleic Acid Sensors	515
	22.8	Outlook	516
		References	516
23	Chen 23.1	nical Sensors Based on Microorganisms, Living Cells and Tissues Living Material Biosensors: General Principles	518 518
	23.2	Sensing Strategies in Living-Material-Based Sensors	518
	23.2	23.2.1 Biocatalytic Sensors	518
	22.2	23.2.2 External-Stimuli-Based Biosensors	519 510
	23.3	Immobilization of Living Cells and Microorganisms Electrochemical Microbial Biosensors	519
	23.4		520
		23.4.1 Amperometric Microbial Biosensors	520
		23.4.2 Potentiometric Microbial Biosensors	522
		23.4.4 Conductometric Microbial Sensors	523
	22.5	23.4.4 Electrical Impedance Transduction	523
	23.5	Optical Whole-Cell Sensors	524
		23.5.1 Optical Respiratory Biosensors	524
		23.5.2 External-Stimuli-Based Optical Sensors	525
	22.6	23.5.3 Bioreporters	526
	23.6	Improving the Selectivity of Microorganisms Biosensors	526
	23.7	Conclusions	527
		References	528
Ind	ex		531

PowerPoint slides for teaching purposes may be found online at http://booksupport.wiley.com by entering the author, title or ISBN and selecting the correct title. This will then allow you to access the slides for download.

Preface

As suggested by Marshal McLuhan, media (in the more general meaning of the term) act as extensions of the functions of the human body [1]. In the same way that the microphone acts as an extension of the ear, chemical sensors can be considered to be extensions of the organs of chemical perception that are the nose and the tongue.

The development of chemical sensors responds to the increasing demand of chemical data that characterize various systems of interest. Such a system can be the human body itself, whose physiological state can be assessed unequivocally by physical, chemical and biochemical parameters. The quality of the ambient and natural environment is characterized by measuring the content of noxious chemical species. No less important is the automatic control of certain industrial processes that depend on specific chemical parameters.

In general, standard analytical methods (e.g., chromatography, spectrometry and electrophoresis) can provide the same kind of information as that produced by chemical sensors. The advantage of the chemical sensor approach results from the fact that they are specialized, small size, portable and inexpensive devices that are suitable for *in situ* analysis and real-time monitoring of chemical parameters. Worthy of mention is the capability of dedicated chemical sensors to identify pathogen micro-organisms and viruses via characteristic compounds that are parts of the structure of the target species.

"There's plenty of room at the bottom" said Richard Feynman in a seminal lecture in 1959, that anticipated the advent of nanotechnology. This sentence can be paraphrased as follows: "There's plenty of new opportunities at the bottom". This applies well to the development of chemical sensors. Indeed, the most important trend in this area is the application of nanomaterials, either as substitutes for classical materials and reagents or in the implementation of completely new sensing and transduction methods. Of outstanding importance is the size compatibility of nanomaterials with biopolymer molecules, which allows fabrication of bionanocomposites with promising potential for application in the design of chemical sensors. New fabrication technologies, mostly inspired by microelectronic technology and nanotechnology, are expected to lead to an increase in the degree of integration in chemical-sensor arrays, thus prompting advances in production and application of artificial nose/tongue devices. Integration of chemical sensors with microfluidic systems is another promising trend since microfluidic systems allow extremely small sample volumes to be processed and analyzed automatically.

New books on chemical sensors are published regularly, but most of them are collective volumes profiling particular kinds of chemical sensor and particular applications of chemical sensors. A comprehensive overview of chemical sensors in one single book is needed for two reasons. First, such a book would serve as a useful teaching aid for use in courses covering the subject of chemical sensors. Secondly, an indepth introduction to the field of chemical sensors for scientists and engineers new to this subject would be advantageous. There are currently on the market a series of volumes that are intended to respond to the above aims. However, as the field progresses, a new book that covers recent advances is always welcome.

The development of a chemical sensor is very often a matter of material synthesis and processing. Synthetic materials (both inorganic and organic), materials of biological origin (proteins, nucleic acids, micro-organism and living cells), as well as biomimetic synthetic materials are widely used in the development of chemical sensors. Of equal importance is the fabrication technology, because the final goal in chemical-sensor research is the production of a marketable product. That is why the first eight chapters in this text introduce the main kinds of material used in the development of the chemical sensors, as well as typical processes and technologies involved in fabrication of chemical sensors. The next fourteen chapters present various classes of chemical sensors organized according to the transduction method. The final chapter is devoted to chemical sensors based on highly organized biological material such as micro-organisms and living cells.

This book has been designed mostly as an instruction manual in chemical sensors, with a particular attention on balancing classical topics with contemporary trends. Clearly, owing to its extent, the contents of this book cannot be covered in a normal course of lectures. However, the course instructor can select topics that fit the class level and the particular interest of the attending students. Moreover, the curriculum can be personalized by encouraging each student to explore more deeply into certain advanced topics. In addition, a study of chemical sensors is an enlightening excursion through various scientific and technological areas, thereby contributing substantially to the development of the student's scientific knowledge.

xx Preface

Additionally, this book will be useful to any scientist who needs an introduction into the field of chemical-sensor science and technology. As this is an interdisciplinary field, this book will be of interest to engineers, chemists, biochemists, microbiologists and physicists endeavoring to start up research work in the field of chemical sensors.

Nothing done by humans can be perfect, but, at least, it could be perfectible. Hence, any critical comment or suggestion is welcome.

1. McLuhan, M. (2003) Understanding Media: The Extensions of Man, Gingko Press, Corte Madera, Calif.

Acknowledgments

First, I would like to thank Professor Arnold Fogg, who kindly agreed to edit linguistically the initial draft text. Responsibility for the final text, however, lies with the author and the publishing editors. Also, I would like to acknowledge the assistance generously given by several colleagues at the Norwegian University of Science and Technology of Trondheim, Norway, who took the time to read certain chapters of the book and who made valuable comments and suggestions. These colleagues are: Professor Torbjørn Ljones, Professor David G. Nicholson, and Professor Kalbe Razi Naqvi. I also thank Dr. Alexandru Oprea (University of Tübingen, Germany) and Dr. Marian Florescu (University of Surrey, UK) for similar assistance.

Finally, I am grateful, in writing this book, to all those scientists who have contributed to the advance of chemical sensor science and technology. Many of these scientists are cited in the book, but, owing to space limitations, much valuable work in this area could not be included or cited.

List of Symbols

Roman Symbols

Symbol	Meaning	Section Reference
\overline{A}	(a) surface area	4.2.2; 13.3.1
	(b) absorbance	18.3.1
	(c) amplitude of an electromagnetic wave	18.6.2
AC	subscript pertaining to alternating current	
a	(a) thermodynamic activity	10.2.1
	(b) sensor sensitivity	1.5
	(c) molar absorptivity	18.3.1
	(d) the exponent in the expression of CPE impedance	17.2.1
b	thickness of a light-absorbing layer	18.3.1
bipy	2,2'-bipyridine	
C	capacitance	11.1.3
$C_{ m dl}$	capacitance of the electric double layer	17.2.2
$C_{ m f}$	proportionality constant in the Sauerbrey equation	21.2.3
C_0	static capacitance in the equivalent circuit of a TSM oscillator	21.2.2
C_1	capacitance at the motional branch of the equivalent circuit of a TSM piezoelectric	21.2.2
•	oscillator	
c	(a) analyte concentration	1.5
	(b) concentration of the enzyme–substrate complex	3.6.1
	(c) concentration of the antibody–antigen complex	6.4
	(d) light velocity in vacuum	18.1
c^*	concentration of an excited-state species	18.3.6
c_{A}	concentration of the species A	10.4.2
c_{AR}	concentration of the analyte-receptor combination	18.4.1
c_{B}	concentration of the species B	10.4.2
$c_{\mathrm{O,b}}$	concentration of the oxidized form of a redox couple in the bulk solution	11.3.1
$c_{\mathrm{O,i}}$	concentration of the oxidized form of a redox couple at the electrode/electrolyte interface	11.3.1
c_{Q}	concentration of a fluorescence quencher	18.3.7
c_{R}	receptor concentration	18.4.1
$c_{R,t}$	total concentration of the receptor	18.4.1
$c_{\mathrm{R,b}}$	concentration of the reduced form of a redox couple in the bulk solution	11.3.1
$c_{\mathrm{R,i}}$	concentration of the reduced form of a redox couple at the electrode/electrolyte interface	11.3.1
$D^{'}$	diffusion coefficient	4.2.2; 13.3.1
Da	Damköhler number for internal diffusion in an immobilized enzyme layer	4.3.1
Da_{M}	mediator Damköhler number	15.2.2
Da_S	substrate Damköhler number	15.2.2
DC	subscript pertaining to direct current	
$D_{ m M}$	diffusion coefficient of a redox mediator	15.2.1
$D_{ m P,e}$	diffusion coefficient of the product within an immobilized enzyme layer	4.3.1
$D_{ m P,m}$	diffusion coefficient of the product in the external membrane of an enzymatic sensor	4.2.2
$D_{ m S,e}$	diffusion coefficient of the substrate within an immobilized enzyme layer	4.3.1
$D_{ m S,m}$	diffusion coefficient of the substrate in the external membrane of an enzymatic sensor	4.2.2
E	enzyme	3.6.1
E	(a) energy	11.1.2
	(b) electrode potential	10.2.2; 13.3.1
	(b) Young modulus	22.1.2

ΔE	difference between the actual electrode potential and the formal electrode potential	13.6.1
E_{cell}	cell voltage	10.2.2
$E_{ m AC}$	sine wave alternating potential	13.7.7
$E_{ m F}$	Fermi energy	11.1.2
EMF	electromotive force	10.2.2
$E_{ m ph}$	photon energy	18.1
$E_{ m pzc}$	potential of zero-charge	13.5.2
E _O	oxidase enzyme in the oxidized form	14.2.1
$E_{ m r}$	reference electrode potential	10.4.1
E_R	oxidase enzyme in the reduced form	14.2.1
ES	enzyme–substrate complex	3.6.1
	half-wave potential	13.3.2
$E_{1/2} \\ E^0$	standard electrode potential	10.2.2
$E_{ m f}^0$	formal electrode potential	10.2.2; 13.3.1
E_0	prelogarithm constant in the response equation of a potentiometric ion sensor	10.4.1
e e	(a) enzyme concentration	3.6.1
	(b) elementary charge	11.1.3
	(c) the base of natural logarithm	17.1
0		
e_O	concentration of the oxidized form of an oxidase enzyme in an immobilized	15.1.1
	enzyme layer	15 1 1
e_{R}	concentration of the reduced form of an oxidase enzyme in an immobilized	15.1.1
	enzyme layer	2.6.1
et	total enzyme concentration	3.6.1
e _y	measurement error of the sensor response	1.5
e ⁻	electron	
F	(a) Faraday constant	
_	(b) power of a fluorescence light beam	18.3.5
F_0	fluorescence power in the absence of a quencher	18.3.7
f	(a) <i>F/RT</i>	13.6.1
	(b) frequency	13.7.7; 21.2.2
e e	enzyme loading factor	4.3.1
$\Delta f_{ m L}$	change in the resonance frequency due to liquid loading on a TSM piezoelectric resonator	21.2.5
$\Delta f_{\rm m}$	change in the resonance frequency due to mass loading	21.2.3
f _O	(a) $m_{\rm O}/m_t$	15.1.1
	(b) $m_{0,0}/m_t$	15.2.3
ř	complex frequency of a TSM resonator	21.2.7
f_0	resonant frequency of an oscillator	21.2.1; 22.1.3
$\overset{\circ}{G}$	Gibbs free energy	10.2.1
ΔG	Gibbs free energy change in a chemical process	10.2.2
$\Delta G^{^*}$	activation energy of a chemical reaction	13.6.1
ΔG^0	standard Gibbs free energy change in a chemical process	10.2.2
GOD _{ox}	glucose oxidase, oxidized form	3.5.1
GOD_{red}	glucose oxidase, reduced form	3.5.1
ΔH	heat of reaction	Chapter 9
ΔH_r^0	standard enthalpy of reaction	Chapter 9
'i	(a) Plank's constant	18.1
ı	(b) microcantilever thickness	22.1.1
I	(a) ionic strength	10.2.1
ľ		
ī	(b) electric current	17.1
AC	sine-wave alternating current	17.1
D	drain current of a metal-insulator-semiconductor field effect transistor	11.1.4
DC	DC current	17.1
m	AC current amplitude	17.1
	electrolytic current	13.3.1
$i_{ m a}$	anodic current	13.3.1
a,d	limiting, diffusion-controlled anodic current	13.3.2
$i_{ m C}$	capacitive current	13.5.3
$i_{ m c}$	cathodic current	13.3.1
$i_{ m c,d}$	limiting, diffusion-controlled cathodic current	13.3.1

		List of Symbols	xxv
$i_{ m f}$	Faradaic current	13.7.7	
i_1	limiting current at an mediator-based amperometric enzyme sensor	15.1.3	
i^*	the particular value of the limiting current recorded at $\alpha \gg 1$ and for $S = 1$	15.1.3	
i_0	exchange current	13.6.4	
J	diffusion flux		
$J_{ m d}$	limiting flux under first order kinetics and external diffusion control	15.1.2	
J_1	flux limiting value	15.1.2	
$J_{1,0}$	flux limiting value under zero-order kinetics	15.1.2	
$J_{1,1}$	flux limiting value under first-order kinetics	15.1.2	
$J_{ m M}$	mediator flux	15.2.1	
$J_{ m P}$	product flux in an enzymatic sensor	4.2.1	
$J_{ m S}$	substrate flux in an enzymatic sensor	4.2.1	
$J_{ m P,m}$	product flux in the membrane of an enzymatic sensor	4.4.1	
$J_{ m S,m}$	substrate flux in the membrane of an enzymatic sensor	4.4.1	
J^{st}	the particular value of J_d for $s = K_M$	15.1.3	
j	(a) current density	13.6.2	
	(b) imaginary unit $(\sqrt{-1})$	17.1; 21.2.	.2
j_{a}	anodic current density	13.6.2	
$j_{ m a,d}$	limiting (diffusional) anodic current density	13.6.3	
$j_{ m c}$	cathodic current density	13.6.2	
$j_{ m c,d}$	limiting (diffusional) cathodic current density	13.6.3	
j_0	exchange-current density	13.6.4	
$K_{\rm a}$	affinity constant	6.2.2	
K_{d}	dissociation constant	18.4.1	
K_{e}	equilibrium constant for the analyte–receptor interaction	18.4.1	
K_{ex}	ion-exchange constant for a glass membrane	10.6.2	
$K_{ m exch}$	ion-exchange constant for an ion-exchanger liquid membrane	10.8.3	
$K_{ m M}$	Michaelis–Menten constant	3.6.1	
K_{p}	partition coefficient	10.3.2	
$K_{p,M}$	partition coefficient of the ion M	10.9.4	
$K_{\rm s}$	solubility constant of a sparingly soluble salt	10.5.2	
k	spring constant of the microcantilever material	22.1.3	
k_{a}	surface normalized pseudo-first-order rate constant for an enzymatic sensor	4.2.4	
$k_{ m A,B}^{ m pot}$	potentiometric selectivity coefficient relative to ions A and B	10.4.2	
$k_{ m B}$	Boltzmann constant	11.1.2	
k_{cat}	turnover number of an enzyme	3.6.3	
k_{d}	decay rate constant of an excited state species	18.3.6	
$k_{ m e}$	(a) pseudo-first-order reaction rate for an enzyme-catalyzed reaction	6.2.2	
	(b) excitation rate constant	18.3.7	
$k_{ m H}$	proportionality coefficient in the Henry isotherm	11.3.5	
$k_{ m m}$	mass-transfer coefficient	13.3.1	
$k_{ m M}^{\prime} \ k_{ m M,N}^{ m pot}$	reaction rate for enzyme regeneration by reaction with a redox mediator	15.1.1	
$k_{ m M,N}^{ m pot}$	potentiometric selectivity coefficient relative to ions M and N	10.6.2	
$k_{ m m,P}$	mass-transfer coefficient of the product	4.2.2	
$k_{ m m,S}$	mass-transfer coefficient of the substrate	4.2.2	
$k_{ m P,m}$	mass-transfer coefficients of the product in the membrane of an enzymatic sensor	4.4.1	
k_{s}	standard rate constant of an electrochemical reaction	13.6.1	
$k_{ m S,m}$	mass-transfer coefficients of the substrate in the membrane of an enzymatic sensor	4.4.1; 15.1	.1
$k_{ m SV}$	Stern–Volmer constant	18.3.7	
k_1	forward rate constant of the first step in the Michaelis–Menten mechanism	3.6.1	
k_{-1}	backward rate constant of the first step in the Michaelis-Menten mechanism	3.6.1	
k_2	rate constant for the second step in the Michaelis–Menten mechanism	3.6.1	
L	(a) luminophores species	18.3.7	
	(b) analyte-analog	18.4.2	
L_{\perp}	electrical conductance	17.8.1	
L^*	excited luminophores species	18.3.7	
L_1	inductance at the motional branch of the equivalent circuit of a TSM piezoelectric oscillator		
l	(a) distance between the plates of a capacitor	13.5.3	
	(b) distance between the electrodes of an idealized conductometric cell	17.8.1	
	(c) microcantilever length	22 1 1	

22.1.1

(c) microcantilever length

xxvi List of Symbols

l_{e}	thickness of an immobilized enzyme layer	4.2.1; 15.1.2
$l_{\rm m}$	thickness of the external membrane in an enzymatic sensor	4.2.1
M_{O}	oxidized form of a redox mediator	14.2.1
M_R	reduced form of a redox mediator	14.2.1
m	(a) activity of an unspecified M ⁺ ion	10.5.2
	(b) mass	22.1.3
Δm	mass variation	21.2.3; 22.1.3
m^*	effective mass of a vibrating microcantilever	22.1.3
m_{aq}	activity of an unspecified M ⁺ ion in solution	10.3.2
$m_{ m m}$	activity of an unspecified M ⁺ ion in an ion-selective membrane	10.3.2
m_{O}	concentration of the oxidized form of a redox mediator	15.1.1
$m_{\mathrm{O},0}$	concentration of the oxidized mediator at the electrode surface	15.2.3
m_{Q}	mass of the vibrating zone of a TSM piezoelectric oscillator	21.2.3
$m_{\rm R}$	concentration of the reduced form of a redox mediator	15.1.1
$m_{ m R,0}$	concentration of the reduced mediator form at the electrode surface	15.2.3
$m_{\rm t}$	$m_{ m O} + m_{ m R}$	15.1.1
m_1	activity of an unspecified M ⁺ ion within the left-hand solution of an ion-selective	10.5.2
	membrane cell	10.5.2
m_2	activity of an unspecified M ⁺ ion within right-hand solution of an ion-selective	10.5.2
3.7	membrane cell	12.2.1
$N_{\rm O}$	number of moles of oxidized form of a redox couple	13.3.1
$N_{ m R}$	number of moles of reduced form of a redox couple	13.3.1
n	(a) number of moles	10.2.1
	(b) number of electrons in an electrochemical reaction	10.2.2; 13.3.1
	(c) activity of an unspecified N ⁺ ion	10.5.2
	(d) refractive index	18.2.1 21.2.1
**	(e) overtone order	18.2.1
n_0	refractive index of the medium from which a light beam comes to an optical fiber	18.2.1
n_1	refractive index of the waveguide core	18.2.1
n_2	refractive index of the waveguide cladding effective refractive index	18.6.2
$n_{\rm eff}$ Ox	oxidized form of a redox couple	10.2.2; 13.3.1
	subscript denoting quantities pertaining to the oxidized form of a redox couple	10.2.2; 13.3.1
o P	reaction product	3.6.1
$\stackrel{1}{P}$	power of the transmitted light beam	18.3.1
$P_{\rm e}$	dimensionless concentration of the reaction product in an immobilized enzyme layer	4.2.5
ı e	$(p_{\rm e}/K_{\rm M})$	7.2.3
P_0	power of the reference light beam	18.3.1
p	(a) concentration of a reaction product	4.2.1
Ρ	(b) partial pressure	10.2.2
n	concentration of the reaction product within an immobilized enzyme layer	4.2.1
$p_{ m e} \ p_{ m e,0}$	concentration of the product at the transducer/immobilized enzyme layer interface	4.3.1
	partial pressure of carbon dioxide	10.17.4
p_{CO_2} pH	the negative logarithm (base 10) of hydrogen ion activity	10.17.1
$p_{ m H_2}$	partial pressure of hydrogen	11.3.1
p_{O_2}	partial pressure of oxygen	10.17.2
$p_{\mathrm{m,i}}$	product concentration at the membrane-enzyme layer interface	4.4.1
Q	(a) electrical charge	
٤	(b) quality factor of a resonator	21.2.7; 22.1.3
QY	fluorescence quantum yield	18.3.4
R	recognition receptor	
R	(a) ideal gas constant	
	(b) electrical resistance	9.1.1; 17.2.2
	(c) reflected light power	18.3.2
R	subscript pertaining to the reduced form of a redox couple	10.2.2; 13.3.1
$R_{\rm Air}$	electrical resistance of a resistive gas sensor in contact with pure air	12.2.2
Red	reduced form of a redox couple	10.2.2; 13.3.1
$R_{ m et}$	electron-transfer resistance	13.6.5; 17.2.3
R_{Gas}	electrical resistance of a resistive gas sensor in contact with analyte-containing gas	12.2.2
$R_{\rm ref}$	resistance of a resistive gas sensor in contact with a reference gas	12.2.2

List of Symbols	xxvii
List of Syllibols	AAVII

RH clustive numbulity 17.9.1 Rs electrical resistance of a resistive gas sensor 12.2.2 Rs resistance at the motional branch of the equivalent circuit of a TSM piezoelectric oscillator 13.2.17.2.1; 17.2.1; 17.2.1; 17.2.1; 17.2.1; 17.2.1; 17.2.1; 17.2.1 r (a) radius (b) receptor concentration 6.4 r (a) training turnous runniher of the substrate conversion relative to that of the enzyme 15.1.2 rowsidation 15.1.3 15.1.3 s enzyme substrate 3.6.1 S enzyme substrate 3.6.1 S dimensionless concentration of the substrate ($N_{\rm M}$) 15.1.3 s dimensionless concentration of the substrate within an enzymatic layer under external diffusion control ($N_{\rm c}/N_{\rm M}$) 3.6.1 s substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 s substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $N_{\rm m}$ substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $N_{\rm m}$ substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1	DII	and at the set to	17.0.1
R_s resistance of an electrolyte solution 13.2;17.2;1; 17.2;3 R_1 resistance at the motional branch of the equivalent circuit of a TSM piezoelectric oscillator 21.2.2 r (a) redius r r (a) redius humidity 17.9.1 r_1 the turnover number of the substrate conversion relative to that of the enzyme resolution 6.4 r_0 total receptor concentration 6.4 S diffusion control (S_r/K_M) 3.6.1 S dimensionless concentration of the substrate within an enzymatic layer under external diffusion control (S_r/K_M) 3.6.1 S_s substrate concentration S_r/K_M 3.5.1 S_s substrate concentration in an enzymatic layer 4.2.1; 15.1.1 $S_{s,0}$ substrate concentration at the membrane/enzyme layer interface 4.3.1 $S_{s,0}$ substrate concentration at the membrane/enzyme layer interface 4.2.1; 15.1.1 $S_{s,0}$ substrate concentration at the membrane/enzyme layer interface 4.2.1; 15.1.1 $S_{s,0}$ substrate concentration at the membrane/enzyme layer interface 4.2.1; 15.1.1 T_s chin the thickness of a TSM piezoelectric	RH	relative humidity	17.9.1
R_1 resistance at the motional branch of the equivalent circuit of a TSM piezoelectric oscillator 17.2.3 r (a) radius (b) receptor concentration 6.4 r_b relative humidity 17.9.1 r the turnover number of the substrate conversion relative to that of the enzyme roxidation 15.1.2 r_0 total receptor concentration 6.4 S enzyme substrate 3.6.1 S dimensionless concentration of the substrate (s/K_M) 15.1.3 S dimensionless concentration of the substrate within an enzymatic layer under external difflusion control (s_x/K_M) 42.5 S substrate concentration and the transducer/firmobilized enzyme layer interface 4.3.1 S_0 substrate concentration at the transducer/firmobilized enzyme layer interface 4.3.1 S_0 substrate concentration at the membrane/enzyme layer interface 4.3.1 S_0 substrate concentration at the transducer/firmobilized enzyme layer interface 4.3.1 S_0 substrate concentration at the membrane/enzyme layer interface 4.3.1 S_0 substrate concentration at the membrane/enzyme layer interface 4.3.1 S_0		· · · · · · · · · · · · · · · · · · ·	
R_1 resistance at the motional branch of the equivalent circuit of a TSM piezoelectric oscillator 21.2 2 r (a) radius 6 r_h relative humidity 17.9.1 r_h the turnover number of the substrate conversion relative to that of the enzyme 17.9.1 r_h total receptor concentration 6.4 S enzyme substrate 3.6.1 S dimensionless concentration of the substrate (s/K_M) 15.1.3 s_h substrate concentration of the substrate within an enzymatic layer under extern 4.2.5 s_h substrate concentration in an enzymatic layer 4.2.1 s_h substrate concentration and the membrane/enzyme layer interface 4.3.1 s_h substrate concentration and the membrane/enzyme layer interface 4.4.1 s_h substrate concentration at the membrane/enzyme layer interface 4.3.1 s_h substrate concentration at the membrane/enzyme layer interface 4.2.1; 15.1.1 s_h substrate concentration at the membrane/enzyme layer interface 4.2.1; 15.1.1 s_h substrate concentration at the membrane/enzyme layer interface 4.2.1; 15.1.1	$\kappa_{\rm S}$	resistance of an electroryte solution	
r costillator r_h calative humidity17.3 r_h relative humidity15.1.2 r_h relative humidity15.1.2 r_h relative humidity15.1.2 r_h the turnover number of the substrate conversion relative to that of the enzyme15.1.2 r_h to a cecptor concentration6.4 S cuxyme substrate3.6.1 S dimensionless concentration of the substrate (s/K_M) 15.1.3 S_c dimensionless concentration of the substrate within an enzymatic layer under external diffusion control (s_c/K_M) 4.2.5 s_c substrate concentration at the ransducer/immobilized enzyme layer interface4.3.1 s_n substrate concentration at the membrane/enzyme layer interface4.3.1 s_m substrate concentration at the membrane/enzyme layer interface4.3.1 t_m substrate concentration at the membrane/enzyme layer interface4.3.1 t_m substrate concentration at the membrane/enzyme layer interface4.3.1 t_m substrate concentration at the membrane/enzyme layer interface4.2.2 t_m substrate concentration at the membrane/enzyme layer interface4.2.2 t_m substrate concentration at the membrane/enzyme layer interface4.2.2 t_m subs	R_1	resistance at the motional branch of the equivalent circuit of a TSM piezoelectric	
r $r_{\rm h}$ (a) radius (relative humidity relative humidity resolution for relative humidity resolution resolution resolution resolution(5.1.2) (7.9.1) (7.9.1) (7.9.1) (7.9.1) (7.9.1) (8.9.1) (9.9.1	Νı		21.2.2
$I_{T_{I}}$ (b) receptor concentration 6.4 $I_{T_{I}}$ relative humidity 17.9.1 $I_{T_{I}}$ rethir wover number of the substrate conversion relative to that of the enzyme 17.1.2 $I_{T_{I}}$ the turnover number of the substrate conversion relative to that of the enzyme 4.2.1 $I_{T_{I}}$ the turnover number of the substrate concentration 3.6.1 $I_{T_{I}}$ diffusion control ($I_{T_{I}}/I_{N_{I}}$) 3.6.1 $I_{T_{I}}$ substrate concentration of the substrate within an enzymatic layer under external diffusion control ($I_{T_{I}}/I_{N_{I}}$) 3.6.1 $I_{T_{I}}$ substrate concentration at the transducer/immobilized enzyme layer interface 4.2.1; 15.1.1 $I_{T_{I}}$ substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $I_{T_{I}}$ the substrate concentration at the membrane/enzyme layer interface 4.3.1 $I_{T_{I}}$ the substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $I_{T_{I}}$ the substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $I_{T_{I}}$ the substrate concentration at the membrane/enzyme layer interface 4.3.1 <t< td=""><td>r</td><td></td><td></td></t<>	r		
$r_{\rm P}$ relative humidity 17.9.1 $r_{\rm P}$ teturnover number of the substrate conversion relative to that of the enzyme 15.1.2 $r_{\rm P}$ total receptor concentration 6.4 S enzyme substrate 3.6.1 S enzyme substrate 3.6.1 S _c dimensionless concentration of the substrate within an enzymatic layer under external diffusion control ($s_c/K_{\rm M}$) 3.6.1 S _c substrate concentration in an enzymatic layer 4.2.1; 15.1.1 S _c substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 S _{m,k} substrate concentration at the membrane/enzyme layer interface 4.3.1 T _d day absolute temperature 4.1.1 T _d dew point 17.9.1 T _S substrate concentration at the membrane/enzyme layer interface 4.4.1 T _d time 17.9.1 T _d time 17.9.1 T _d time 17.9.1 T _d time 17.9.1 T _d time 17.1 T _d time	•		6.4
$r_{\rm T}$ the turnover number of the substrate conversion relative to that of the enzyme reoxidation 15.1.2 $r_{\rm O}$ total receptor concentration 6.4 S enzyme substrate 3.6.1 dimensionless concentration of the substrate within an enzymatic layer under external diffusion control (s_c/K_M) 4.2.5 s_c substrate concentration in an enzymatic layer 4.2.1; 15.1.1 s_c substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $r_{\rm O}$ substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $r_{\rm O}$ substrate concentration at the membrane/enzyme layer interface 4.3.1 $r_{\rm O}$ substrate concentration at the membrane/enzyme layer interface 4.3.1 $r_{\rm O}$ substrate concentration at the membrane/enzyme layer interface 4.3.1 $r_{\rm O}$ day solute temperature 4.4.1 $r_{\rm O}$ thin an interface 4.3.1 $r_{\rm O}$ thi	$r_{\rm b}$		
reoxidation S enzyme substrate S dimensionless concentration of the substrate ($s/K_{\rm M}$) S dimensionless concentration of the substrate within an enzymatic layer under external diffusion control ($s_c/K_{\rm M}$) S substrate concentration of the substrate within an enzymatic layer under external diffusion control ($s_c/K_{\rm M}$) S substrate concentration in an enzymatic layer S substrate concentration in an enzymatic layer layer interface S substrate concentration at the transducer/immobilized enzyme layer interface 4.2.1; 15.1.1 S s substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 T (a) absolute temperature (b) transmittane T (a) absolute temperature (b) transmittane T (time			
S enzyme substrate 3.6.1 S dimensionless concentration of the substrate (s/ $K_{\rm M}$) 15.1,3 S diffusion control (s/ $K_{\rm M}$) 3.6.1 S substrate concentration in an enzymatic layer 4.2.1; 15.1.1 s_e substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $s_{m,i}$ substrate concentration at the membrane/enzyme layer interface 4.4.1 T (a) absolute temperature (b) transmittance 18.3.1 T_{o} (b) transmittance 18.3.1 17.9.1 T_{o} (b) transmittance 21.2.4 17.9.1 T_{o} (b) transmittance 18.3.1 17.9.1 T_{o} (b) transmittance 21.2.4 17.9.1 T_{o} (b) transmittance 18.3.1 17.9.1 T_{o} (b) transmittance 18.3.1 17.9.1 T_{o} (b) transmittance 18.3.1 17.9.1 T_{o} (b) can pair in the thickness of a TSM piezoelectric oscillator 21.2.4 T_{o} (b) can pair in the thickness of a TS	•		
S enzyme substrate 3.6.1 S dimensionless concentration of the substrate (s/K_M) 15.1.3 Sc dimensionless concentration of the substrate within an enzymatic layer under external diffusion control (s_x/K_x) 3.6.1 S substrate concentration in an enzymatic layer 4.2.1; 15.1.1 $s_{c,0}$ substrate concentration at the transducer/immobilized enzyme layer interface 4.3.1 $s_{m,1}$ substrate concentration at the membrane/enzyme layer interface 4.4.1 T (a) absolute temperature (b) transmittance 1.7.9.1 t time 1.7.1 t time 1.7.9.1 t time 2.1.2.4 t time 2.1.2.4 t time 2.1.2.3 t time 2.1.2.1 t time 2.1.2.1 t time 2.1.2.1	r_0	total receptor concentration	6.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3.6.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S		15.1.3
s_c s_c s_c substrate concentration in an enzymatic layer $s_{c,0}$ substrate concentration at the transducer/immobilized enzyme layer interface to substrate concentration at the membrane/enzyme layer interface t 	$S_{ m e}$		4.2.5
$s_{e,0}$ substrate concentration in an enzymatic layer4.2.1; 15.1.1 $s_{e,0}$ substrate concentration at the transducer/immobilized enzyme layer interface4.3.1 T (a) absolute temperature4.4.1 T (b) transmittance17.9.1 T_{sy} shear stress21.2.4 t time17.9.1 Δt change in the thickness of a TSM piezoelectric oscillator21.2.3 t_0 thickness of a TSM piezoelectric oscillator21.2.1 t_r response time43.2 u ion mobility10.3.1 V (a) voltage7.1 V_D drain voltage for a metal-insulator-semiconductor field effect transistor11.1.4 V_D 20 cyltage for a metal-insulator-semiconductor field effect transistor11.1.4 V_{PD} 20 gate voltage for a metal-insulator-semiconductor field effect transistor11.1.4 V_{TB} flat-band voltage17.1 V_T threshold voltage of an etal-insulator-semiconductor device11.3 V_T threshold voltage of an etal-insulator-semiconductor device11.3 V_T threshold voltage of an etal-insulator-semiconductor device11.2.1 V_T threshold voltage of an etal-insulator-semiconductor device11.3 V_T threshold voltage of an electrolyte-insulator-semiconductor device11.3 V_T threshold voltage of an electrochemical reaction13.3.1 V_C (a) velocity13.5.1 V_T traction rate of an electrochemical reaction13.6.1 <tr< td=""><td></td><td>diffusion control (s_e/K_M)</td><td></td></tr<>		diffusion control (s_e/K_M)	
$s_{m,i}$ substrate concentration at the transducer/immobilized enzyme layer interface4.3.1 $s_{m,i}$ substrate concentration at the membrane/enzyme layer interface4.4.1 T (a) absolute temperature18.3.1 T_{d} dew point17.9.1 T_{xy} shear stress21.2.4 t time21.2.3 Δt change in the thickness of a TSM piezoelectric oscillator21.2.1 t_0 on mobility43.2 t_0 on mobility43.2 t_0 on woltage7.1 t_0 on woltage7.1 t_0 on woltage7.1 t_0 pate waternating voltage17.1 t_0 gate voltage for a metal-insulator-semiconductor field effect transistor11.1.4 t_0 pate woltage of a metal-insulator-semiconductor device11.1.3 t_0 amplitude of sine-wave alternating voltage17.1 t_0 threshold voltage of a metal-insulator-semiconductor device11.1.3 t_0 threshold voltage of a metal-insulator-semiconductor device11.2.1 t_0 (a) velocity21.2.4<	S	substrate concentration	3.6.1
$s_{m.i}$ substrate concentration at the membrane/enzyme layer interface4.4.1 T (a) absolute temperature18.3.1 t_0 dew point17.9.1 T_{xy} shear stress21.2.4 t time1 Δt change in the thickness of a TSM piezoelectric oscillator21.2.3 t_0 thickness of a TSM piezoelectric oscillator21.2.1 t_t response time43.2 u ion mobility10.3.1 V (a) voltage7.1 v_{DC} sine wave alternating voltage7.1 v_{DC} cylorage of ray an etal-insulator-semiconductor field effect transistor11.1.4 V_{DC} DC voltage17.1 V_{DC} gate voltage for a metal-insulator-semiconductor field effect transistor11.1.4 V_{TB} flat-band voltage17.1 V_{TB} flat-band voltage of a metal-insulator-semiconductor device11.1.3 V_{T} threshold voltage of a metal-insulator-semiconductor device11.1.3 V_{T} threshold voltage of a netal-insulator-semiconductor device11.1.3 V_{T} threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 v (a) velocity21.2.4 v (b) potential scan rate13.7.4 v (c) reaction rate36.1 v reaction rate within an immobilized enzyme layer42.2 v reaction rate of an electrochemical reaction13.6.1 v reaction rate for the formation of an enzyme-substrate complex </td <td>$s_{\rm e}$</td> <td>substrate concentration in an enzymatic layer</td> <td>4.2.1; 15.1.1</td>	$s_{\rm e}$	substrate concentration in an enzymatic layer	4.2.1; 15.1.1
To all absolute temperature (b) transmittance (b) transmittance (b) transmittance (c) transmittance (d) transmittance ($s_{\rm e,0}$	substrate concentration at the transducer/immobilized enzyme layer interface	4.3.1
$ \begin{array}{c} (b) \ transmittance \\ T_d \\ T_d \\ dew point \\ T_{7y} \\ shear stress \\ 21.2.4 \\ t \\ time \\ T_{7y} \\ change in the thickness of a TSM piezoelectric oscillator \\ T_{7y} \\ change in the thickness of a TSM piezoelectric oscillator \\ T_{7} \\ change in the thickness of a TSM piezoelectric oscillator \\ T_{7} \\ change in the thickness of a TSM piezoelectric oscillator \\ T_{7} \\ change in the thickness of a TSM piezoelectric oscillator \\ T_{1} \\ T_{1} \\ change in the thickness of a TSM piezoelectric oscillator \\ T_{1} \\ T_{2} \\ thickness of a TSM piezoelectric oscillator \\ T_{1} \\ T_{2} \\ thickness of a TSM piezoelectric oscillator \\ T_{2} \\ T_{2} \\ thickness of a TSM piezoelectric oscillator \\ T_{2} \\ T_{3} \\ T_{4} \\ T_{2} \\ T_{4} \\ T_{5} \\ $	$s_{m,i}$	substrate concentration at the membrane/enzyme layer interface	4.4.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T	(a) absolute temperature	
T_{xy} shear stress 21.24 t time 21 Δt change in the thickness of a TSM piezoelectric oscillator 21.2.3 t_Q thickness of a TSM piezoelectric oscillator 21.2.1 t_I response time 4.3.2 u ion mobility 10.3.1 V (a) voltage 7.1 V_{AC} sine wave alternating voltage 7.1 V_{D} drain voltage for a metal-insulator-semiconductor field effect transistor 11.1.4 V_{DC} gate voltage for a metal-insulator-semiconductor field effect transistor 11.1.4 V_{DC} gate voltage for a metal-insulator-semiconductor field effect transistor 11.1.4 V_{TC} flat-band voltage 17.1 V_{TB} flat-band voltage 11.1.3 V_{TB} flat-band voltage 11.1.3 V_{TB} flat-band voltage 11.1.3 V_{TB} threshold voltage of a metal-insulator-semiconductor device 11.1.3 V_{T} threshold voltage of an electrolyte-insulator-semiconductor device 11.2.1 V_{T} threshold voltage of an electrolyte-insulator-semiconductor de			
time Δt change in the thickness of a TSM piezoelectric oscillator t_{t} change in the thickness of a TSM piezoelectric oscillator t_{t} response time t_{t} and t_{t} and t_{t} are sponse time t_{t} and t_{t} and t_{t} are sponse time t_{t} and t_{t} and t_{t} are sponse time t_{t} and t_{t} and t_{t} are sponse time t_{t} and t_{t} are sponse time t_{t} and t_{t} are sponse time t_{t} and t_{t} and t_{t} are sponse time t_{t} are sponse time t_{t} and t_{t} are sponse time $t_{$		•	
Δt change in the thickness of a TSM piezoelectric oscillator21.2.1 $t_{\rm f}$ response time4.3.2 u ion mobility10.3.1 V (a) voltage(b) volume of an enzyme layer4.2.2 $V_{\rm AC}$ sine wave alternating voltage7.1 $V_{\rm DC}$ DC voltage for a metal-insulator-semiconductor field effect transistor11.1.4 $V_{\rm DC}$ DC voltage17.1 $V_{\rm HB}$ flat-band voltage for a metal-insulator-semiconductor field effect transistor11.1.4 $V_{\rm FB}$ flat-band voltage17.1 $V_{\rm T}$ threshold voltage of a metal-insulator-semiconductor device11.1.3 $V_{\rm T}$ threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 v (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm c}$ reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm c}$ velocity of an anodic reaction13.6.1 $v_{\rm c,c}$ velocity of an anodic reaction13.6.1 $v_{\rm m}$ reaction rate of an electrochemical reaction13.6.1 $v_{\rm m}$ reaction rate of an enzyme-catalyzed reaction3.6.1 $v_{\rm m}$ reaction rate of the formation of an enzyme-substrate complex15.1.1 $v_{\rm m}$ propagation velocity of a transverse wave21.2.3 $v_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm K}$ velocity along the x-axis21.2.7 <t< td=""><td>T_{xy}</td><td></td><td>21.2.4</td></t<>	T_{xy}		21.2.4
t_Q thickness of a TSM piezoelectric oscillator21.2.1 t_f response time4.3.2 u ion mobility10.3.1 V (a) voltage V V_{AC} sine wave alternating voltage7.1 V_{DC} sine wave alternating voltage7.1 V_{DC} DC voltage17.1 V_{DC} DC voltage for a metal-insulator-semiconductor field effect transistor11.1.4 V_{FB} flat-band voltage17.1 V_{TB} amplitude of sine-wave alternating voltage17.1 V_{T} threshold voltage of a metal-insulator-semiconductor device11.1.3 V_{T} threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 v (a) velocity21.2.4(b) potential scan rate3.6.1 v' reaction rate within an immobilized enzyme layer4.2.2 v_a surface-normalized reaction rate in an enzymatic sensor4.2.2 v_c reaction rate of an electrochemical reaction13.6.1 $v_{C,c}$ velocity of a annodic reaction13.6.1 v_{M} reaction rate of enzyme regeneration15.1.1 v_{M} maximum reaction rate of an enzyme-substrate complex15.1.1 v_{W} propagation velocity of a transverse wave21.2.3 v_{V} volume reaction rate within an immobilized enzyme layer4.2.2 v_{K} volume reaction rate within an immobilized enzyme layer4.2.2 v_{K} reaction rate of the substrate conversion in an enzyme-substrate complex15.1			
$ \begin{array}{c} I_{\rm f} \\ u \\ ion mobility \\ V \\ (a) voltage \\ (b) volume of an enzyme layer \\ V_{\rm DC} \\ V_{\rm DC} \\ voltage \\ volt$			
$\begin{array}{c} u & \text{ion mobility} \\ V & (a) \text{ voltage} \\ (b) \text{ volume of an enzyme layer} \\ V_{AC} & \text{sine wave alternating voltage} \\ V_{D} & \text{drain voltage for a metal-insulator-semiconductor field effect transistor} \\ V_{D} & \text{drain voltage for a metal-insulator-semiconductor field effect transistor} \\ V_{D} & \text{gate voltage for a metal-insulator-semiconductor field effect transistor} \\ V_{FB} & \text{flat-band voltage} \\ V_{m} & \text{amplitude of sine-wave alternating voltage} \\ V_{T} & \text{threshold voltage of a metal-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ V_{T} & threshold voltage of an electrolyte-insulato$			
V (a) voltage (b) volume of an enzyme layer 4.2.2 V_{AC} sine wave alternating voltage 7.1 V_{DC} drain voltage for a metal-insulator-semiconductor field effect transistor 11.1.4 V_{DC} DC voltage 17.1 V_{G} gate voltage for a metal-insulator-semiconductor field effect transistor 11.1.3 V_{TB} flat-band voltage 11.1.3 V_{T} threshold voltage of a metal-insulator-semiconductor device 11.1.3 V_{T} threshold voltage of an electrolyte-insulator-semiconductor device 11.2.1 V_{T} threshold voltage of an electrolyte-insulator-semiconductor device 13.6.1 </td <td></td> <td>•</td> <td></td>		•	
V_{AC} (b) volume of an enzyme layer4.2.2 V_{AC} sine wave alternating voltage7.1 V_{D} drain voltage for a metal-insulator-semiconductor field effect transistor11.1.4 V_{DC} DC voltage17.1 V_{G} gate voltage for a metal-insulator-semiconductor field effect transistor11.1.4 V_{FB} flat-band voltage11.1.3 V_{m} amplitude of sine-wave alternating voltage17.1 V_{T} threshold voltage of a metal-insulator-semiconductor device11.1.3 V_{T} threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 v (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate3.6.1 v' reaction rate within an immobilized enzyme layer4.2.2 v_{a} surface-normalized reaction rate in an enzymatic sensor4.2.2 v_{c} reaction rate of an electrochemical reaction13.3.1 $v_{e,a}$ velocity of an anodic reaction13.6.1 v_{b} reaction rate of enzyme regeneration15.1.1 v_{m} maximum reaction rate of an enzyme-catalyzed reaction3.6.1 v_{b} reaction rate for the formation of an enzyme-substrate complex15.1.1 v_{b} velocity along the x -axis21.2.3 v_{V} volume reaction rate within an immobilized enzyme layer4.2.2 v_{c} reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 <td< td=""><td></td><td></td><td>10.3.1</td></td<>			10.3.1
$\begin{array}{c} V_{AC} \\ V_{D} \\ \text{drain voltage for a metal-insulator-semiconductor field effect transistor} \\ V_{DC} \\ \text{DC voltage} \\ \text{DC voltage} \\ \text{17.1} \\ V_{G} \\ \text{gate voltage for a metal-insulator-semiconductor field effect transistor} \\ \text{11.1.4} \\ V_{FB} \\ \text{flat-band voltage} \\ \text{11.1.3} \\ V_{m} \\ \text{amplitude of sine-wave alternating voltage} \\ \text{17.1} \\ V_{T} \\ \text{threshold voltage of a metal-insulator-semiconductor device} \\ \text{11.1.3} \\ V_{T} \\ \text{threshold voltage of an electrolyte-insulator-semiconductor device} \\ \text{11.2.1} \\ \text{V}_{V} \\ \text{(a) velocity} \\ \text{(c) reaction rate} \\ \text{(c) reaction rate} \\ \text{(c) reaction rate within an immobilized enzyme layer} \\ \text{4.2.2} \\ \text{v}_{e} \\ \text{reaction rate of an electrochemical reaction} \\ \text{13.3.1} \\ \text{v}_{e,a} \\ \text{velocity of an anodic reaction} \\ \text{13.6.1} \\ \text{v}_{e,a} \\ \text{velocity of a cathodic reaction} \\ \text{13.6.1} \\ \text{v}_{e,a} \\ \text{velocity of a cathodic reaction} \\ \text{13.6.1} \\ \text{v}_{m} \\ \text{reaction rate of enzyme regeneration} \\ \text{15.1.1} \\ \text{v}_{m} \\ \text{maximum reaction rate of an enzyme-catalyzed reaction} \\ \text{15.1.1} \\ \text{v}_{V} \\ \text{volume reaction rate of an enzyme-substrate complex} \\ \text{15.1.1} \\ \text{v}_{V} \\ \text{volume reaction rate within an immobilized enzyme layer} \\ \text{4.2.2} \\ \text{v}_{V} \\ \text{volume reaction rate of the formation of an enzyme-substrate complex} \\ \text{15.1.1} \\ \text{v}_{T} \\ \text{propagation velocity of a transverse wave} \\ \text{21.2.3} \\ \text{v}_{V} \\ \text{volume reaction rate within an immobilized enzyme layer} \\ \text{4.2.2} \\ \text{v}_{V} \\ \text{volume reaction rate of the substrate conversion in an enzyme-substrate complex} \\ \text{15.1.1} \\ \text{W} \\ \text{microcantilever width} \\ \text{22.1.1} \\ \text{X}_{C} \\ \text{capacitive reactance } (I/\omega C) \\ \text{21.2.2} \\ \text{X}_{L} \\ \text{inductive reactance } (\omega L) \\ \text{21.2.2} \\ \text{distance} \\ \text{A}_{X} \\ \text{microcantilever deflection} \\ \text{22.1.2} \\ \text{distance} \\ \text{4.2.2} \\ distanc$	V		4.2.2
$V_{\rm D}$ drain voltage for a metal-insulator-semiconductor field effect transistor11.1.4 $V_{\rm DC}$ DC voltage17.1 $V_{\rm G}$ gate voltage for a metal-insulator-semiconductor field effect transistor11.1.4 $V_{\rm FB}$ flat-band voltage11.1.3 $V_{\rm m}$ amplitude of sine-wave alternating voltage17.1 $V_{\rm T}$ threshold voltage of a metal-insulator-semiconductor device11.1.3 $V_{\rm T}$ threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 ν (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate3.6.1 ν' reaction rate within an immobilized enzyme layer42.2 $\nu_{\rm a}$ surface-normalized reaction rate in an enzymatic sensor4.2.2 $\nu_{\rm c}$ reaction rate of an electrochemical reaction13.3.1 $\nu_{\rm c,a}$ velocity of an anodic reaction13.6.1 $\nu_{\rm K}$ reaction rate of an electrochemical reaction13.6.1 $\nu_{\rm K}$ reaction rate of enzyme regeneration15.1.1 $\nu_{\rm m}$ maximum reaction rate of an enzyme-substrate complex15.1.1 $\nu_{\rm m}$ propagation velocity of a transverse wave21.2.3 $\nu_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $\nu_{\rm K}$ velocity along the ν -axis21.2.7 $\nu_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 $\nu_{\rm W}$ microcantilever width22.1.1 $\lambda_{\rm C}$ capacitive reactance (ν	T 7		
$V_{\rm DC}$ DC voltage17.1 $V_{\rm G}$ gate voltage for a metal-insulator-semiconductor field effect transistor11.1.4 $V_{\rm FB}$ flat-band voltage11.1.3 $V_{\rm m}$ amplitude of sine-wave alternating voltage17.1 $V_{\rm T}$ threshold voltage of a metal-insulator-semiconductor device11.1.3 $V_{\rm T}^*$ threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 ν (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate3.6.1 ν' reaction rate within an immobilized enzyme layer42.2 $\nu_{\rm a}$ surface-normalized reaction rate in an enzymatic sensor42.2 $\nu_{\rm e}$ reaction rate of an electrochemical reaction13.3.1 $\nu_{\rm e,a}$ velocity of an anodic reaction13.6.1 $\nu_{\rm m}$ reaction rate of enzyme regeneration15.1.1 $\nu_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction3.6.1 $\nu_{\rm S}$ reaction rate of the formation of an enzyme-substrate complex15.1.1 $\nu_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $\nu_{\rm V}$ volume reaction rate within an immobilized enzyme layer42.2 $\nu_{\rm X}$ velocity along the x-axis21.2.7 $\nu_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 M microcantilever width22.1.1 M capacitive reactance ($1/\omega C$)21.2.2 M inductive reactance (M 21.2.2 M			
$V_{\rm G}$ gate voltage for a metal-insulator-semiconductor field effect transistor11.1.4 $V_{\rm FB}$ flat-band voltage11.1.3 $V_{\rm m}$ amplitude of sine-wave alternating voltage17.1 $V_{\rm T}$ threshold voltage of a metal-insulator-semiconductor device11.1.3 $V_{\rm T}^{\prime}$ threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 ν (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate3.6.1 ν' reaction rate within an immobilized enzyme layer4.2.2 ν reaction rate of an electrochemical reaction13.3.1 ν reaction rate of an electrochemical reaction13.6.1 ν reaction rate of an electrochemical reaction13.6.1 ν reaction rate of enzyme regeneration15.1.1 ν maximum reaction rate of an enzyme-catalyzed reaction3.6.1 ν reaction rate for the formation of an enzyme-substrate complex15.1.1 ν propagation velocity of a transverse wave21.2.3 ν volume reaction rate within an immobilized enzyme layer4.2.2 ν velocity along the x -axis21.2.7 ν reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 ν microcantilever width22.1.1 λ capacitive reactance ($1/\omega$ C)21.2.2 λ distance21.2.2 λ microcantilever deflection22.1.2			
$V_{\rm FB}$ flat-band voltage11.1.3 $V_{\rm m}$ amplitude of sine-wave alternating voltage17.1 $V_{\rm T}$ threshold voltage of a metal-insulator-semiconductor device11.1.3 $V_{\rm T}^*$ threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 ν (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate3.6.1 ν' reaction rate within an immobilized enzyme layer4.2.2 ν_a surface-normalized reaction rate in an enzymatic sensor4.2.2 ν_e reaction rate of an electrochemical reaction13.6.1 $\nu_{\rm c,a}$ velocity of an anodic reaction13.6.1 $\nu_{\rm c,c}$ velocity of a cathodic reaction13.6.1 $\nu_{\rm m}$ reaction rate of enzyme regeneration3.6.1 $\nu_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction3.6.1 $\nu_{\rm s}$ reaction rate for the formation of an enzyme-substrate complex15.1.1 $\nu_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $\nu_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $\nu_{\rm x}$ velocity along the x-axis21.2.7 $\nu_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 $\nu_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 $\nu_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.2 $\nu_{\rm C}$ capacitive reactance ($\nu_{\rm C}$)21.2.2 <t< td=""><td></td><td></td><td></td></t<>			
$V_{\rm m}$ amplitude of sine-wave alternating voltage17.1 $V_{\rm T}$ threshold voltage of a metal-insulator-semiconductor device11.1.3 $V_{\rm T}$ threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 ν (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate3.6.1 ν' reaction rate within an immobilized enzyme layer4.2.2 ν_a surface-normalized reaction rate in an enzymatic sensor4.2.2 ν_e reaction rate of an electrochemical reaction13.6.1 $\nu_{\rm e,a}$ velocity of an anodic reaction13.6.1 $\nu_{\rm m}$ reaction rate of enzyme regeneration15.1.1 $\nu_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction3.6.1 $\nu_{\rm S}$ reaction rate for the formation of an enzyme-substrate complex15.1.1 $\nu_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $\nu_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $\nu_{\rm X}$ velocity along the x -axis21.2.7 $\nu_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 $\nu_{\rm W}$ microcantilever width22.1.1 $X_{\rm C}$ capacitive reactance (ν 21.2.2 χ distance Δ microcantilever deflection22.1.2			
$V_{\rm T}$ threshold voltage of a metal-insulator-semiconductor device11.1.3 $V_{\rm T}^{\prime}$ threshold voltage of an electrolyte-insulator-semiconductor device11.2.1 v (a) velocity21.2.4(b) potential scan rate13.7.4(c) reaction rate3.6.1 v' reaction rate within an immobilized enzyme layer4.2.2 v_a surface-normalized reaction rate in an enzymatic sensor4.2.2 v_e reaction rate of an electrochemical reaction13.3.1 $v_{e,a}$ velocity of an anodic reaction13.6.1 $v_{\rm E}$ velocity of a cathodic reaction13.6.1 $v_{\rm M}$ reaction rate of enzyme regeneration15.1.1 $v_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction3.6.1 $v_{\rm S}$ reaction rate for the formation of an enzyme-substrate complex15.1.1 $v_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $v_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm X}$ velocity along the x -axis21.2.7 $v_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 $X_{\rm C}$ capacitive reactance (u)21.2.2 x distance Δx microcantilever deflection22.1.2			
$V_{\rm T}^{+}$ threshold voltage of an electrolyte-insulator-semiconductor device $11.2.1$ v (a) velocity $21.2.4$ (b) potential scan rate $13.7.4$ (c) reaction rate $3.6.1$ v' reaction rate within an immobilized enzyme layer $4.2.2$ v_a surface-normalized reaction rate in an enzymatic sensor $4.2.2$ v_c reaction rate of an electrochemical reaction $13.3.1$ $v_{\rm e,a}$ velocity of an anodic reaction $13.6.1$ $v_{\rm m}$ reaction rate of enzyme regeneration $15.1.1$ $v_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction $3.6.1$ $v_{\rm S}$ reaction rate for the formation of an enzyme-substrate complex $15.1.1$ $v_{\rm tr}$ propagation velocity of a transverse wave $21.2.3$ $v_{\rm V}$ volume reaction rate within an immobilized enzyme layer $4.2.2$ $v_{\rm X}$ velocity along the x -axis $21.2.7$ $v_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex $15.1.1$ W microcantilever width $22.1.1$ $X_{\rm C}$ capacitive reactance $(1/\omega C)$ $21.2.2$ $X_{\rm L}$ inductive reactance (ωL) $21.2.2$ $X_{\rm L}$ inductive reactance (ωL) $21.2.2$ ω distance ω microcantilever deflection $22.1.2$			
v (a) velocity (b) potential scan rate (c) reaction rate13.7.4 (c) reaction rate v' reaction rate within an immobilized enzyme layer4.2.2 v_a surface-normalized reaction rate in an enzymatic sensor4.2.2 v_e reaction rate of an electrochemical reaction13.3.1 $v_{e,a}$ velocity of an anodic reaction13.6.1 $v_{e,c}$ velocity of a cathodic reaction13.6.1 v_m reaction rate of enzyme regeneration15.1.1 v_m maximum reaction rate of an enzyme-catalyzed reaction3.6.1 v_S reaction rate for the formation of an enzyme-substrate complex15.1.1 v_{tr} propagation velocity of a transverse wave21.2.3 v_V volume reaction rate within an immobilized enzyme layer4.2.2 v_X velocity along the x -axis21.2.7 v_C reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 X_C capacitive reactance $(1/\omega C)$ 21.2.2 X_L inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2			
(b) potential scan rate (c) reaction rate (c) reaction rate (c) reaction rate (d) reaction rate (e) reaction rate (f) reaction rate within an immobilized enzyme layer (f) reaction rate within an immobilized enzyme layer (f) reaction rate of an electrochemical reaction (f) reaction rate of an electrochemical reaction (f) reaction rate of an anodic reaction (f) reaction rate of enzyme regeneration (f) reaction rate of enzyme regeneration (f) reaction rate of enzyme regeneration (f) reaction rate for the formation of an enzyme-substrate complex (f) reaction rate for the formation of an enzyme-substrate complex (f) reaction rate within an immobilized enzyme layer (f) reaction rate within an immobilized enzyme layer (f) reaction rate of the substrate conversion in an enzyme-substrate complex (f) reaction rate of the substrate conversion in an enzyme-substrate complex (f) reaction rate of the substrate conversion in an enzyme-substrate complex (f) reaction rate of the substrate conversion in an enzyme-substrate complex (f) reaction rate of the substrate conversion in an enzyme-substrate complex (f) reaction rate of the substrate conversion in an enzyme-substrate complex (f) reaction rate of enzyme regeneration (f) reaction rate of enzyme reaction rate of enzyme regeneration (f) reaction rate			
v' reaction rate $3.6.1$ v' reaction rate within an immobilized enzyme layer $4.2.2$ v_a surface-normalized reaction rate in an enzymatic sensor $4.2.2$ v_e reaction rate of an electrochemical reaction $13.3.1$ $v_{e,a}$ velocity of an anodic reaction $13.6.1$ $v_{e,c}$ velocity of a cathodic reaction $13.6.1$ v_M reaction rate of enzyme regeneration $15.1.1$ v_m maximum reaction rate of an enzyme-catalyzed reaction $3.6.1$ v_S reaction rate for the formation of an enzyme-substrate complex $15.1.1$ v_{tr} propagation velocity of a transverse wave $21.2.3$ v_V volume reaction rate within an immobilized enzyme layer $4.2.2$ v_X velocity along the x -axis $21.2.7$ v_C reaction rate of the substrate conversion in an enzyme-substrate complex $15.1.1$ w microcantilever width $22.1.1$ X_C capacitive reactance ($1/\omega C$) $21.2.2$ X_L inductive reactance (ωL) $21.2.2$ x distance Δx microcantilever deflection $22.1.2$,		
v' reaction rate within an immobilized enzyme layer $4.2.2$ v_a surface-normalized reaction rate in an enzymatic sensor $4.2.2$ v_e reaction rate of an electrochemical reaction $13.3.1$ $v_{e,a}$ velocity of an anodic reaction $13.6.1$ $v_{e,c}$ velocity of a cathodic reaction $13.6.1$ v_M reaction rate of enzyme regeneration $15.1.1$ v_m maximum reaction rate of an enzyme-catalyzed reaction $3.6.1$ v_S reaction rate for the formation of an enzyme-substrate complex $15.1.1$ v_{tr} propagation velocity of a transverse wave $21.2.3$ v_V volume reaction rate within an immobilized enzyme layer $4.2.2$ v_X velocity along the x -axis $21.2.7$ v_C reaction rate of the substrate conversion in an enzyme-substrate complex $15.1.1$ w microcantilever width $22.1.1$ X_C capacitive reactance $(1/\omega C)$ $21.2.2$ X_L inductive reactance (ωL) $21.2.2$ x distance Δx microcantilever deflection $22.1.2$			
v_a surface-normalized reaction rate in an enzymatic sensor $4.2.2$ v_e reaction rate of an electrochemical reaction $13.3.1$ $v_{e,a}$ velocity of an anodic reaction $13.6.1$ $v_{e,c}$ velocity of a cathodic reaction $13.6.1$ v_M reaction rate of enzyme regeneration $15.1.1$ v_m maximum reaction rate of an enzyme-catalyzed reaction $3.6.1$ v_S reaction rate for the formation of an enzyme-substrate complex $15.1.1$ v_{tr} propagation velocity of a transverse wave $21.2.3$ v_V volume reaction rate within an immobilized enzyme layer $4.2.2$ v_X velocity along the x -axis $21.2.7$ v_C reaction rate of the substrate conversion in an enzyme-substrate complex $15.1.1$ W microcantilever width $22.1.1$ X_C capacitive reactance $(1/\omega C)$ $21.2.2$ X_L inductive reactance (ωL) $21.2.2$ x distance x Δx microcantilever deflection x	v '		
v_e reaction rate of an electrochemical reaction13.3.1 $v_{e,a}$ velocity of an anodic reaction13.6.1 $v_{e,c}$ velocity of a cathodic reaction13.6.1 v_M reaction rate of enzyme regeneration15.1.1 v_m maximum reaction rate of an enzyme-catalyzed reaction3.6.1 v_S reaction rate for the formation of an enzyme-substrate complex15.1.1 v_{tr} propagation velocity of a transverse wave21.2.3 v_V volume reaction rate within an immobilized enzyme layer4.2.2 v_X velocity along the x -axis21.2.7 v_C reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 X_C capacitive reactance $(1/\omega C)$ 21.2.2 X_L inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2	,		
$v_{e,a}$ velocity of an anodic reaction13.6.1 $v_{e,c}$ velocity of a cathodic reaction13.6.1 v_{M} reaction rate of enzyme regeneration15.1.1 v_{m} maximum reaction rate of an enzyme-catalyzed reaction3.6.1 v_{S} reaction rate for the formation of an enzyme-substrate complex15.1.1 v_{tr} propagation velocity of a transverse wave21.2.3 v_{V} volume reaction rate within an immobilized enzyme layer4.2.2 v_{X} velocity along the x -axis21.2.7 v_{C} reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 W microcantilever width22.1.1 X_{C} capacitive reactance $(1/\omega C)$ 21.2.2 X_{L} inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2			
$v_{\rm e,c}$ velocity of a cathodic reaction13.6.1 $v_{\rm M}$ reaction rate of enzyme regeneration15.1.1 $v_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction3.6.1 $v_{\rm S}$ reaction rate for the formation of an enzyme-substrate complex15.1.1 $v_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $v_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm X}$ velocity along the x -axis21.2.7 $v_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 $X_{\rm C}$ capacitive reactance $(1/\omega C)$ 21.2.2 $X_{\rm L}$ inductive reactance (ωL) 21.2.2 x distance22.1.2 Δx microcantilever deflection22.1.2			
$v_{\rm M}$ reaction rate of enzyme regeneration15.1.1 $v_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction3.6.1 $v_{\rm S}$ reaction rate for the formation of an enzyme-substrate complex15.1.1 $v_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $v_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm X}$ velocity along the x -axis21.2.7 $v_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 $X_{\rm C}$ capacitive reactance ($1/\omega C$)21.2.2 $x_{\rm L}$ inductive reactance (ωL)21.2.2 x distance Δx microcantilever deflection22.1.2	,		
$v_{\rm m}$ maximum reaction rate of an enzyme-catalyzed reaction3.6.1 $v_{\rm S}$ reaction rate for the formation of an enzyme-substrate complex15.1.1 $v_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $v_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm X}$ velocity along the x-axis21.2.7 $v_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 $X_{\rm C}$ capacitive reactance $(1/\omega C)$ 21.2.2 $X_{\rm L}$ inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2	,		
v_{tr} propagation velocity of a transverse wave $21.2.3$ v_V volume reaction rate within an immobilized enzyme layer $4.2.2$ v_X velocity along the x-axis $21.2.7$ v_C reaction rate of the substrate conversion in an enzyme-substrate complex $15.1.1$ w microcantilever width $22.1.1$ X_C capacitive reactance $(1/\omega C)$ $21.2.2$ X_L inductive reactance (ωL) $21.2.2$ x distance Δx microcantilever deflection $22.1.2$			3.6.1
$v_{\rm tr}$ propagation velocity of a transverse wave21.2.3 $v_{\rm V}$ volume reaction rate within an immobilized enzyme layer4.2.2 $v_{\rm x}$ velocity along the x-axis21.2.7 $v_{\rm C}$ reaction rate of the substrate conversion in an enzyme-substrate complex15.1.1 w microcantilever width22.1.1 $X_{\rm C}$ capacitive reactance $(1/\omega C)$ 21.2.2 $X_{\rm L}$ inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2			15.1.1
v_x velocity along the x-axis21.2.7 v_C reaction rate of the substrate conversion in an enzyme–substrate complex15.1.1 w microcantilever width22.1.1 X_C capacitive reactance $(1/\omega C)$ 21.2.2 X_L inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2	$v_{\rm tr}$		21.2.3
$v_{\rm C}$ reaction rate of the substrate conversion in an enzyme–substrate complex15.1.1 w microcantilever width22.1.1 $X_{\rm C}$ capacitive reactance $(1/\omega C)$ 21.2.2 $X_{\rm L}$ inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2	$v_{ m V}$	volume reaction rate within an immobilized enzyme layer	
w microcantilever width $22.1.1$ X_C capacitive reactance $(1/\omega C)$ $21.2.2$ X_L inductive reactance (ωL) $21.2.2$ x distance Δx microcantilever deflection $22.1.2$	$v_{\rm x}$		
$X_{\rm C}$ capacitive reactance $(1/\omega C)$ 21.2.2 $X_{\rm L}$ inductive reactance (ωL) 21.2.2 x distance Δx microcantilever deflection22.1.2	$v_{\rm C}$		
X_L inductive reactance (ωL) 21.2.2 x distance22.1.2 Δx microcantilever deflection22.1.2			
x distance Δx microcantilever deflection 22.1.2		=	
Δx microcantilever deflection 22.1.2			21.2.2
			22.1.5
Y admittance 17.1			
	Y	аститалсе	1/.1

xxviii List of Symbols

Y_{t}	total admittance	17.1
У	response signal of a sensor	1.5
Z	ion charge	10.2.1
Z	(a) electrical impedance	17.1
	(b) acoustic impedance	21.2.7
Z	impedance modulus	17.1
Z'	real part of the acoustic impedance of a TSM piezoelectric oscillator	21.2.2
Z''	imaginary part of the acoustic impedance of a TSM piezoelectric oscillator	21.2.2
$Z_{ m C}$	capacitive impedance	17.2.1
$Z_{ m F}$	Faradaic impedance	17.2.3
$Z_{ m im}$	imaginary part of electrical impedance	17.1
Z_{m}	motional impedance	21.2.7
Z_{m1}	motional impedance of an unloaded TSM piezoelectric resonator	21.2.2
$Z_{ m m2}$	motional impedance produced by loading a TSM piezoelectric resonator	21.2.7
$Z_{ m m,t}$	total motional impedance	21.2.7
Z_{re}	real part of electrical impedance	17.1
Z_{s}	mechanical impedance of a TSM resonator	21.2.7
Z_{t}	total impedance	17.1
$Z_{ m W}$	Warburg impedance	17.2.1

Greek Symbols

Symbol	Meaning	Section References
α	(a) substrate modulus for an enzymatic sensor under external diffusion control	4.2.4
	(b) transfer coefficient of a cathodic electrochemical reaction	13.3.3
β	(a) Biot number	4.4.1
	(b) transfer coefficient of an anodic electrochemical reaction	13.6.1
Γ	surface concentration	5.2
$\Gamma_{ m max}$	maximum surface concentration	5.2
γ	(a) activity coefficient	10.2.1
	(b) enzyme reoxidation capacity relative to the substrate conversion capacity in the absence of any diffusion limitation	15.2.2
δ	(a) thickness of the Nernst diffusion layer	13.3.1
	(b) charge fraction transferred in the interaction of a polar molecule with a semiconductor	11.3.5
	(c) Debye length	12.1.7
$\delta_{ m dl}$	thickness of the electrical double layer	17.2.2
$\delta_{ m S}$	partition coefficient of the substrate	4.4.1
$\delta_{ m P}$	partition coefficient of the product	4.4.1
$\epsilon_{ m d}$	dielectric constant	13.5.2
² d1	dielectric constant within the electrical double layer	17.2.2
η	(a) $\mathrm{Da_{M}/Da_{S}}$	15.2.2
	(b) overvoltage (difference between the actual electrode potential and the equilibrium potential)	13.6.5
	(c) dynamic viscosity	21.2.4
$\eta_{ m L}$	dynamic viscosity of a liquid	21.2.5
7	surface coverage degree	5.2
θ_e	internal lag factor	4.4.1
θ_c	critical incidence angle	18.2.1
$\theta_{ m m}$	external lag factor	4.4.1
θ_1	incidence angle	18.2.1
θ_2	refraction angle	18.2.1
Λ	molar conductivity	17.8.1
Λ_i	molar conductivity of an ion i	17.8.1