INTRODUCTION TO THERMO-FLUIDS SYSTEMS DESIGN

ANDRÉ G. McDONALD | HUGH L. MAGANDE
Introduction to Thermo-Fluids Systems Design
Contents

Preface xi

List of Figures xv

List of Tables xix

List of Practical Notes xxi

List of Conversion Factors xxiii

1 Design of Thermo-Fluids Systems

1.1 Engineering Design—Definition 1

1.2 Types of Design in Thermo-Fluid Science 1

1.3 Difference between Design and Analysis 2

1.4 Classification of Design 2

1.5 General Steps in Design 2

1.6 Abridged Steps in the Design Process 2

2 Air Distribution Systems

2.1 Fluid Mechanics—A Brief Review 5

2.1.1 Internal Flow 5

2.2 Air Duct Sizing—Special Design Considerations 12

2.2.1 General Considerations 12

2.2.2 Sizing Straight Rectangular Air Ducts 13

2.2.3 Use of an Air Duct Calculator to Size Rectangular Air Ducts 18

2.3 Minor Head Loss in a Run of Pipe or Duct 18

2.4 Minor Losses in the Design of Air Duct Systems—Equal Friction Method 20
Contents

2.5 Fans—Brief Overview and Selection Procedures 44
- 2.5.1 Classification and Terminology 44
- 2.5.2 Types of Fans 44
- 2.5.3 Fan Performance 46
- 2.5.4 Fan Selection from Manufacturer’s Data or Performance Curves 48
- 2.5.5 Fan Laws 51

2.6 Design for Advanced Technology—Small Duct High-Velocity (SDHV) Air Distribution Systems 54
Problems 66
References and Further Reading 72

3 Liquid Piping Systems 73
- 3.1 Liquid Piping Systems 73
- 3.2 Minor Losses: Fittings and Valves in Liquid Piping Systems 73
 - 3.2.1 Fittings 73
 - 3.2.2 Valves 73
 - 3.2.3 A Typical Piping System—A Closed-Loop Fuel Oil Piping System 75
- 3.3 Sizing Liquid Piping Systems 75
 - 3.3.1 General Design Considerations 75
 - 3.3.2 Pipe Data for Building Water Systems 77
- 3.4 Fluid Machines (Pumps) and Pump–Pipe Matching 83
 - 3.4.1 Classifications and Terminology 83
 - 3.4.2 Types of Pumps 83
 - 3.4.3 Pump Fundamentals 83
 - 3.4.4 Pump Performance and System Curves 86
 - 3.4.5 Pump Performance Curves for a Family of Pumps 88
 - 3.4.6 A Manufacturer’s Performance Plot for a Family of Centrifugal Pumps 89
 - 3.4.7 Cavitation and Net Positive Suction Head 92
 - 3.4.8 Pump Scaling Laws: Nondimensional Pump Parameters 97
 - 3.4.9 Application of the Nondimensional Pump Parameters—Affinity Laws 98
 - 3.4.10 Nondimensional Form of the Pump Efficiency 99
- 3.5 Design of Piping Systems Complete with In-Line or Base-Mounted Pumps 103
 - 3.5.1 Open-Loop Piping System 103
 - 3.5.2 Closed-Loop Piping System 111
Problems 121
References and Further Reading 126

4 Fundamentals of Heat Exchanger Design 127
- 4.1 Definition and Requirements 127
4.2 Types of Heat Exchangers
4.2.1 Double-Pipe Heat Exchangers
4.2.2 Compact Heat Exchangers
4.2.3 Shell-and-Tube Heat Exchangers
4.3 The Overall Heat Transfer Coefficient
4.3.1 The Thermal Resistance Network for Plane Walls—Brief Review
4.3.2 Thermal Resistance from Fouling—The Fouling Factor
4.4 The Convection Heat Transfer Coefficients—Forced Convection
4.4.1 Nusselt Number—Fully Developed Internal Laminar Flows
4.4.2 Nusselt Number—Developing Internal Laminar Flows—Correlation Equation
4.4.3 Nusselt Number—Turbulent Flows in Smooth Tubes: Dittus–Boelter Equation
4.4.4 Nusselt Number—Turbulent Flows in Smooth Tubes: Gnielinski’s Equation
4.5 Heat Exchanger Analysis
4.5.1 Preliminary Considerations
4.5.2 Axial Temperature Variation in the Working Fluids—Single Phase Flow
4.6 Heat Exchanger Design and Performance Analysis: Part 1
4.6.1 The Log-Mean Temperature Difference Method
4.6.2 The Effectiveness-Number of Transfer Units Method: Introduction
4.6.3 The Effectiveness-Number of Transfer Units Method: ε-NTU Relations
4.6.4 Comments on the Number of Transfer Units and the Capacity Ratio (c)
4.6.5 Procedures for the ε-NTU Method
4.6.6 Heat Exchanger Design Considerations
4.7 Heat Exchanger Design and Performance Analysis: Part 2
4.7.1 External Flow over Bare Tubes in Cross Flow—Equations and Charts
4.7.2 External Flow over Tube Banks—Pressure Drop
4.7.3 External Flow over Finned-Tubes in Cross Flow—Equations and Charts
4.8 Manufacturer’s Catalog Sheets for Heat Exchanger Selection

5 Applications of Heat Exchangers in Systems
5.1 Operation of a Heat Exchanger in a Plasma Spraying System
5.2 Components and General Operation of a Hot Water Heating System
5.3 Boilers for Water
 5.3.1 Types of Boilers
 5.3.2 Operation and Components of a Typical Boiler
 5.3.3 Water Boiler Sizing
 5.3.4 Boiler Capacity Ratings
 5.3.5 Burner Fuels

5.4 Design of Hydronic Heating Systems c/w Baseboards or Finned-Tube Heaters
 5.4.1 Zoning and Types of Systems
 5.4.2 One-Pipe Series Loop System
 5.4.3 Two-Pipe Systems
 5.4.4 Baseboard and Finned-Tube Heaters

5.5 Design Considerations for Hot Water Heating Systems

Problems

References and Further Reading

6 Performance Analysis of Power Plant Systems
 6.1 Thermodynamic Cycles for Power Generation—Brief Review
 6.1.1 Types of Power Cycles
 6.1.2 Vapor Power Cycles—Ideal Carnot Cycle
 6.1.3 Vapor Power Cycles—Ideal Rankine Cycle for Steam Power Plants
 6.1.4 Vapor Power Cycles—Ideal Regenerative Rankine Cycle for Steam Power Plants

 6.2 Real Steam Power Plants—General Considerations
 6.3 Steam-Turbine Internal Efficiency and Expansion Lines
 6.4 Closed Feedwater Heaters (Surface Heaters)

 6.5 The Steam Turbine
 6.5.1 Steam-Turbine Internal Efficiency and Exhaust End Losses
 6.5.2 Casing and Shaft Arrangements of Large Steam Turbines

 6.6 Turbine-Cycle Heat Balance and Heat and Mass Balance Diagrams
 6.7 Steam-Turbine Power Plant System Performance Analysis Considerations

 6.8 Second-Law Analysis of Steam-Turbine Power Plants
 6.9 Gas-Turbine Power Plant Systems
 6.9.1 The Ideal Brayton Cycle for Gas-Turbine Power Plant Systems
 6.9.2 Real Gas-Turbine Power Plant Systems
 6.9.3 Regenerative Gas-Turbine Power Plant Systems
 6.9.4 Operation and Performance of Gas-Turbine Power Plants—Practical Considerations

 6.10 Combined-Cycle Power Plant Systems
 6.10.1 The Waste Heat Recovery Boiler

Problems

References and Further Reading
<table>
<thead>
<tr>
<th>Appendix A: Pipe and Duct Systems</th>
<th>339</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B: Symbols for Drawings</td>
<td>365</td>
</tr>
<tr>
<td>Appendix C: Heat Exchanger Design</td>
<td>373</td>
</tr>
<tr>
<td>Appendix D: Design Project—Possible Solution</td>
<td>383</td>
</tr>
<tr>
<td>D.1 Fuel Oil Piping System Design</td>
<td>383</td>
</tr>
<tr>
<td>Appendix E: Applicable Standards and Codes</td>
<td>413</td>
</tr>
<tr>
<td>Appendix F: Equipment Manufacturers</td>
<td>415</td>
</tr>
<tr>
<td>Appendix G: General Design Checklists</td>
<td>417</td>
</tr>
<tr>
<td>G.1 Air and Exhaust Duct Systems</td>
<td>417</td>
</tr>
<tr>
<td>G.2 Liquid Piping Systems</td>
<td>418</td>
</tr>
<tr>
<td>G.3 Heat Exchangers, Boilers, and Water Heaters</td>
<td>419</td>
</tr>
<tr>
<td>Index</td>
<td>421</td>
</tr>
</tbody>
</table>
Preface

Design courses and projects in contemporary undergraduate curricula have focused mainly on topics in solid mechanics. This has left graduating junior engineers with limited knowledge and experience in the design of components and systems in the thermo-fluids sciences. ABB Automation in their handbook on *Energy Efficient Design of Auxiliary Systems in Fossil-Fuel Power Plants* has mentioned that this lack of training in thermo-fluids systems design will limit our ability to produce high-performance systems. This deficiency in contemporary undergraduate curricula has resulted in an urgent need for course materials that underline the application of fundamental concepts in the design of thermo-fluids components and systems.

Owing to the urgent need for course materials in this area, this textbook has been developed to bridge the gap between the fundamental concepts of fluid mechanics, heat transfer, and thermodynamics and the practical design of thermo-fluids components and systems. To achieve this goal, this textbook is focused on the design of internal fluid flow systems, coiled heat exchangers, and performance analysis of power plant systems. This requires prerequisite knowledge of internal fluid flow, conduction heat transfer, convection heat transfer with emphasis on forced convection in tubes and over cylinders, analysis of constant area fins, and thermodynamic power cycles, in particular, the Rankine and Brayton cycles. The fundamental concepts are used as tools in an exhaustive design process to solve various practical problems presented in the examples. For junior design engineers with limited practical experience, use of fundamental concepts of which they have previous knowledge will help them to increase their confidence and decision-making capabilities.

The complete design or modification of modern equipment and systems will require knowledge of current industry practices. While relying on and demonstrating the application of fundamental principles, this textbook highlights the use of manufacturers’ catalogs to select equipment and practical rules to guide decision-making in the design process. Some of these practical rules are included in the text as *Practical Notes*, to underline their importance in current practice and provide additional information. While great emphasis is placed upon the use of these rules, an effort was made to ensure that the reader understands the fundamental
concepts that support these guidelines. It is strongly believed that this will also enable the design engineer to make quick and accurate decisions in situations where the guidelines may not be applicable.

The topics covered in the text are arranged so that each topic builds on the previous concepts. It is important to convey to the reader that, in the design process, topics are not stand-alone items and they must come together to produce a successful design. There are three main topical areas, arranged in six chapters.

Introductory material on the design process is presented in Chapter 1. Since the book focuses on the detailed, technical design of thermo-fluids components and systems, the chapter ends with an abridged version of the full design process.

Chapters 2 and 3 deal with the design of air duct and liquid piping systems, respectively. It is in these initial chapters that a brief review of internal fluid flow is presented. System layout, component sizing, and equipment selection are also covered.

An introduction to heat exchanger design and analysis is presented in Chapter 4. This chapter presents the most fundamental material in the textbook. Extensive charts are used to design and analyze the performance of bare-tube and finned-tube coiled heat exchangers. The chapter ends with a description of excerpts from a manufacturer’s catalog used to select heating coil models that are used in high-velocity duct systems.

Chapter 5 continues the discussion of heat exchangers by focusing on the sizing and selection of various heat exchangers such as boilers, water heaters, and finned-tube baseboard heaters. Various rules and data are presented to guide the selection and design process.

Chapter 6 focuses on the analysis of power plant systems. Here, the reader is introduced to a review of thermodynamic power cycles and various practical considerations in the analysis of steam-turbine and gas-turbine power generation systems. Combined-cycle systems and waste heat recovery boilers are also presented.

There are seven Appendices at the end of this book. They contain a wide variety of charts, tables, and catalog sheets that the design engineer will find useful during practice. Also included in the appendices are: a possible solution of a design project, the names of organizations that provide applicable codes and standards, and the names of some manufacturers and suppliers of equipment used in thermo-fluids systems.

The writing of this textbook was inspired, in part, by the difficulty to find appropriate textbooks that presented a detailed practical approach to the design of thermo-fluids components and systems in industrial environments. It is hoped that the readers and design engineers, in particular, will find it useful in practice as a reference during design projects and analysis.

The authors have made no effort to claim complete originality of the text. We have been motivated by the work of many others that have been appropriately referenced throughout the textbook.

While we feel that this textbook will be a valuable resource for design engineers in industry, it is offered as a guide, and as such, judgement is required when using the text to design systems or for application to specific installations. The authors and the publisher are not responsible for any uses made of this text.
We express our deepest gratitude to and acknowledge the advice, critiques, and suggestions that we received from, our advisory committee of professors, professional engineers, and students. These individuals include Dr. Roger Toogood, P. Eng.; Mr. Mark Ackerman, P. Eng.; Mr. Curt Stout, P. Eng.; Dr. Larry Kostiuk, P. Eng.; Mr. Dave DeJong, P. Eng.; Mr. Michael Ross; and Mr. David Therrien.

A.G. McDonald
H.L. Magande
List of Figures

1.1 General steps in the design process 3
2.1 Duct shapes and aspect ratios 13
2.2 Photo of a typical air duct calculator 19
2.3 A ductwork system to transport air (ASHRAE Handbook, Fundamentals Volume, 2005; reprinted with permission) 21
2.4 Axial fans 45
2.5 Centrifugal fans 45
2.6 Classification of centrifugal fans based on blade types 46
2.7 Typical performance curves of centrifugal fans 47
2.8 Forward-curved centrifugal fan performance curves (Morrison Products, Inc.; reprinted with permission) 49
3.1 Some typical industrial valves 74
3.2 A typical fuel oil piping system complete with a pump set (ASHRAE Handbook, Fundamentals Volume, 2005; reprinted with permission) 75
3.3 Plastic pipe (Schedule 80) friction loss chart (ASHRAE Handbook, Fundamentals Volume, 2005; reprinted with permission) 79
3.4 Pipes supported on hangers 79
3.5 Pipes and an in-line pump mounted on brackets 81
3.6 Types of industrial pumps: (a) three-lobe rotary pump; (b) two-screw pump; (c) in-line centrifugal pump; (d) vertical multistage submersible pump (Hydraulic Institute, Parsippany, NJ, www.pumps.org; reprinted with permission) 84
3.7 Schematic of a H_{pump} versus \dot{V} curve for a centrifugal pump 86
3.8 Schematic of a η_{pump} versus \dot{V} curve 87
3.9 Schematic of a system curve intersecting a pump performance curve 88
3.10 Performance curves for a family of geometrically similar pumps 89
3.11 Pump performance plot (Taco, Inc.; reprinted with permission) 89
3.12 A typical open-loop condenser piping system for water 104
3.13 Diagrams of closed-loop piping systems 112
4.1 Temperature profiles and schematics of (a) parallel and (b) counter flow double-pipe heat exchangers 128
4.2 Cross-flow heat exchangers 129
4.3 Picture of a continuous plate-fin-tube type cross-flow heat exchanger 130
4.4 Schematics of shell-and-tube heat exchangers 131
4.5 Temperature distribution around and through a 1D plane wall 132
4.6 Thermal resistance network around a plane wall 135
4.7 Axial temperature variation in parallel flow heat exchanger 144
4.8 Axial temperature variation in counter flow heat exchanger 145
4.9 Axial temperature variation in a balanced heat exchanger 145
4.10 Axial temperature variation in a heat exchanger with condensation 146
4.11 Axial temperature variation in a heat exchanger with boiling 146
4.12 Effectiveness charts for some heat exchangers (Kays and London [2]) 153
4.13 (a) Finned tube and (b) bare tube bank bundles 158
4.14 Flow pattern for an in-line tube bank (Çengel [3], reprinted with permission) 159
4.15 Data for flow normal to an in-line tube bank (Kays and London [2]) 160
4.16 Flow pattern for a staggered tube bank (Çengel [3], reprinted with permission) 161
4.17 Data for flow normal to a staggered tube bank (Kays and London [2]) 162
4.18 Schematic drawing of tube bank showing the total length, L_{total} 163
4.19 Examples of finned heat exchangers 176
4.20 General constant area, straight fins attached to a surface 177
4.21 Staggered tube bank with a hexagonal finned-tube array 178
4.22 Data for flow normal to a finned staggered tube bank (ASHRAE Transactions, Vol. 79, Part II, 1973; reprinted with permission) 179
4.23 Data for flow normal to staggered tube banks: multiple tube rows (ASHRAE Transactions, Vol. 81, Part I, 1975; reprinted with permission) 180
4.24 M series heating coil from Unico, Inc. (a) Page 1 of the M series heating coil from Unico, Inc. (Unico, Inc., reprinted with permission) (b) Page 2 of the M series heating coil from Unico, Inc. (Unico, Inc.; reprinted with permission) (c) Page 3 of the M series heating coil from Unico, Inc. (Unico, Inc., reprinted with permission) Page 4 of the M series heating coil from Unico, Inc. (Unico, Inc.; reprinted with permission) 203
5.1 A Praxair SG-100 plasma spray torch in operation 214
5.2 The Sulzer Metco Climet-HE™-200 heat exchanger (Sulzer Metco, Product Manual MAN 41292 EN 05; reprinted with permission) 214
5.3 Functional diagram for the Sulzer Metco Climet-HE™-200 (Sulzer Metco, Product Manual MAN 41292 EN 05; reprinted with permission) 215
5.4 Flow diagram for cooling a typical plasma torch (modified from Sulzer Metco, Product Manual MAN 41292 EN 05; reprinted with permission) 216
5.5 Schematic of a closed-loop hydronic heating system c/w a boiler 217
5.6 A typical gas-fired hot water boiler 218
5.7 Schematic of the internal section of typical water heaters 220
5.8 (a) A Rinnai noncondensing tankless water heater. (b) Schematic of Rinnai noncondensing tankless water heater (reprinted with permission) 221

5.9 Brochure showing specifications for a line of gas-fired boilers (Smith Cast Iron Boilers, GB100 series technical brochure; reprinted with permission) 225

5.10 Schematic diagram of a one-pipe series loop system 227

5.11 Schematic diagram of a split series loop system 228

5.12 Schematic of a one-pipe “monoflow” series loop system 229

5.13 Schematic diagram of a multizone system of one-pipe series loops 230

5.14 Schematic of a two-pipe direct return system 230

5.15 Schematic of a two-pipe reverse return system 231

5.16 Unbalanced flow in a two-pipe direct return system 232

5.17 Improved balance in a two-pipe direct return system 232

5.18 Diagrams of baseboard heaters. (a) 1-tiered baseboard heater; (b) 2-tiered finned-tube heater 233

6.1 Ideal Carnot cycle 268

6.2 Ideal Rankine cycle 269

6.3 Ideal regenerative Rankine cycles. (a) Single-stage feedwater heating; (b) four-stage feedwater heating 270

6.4 Mollier diagram for water 273

6.5 Mollier diagram for water showing an expansion line 274

6.6 Drain disposals for closed feedwater heaters (surface heaters) 281

6.7 Turbine operation 283

6.8 Exhaust diffuser of a LP turbine 284

6.9 Casing and shaft arrangements for large condensing turbines. (a) Tandem-compound 2 flows from 150 to 400 MW; (b) Tandem-compound 4 flows from 300 to 800 MW; (c) Cross-compound 2 flows from 300 to 800 MW; (d) Cross-compound 4 flows from 800 to 1200 MW 285

6.10 Heat-and-mass balance diagram for a fossil-fuel power plant (Li and Priddy [1]; reprinted with permission) 287

6.11 Ideal Brayton cycle 308

6.12 Real Brayton cycle 309

6.13 Regenerative Brayton cycle 313

6.14 Regenerative Brayton cycle with intercooling 313

6.15 Schematic of a combined-cycle power plant 324

6.16 Piping schematic of a single-pressure waste heat recovery boiler 325

6.17 Temperature profile in a single-pressure waste heat recovery boiler 326

A.2 Schematics elbows in ducts 352
A.3 Copper tubing friction loss (open and closed piping systems) (Carrier Corp.; reprinted with permission) 353

A.4 Commercial steel pipe (Schedule 40) friction loss. (a) Open piping systems (Carrier Corp.; reprinted with permission); (b) closed piping systems (Carrier Corp.; reprinted with permission) 354

A.5 Bell & Gosset pump catalog (ITT Bell & Gosset; reprinted with permission) 356

C.1 j-factor versus Re_C charts for in-line tube banks. Transient tests (2 charts): (a) For $X_t = 1.50$ and $X_L = 1.25$; (b) For $X_t = 1.25$ and $X_L = 1.25$.

C.2 j-factor versus Re_C charts for staggered tube banks. Transient tests (6 charts): (a) For $X_t = 1.50$ and $X_L = 1.25$; (b) For $X_t = 1.25$ and $X_L = 1.25$; (c) For $X_t = 1.50$ and $X_L = 1.0$; (d) For $X_t = 1.5$ and $X_L = 1.5$; (e) For $X_t = 2$ and $X_L = 1$; (f) For $X_t = 2.5$ and $X_L = 0.75$.

C.3 j-factor versus Re_{x_t} charts for staggered tube banks (finned tubes): (a) five rows of tubes (ASHRAE Transactions, vol. 79, Part II, 1973; reprinted with permission); (b) multiple rows of tubes (ASHRAE Transactions, vol. 81, Part I, 1975; reprinted with permission) 380

List of Tables

2.1 Maximum duct velocities 14
2.2 Typical values of component pressure losses [9] 21
2.3 Maximum supply duct velocities 54
2.4 Sound data during airflow through a rectangular elbow 55
2.5 Maximum main duct air velocities for acoustic design criteria 56
2.6 Acoustic design criteria for unoccupied spaces [21] 57
3.1 Typical average velocities for selected pipe flows 76
3.2 Pipe data for copper and steel 78
3.3 Hanger spacing for straight stationary pipes and tubes [1] 80
3.4 Minimum hanger rod size for straight stationary pipes and tubes [1] 80
4.1 Values of the overall heat transfer coefficient (US) 136
4.2 Values of the overall heat transfer coefficient (SI) 137
4.3 Representative fouling factors in heat exchangers 138
4.4 Nusselt numbers and friction factors for fully developed laminar flow in tubes of various cross sections: constant surface temperature and surface heat flux [3] 140
4.5 Effectiveness relations for heat exchangers 152
5.1 Minimum recovery rates and minimum usable storage capacities 224
5.2 Approximate heating value of fuels 226
5.3 Baseboard heater rated outputs at 1 gpm water flow rate 233
5.4 “Front outlet” finned-tube heater ratings for Trane heaters 234
5.5 Flow rate correction factors for water velocities less than 3 fps 235
5.6 Temperature correction factors for hot water ratings 236
6.1 Pressure drops at the gas-turbine plant inlet and exhaust [1] 315
6.2 Common steam conditions for waste heat recovery boilers [1] 327
A.1 Average roughness of commercial pipes 339
A.2 Correlation equations for friction factors 340
A.3 Circular equivalents of rectangular ducts for equal friction and capacity 341
A.4 Approximate equivalent lengths for selected fittings in circular Ducts 342
A.5 Approximate equivalent lengths for elbows in ducts 342
A.6 Data for copper pipes 343
A.7 Data for schedule 40 steel pipes 344
A.8 Data for schedule 80 steel pipes 345
A.9 Data for class 150 cast iron pipes 346
A.10 Data for glass pipes 346
A.11 Data for PVC plastic pipes 347
A.12 Typical average velocities for selected pipe flowsa 348
A.13 Erosion limits: maximum design fluid velocities for water flow in small tubes 348
A.14 Loss coefficients for pipe fittings 349
A.15 Typical pipe data format 350
A.16 Typical pump schedule format 350
B.1 Airmoving devices and ductwork symbols 365
B.2 Piping symbols 367
B.3 Symbols for piping specialities 368
B.4 Additional/alternate valve symbols 369
B.5 Fittings 370
B.6 Radiant Panel Symbols 372
C.1 Representative values of the overall heat transfer coefficients (US) 373
C.2 Representative values of the overall heat transfer coefficients (SI) 374
C.3 Representative fouling factors in heat exchangers 374
List of Practical Notes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Total Static Pressure Available at a Plenum or Produced by a Fan</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Diffuser Discharge Air Volume Flow Rates in SDHV Systems</td>
<td>56</td>
</tr>
<tr>
<td>3.1</td>
<td>Link Seals</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Piping Systems Containing Air</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>Higher Pipe Friction Losses and Velocities</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>Piping System Supported by Brackets</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Manufacturers’ Pump Performance Curves</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>“To-the-point” Design</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>Oversizing Pumps</td>
<td>90</td>
</tr>
<tr>
<td>3.8</td>
<td>NPSH</td>
<td>93</td>
</tr>
<tr>
<td>3.9</td>
<td>Bypass Lines</td>
<td>104</td>
</tr>
<tr>
<td>3.10</td>
<td>Regulation and Control of Flow Rate across a Pump</td>
<td>104</td>
</tr>
<tr>
<td>3.11</td>
<td>In-Line and Base-Mounted Pumps</td>
<td>105</td>
</tr>
<tr>
<td>3.12</td>
<td>Flanged or Screwed Pipe Fittings?</td>
<td>113</td>
</tr>
<tr>
<td>4.1</td>
<td>Industrial Flows</td>
<td>142</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow in Rough Pipes</td>
<td>142</td>
</tr>
<tr>
<td>4.3</td>
<td>Condensers and Boilers</td>
<td>147</td>
</tr>
<tr>
<td>4.4</td>
<td>Real Heat Exchangers</td>
<td>149</td>
</tr>
<tr>
<td>4.5</td>
<td>Heat Transfer from Staggered Tube Banks</td>
<td>161</td>
</tr>
<tr>
<td>4.6</td>
<td>Coil Arrangement in Air-to-Water Heat Exchangers</td>
<td>164</td>
</tr>
<tr>
<td>4.7</td>
<td>Pressure Drop Over Tube Banks</td>
<td>164</td>
</tr>
<tr>
<td>4.8</td>
<td>L and M values</td>
<td>179</td>
</tr>
<tr>
<td>5.1</td>
<td>Condensing Boilers</td>
<td>219</td>
</tr>
<tr>
<td>5.2</td>
<td>Typical OSF Values</td>
<td>222</td>
</tr>
<tr>
<td>5.3</td>
<td>Domestic Water Data for Edmonton, Alberta, Canada</td>
<td>223</td>
</tr>
<tr>
<td>5.4</td>
<td>Hot Water Temperatures from Faucets</td>
<td>223</td>
</tr>
<tr>
<td>5.5</td>
<td>Temperature Data for Sizing Finned-Tube Heaters</td>
<td>235</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.1</td>
<td>Optimizing the Number of Feedwater Heaters</td>
<td>271</td>
</tr>
<tr>
<td>6.2</td>
<td>DCA and TTD Values</td>
<td>281</td>
</tr>
<tr>
<td>6.3</td>
<td>Stages of a Steam Turbine</td>
<td>282</td>
</tr>
<tr>
<td>6.4</td>
<td>Exhaust End Loss</td>
<td>284</td>
</tr>
<tr>
<td>6.5</td>
<td>Units of the Net Heat Rate (NHR)</td>
<td>288</td>
</tr>
<tr>
<td>6.6</td>
<td>How Does One Initiate Operation of a Power Plant System?</td>
<td>289</td>
</tr>
<tr>
<td>6.7</td>
<td>Reference Pressure and Temperature for Availability Analysis</td>
<td>302</td>
</tr>
<tr>
<td>6.8</td>
<td>Combustion Air and Cracking in a Burner</td>
<td>309</td>
</tr>
</tbody>
</table>
List of Conversion Factors

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>1 Btu = 778.28 lbf ft</td>
</tr>
<tr>
<td></td>
<td>1 kWh = 3412.14 Btu</td>
</tr>
<tr>
<td></td>
<td>1 hp h = 2545 Btu</td>
</tr>
<tr>
<td></td>
<td>1 therm = 10^5 Btu (natural gas)</td>
</tr>
<tr>
<td>Force</td>
<td>1 lbf = 32.2 lbm ft/s² = 16 ozf</td>
</tr>
<tr>
<td></td>
<td>1 dyne = 2.248×10^{-6} lbf</td>
</tr>
<tr>
<td>Length</td>
<td>1 ft = 12 in.</td>
</tr>
<tr>
<td></td>
<td>1 yard = 3 ft</td>
</tr>
<tr>
<td></td>
<td>1 in. = 25.4 mm</td>
</tr>
<tr>
<td></td>
<td>1 mile = 5280 ft</td>
</tr>
<tr>
<td>Mass</td>
<td>1 slug = 32.2 lbm</td>
</tr>
<tr>
<td></td>
<td>1 lbm = 16 ounces (oz)</td>
</tr>
<tr>
<td></td>
<td>1 ton mass = 2000 lbm</td>
</tr>
<tr>
<td>Power</td>
<td>1 kW = 3412.14 Btu/h</td>
</tr>
<tr>
<td></td>
<td>1 hp = 550 lbf ft/s</td>
</tr>
<tr>
<td></td>
<td>1 hp (boiler) = 33475 Btu/h</td>
</tr>
<tr>
<td></td>
<td>1 ton refrigeration = 12000 Btu/h</td>
</tr>
<tr>
<td>Pressure</td>
<td>1 atm = 14.7 psia</td>
</tr>
<tr>
<td></td>
<td>1 psia = 2.0 in Hg at 32°F</td>
</tr>
<tr>
<td>Temperature</td>
<td>$T(R) = T(°F) + 460$</td>
</tr>
<tr>
<td></td>
<td>$T(°F) = 1.8T(°C) + 32$</td>
</tr>
<tr>
<td>Viscosity (dynamic)</td>
<td>1 lbm/(ft s) = 1488 centipoises (cp)</td>
</tr>
<tr>
<td>Viscosity (kinematic)</td>
<td>1 ft²/s = 929 stokes (St)</td>
</tr>
<tr>
<td>Volume</td>
<td>1 British gallon = 1.2 US gallon</td>
</tr>
<tr>
<td></td>
<td>1 ft³ = 7.48 US gallons</td>
</tr>
<tr>
<td></td>
<td>1 US gallon = 128 fluid ounces</td>
</tr>
<tr>
<td>Volume Flow Rate</td>
<td>35.315 ft³/s = 15850 gal/min (gpm) = 2118.9 ft³/min (cfm)</td>
</tr>
</tbody>
</table>
1

Design of Thermo-Fluids Systems

1.1 Engineering Design—Definition

Process of devising a system, subsystem, component, or process to meet desired needs.

1.2 Types of Design in Thermo-Fluid Science

(i) Process Design: The manipulation of physical and/or chemical processes to meet desired needs.
 Example: (a) Introduce boiling or condensation to increase heat transfer rates.

(ii) System Design: The process of defining the components and their assembly to function to meet a specified requirement.
 Examples: (a) Steam turbine power plant system consisting of turbines, pumps, pipes, and heat exchangers.
 (b) Hot water heating system, complete with boilers.

(iii) Subsystem Design: The process of defining and assembling a small group of components to do a specified function.
 Example: Pump/piping system of a large power plant. The pump/piping system is a subsystem of the larger power plant system used to transport water to and from the boiler or steam generator.

(iv) Component Design: Development of a piece of equipment or device.
1.3 Difference between Design and Analysis

Analysis: Application of fundamental principles to a well-defined problem. All supporting information is normally provided, and one closed-ended solution is possible.

Design: Application of fundamental principles to an undefined, open problem. All supporting information may not be available and assumptions may need to be made. Several alternatives may be possible. No single correct answer exists.

1.4 Classification of Design

(i) Modification of an existing device for
 (a) cost reduction;
 (b) improved performance and/or efficiency;
 (c) reduced mean time between “breakdowns”;
 (d) satisfy government codes and standards;
 (e) satisfy customer/client preferences.

(ii) Selection of existing components for the design of a subsystem or a complete system.

(iii) Creation of a new device or system.

1.5 General Steps in Design

The general steps in the design process are shown schematically in Fig. 1.1.

1.6 Abridged Steps in the Design Process

1. **Project Definition:** One or two sentences describing the system or component to be designed. Check the problem statement for information.

2. **Preliminary Specifications and Constraints:** List the requirements that the design should satisfy. Requirements could come from the problem statement provided by the client or from the end users’ preferences.

 At this point, develop detailed, quantifiable specifications. For example, the client wants a fan-duct system that is quiet. What does “quiet” mean? What are the maximum and minimum noise levels for this “quiet” range? 60 dB may be satisfactory. Could the maximum noise level be 70 dB?

 Detailed specifications or requirements could originate from the client (“client desired”), could be internally imposed by the designer to proceed with the design, or could be externally imposed by international/federal/provincial/municipal/industry standards or codes.
3. **Detailed Design and Calculations**

 (i) Objective

 (ii) Data Given or Known

 (iii) Assumptions/Limitations/Constraints

 (iv) Sketches (where appropriate)

 (v) Analysis

 (vi) Drawings (where appropriate) or other documentation such as manufacturer’s catalog sheets and Specifications.

 (vii) Conclusions