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Preface

Statistical Methods in Radiation Physics began as an effort to help clarify, for our
students and colleagues, implications of the probabilistic nature of radioactive decay
for measuring its observable consequences. Every radiological control technician
knows that the uncertainty in the number of counts detected from a long-lived
radioisotope is taken to be the square root of that number. But why is that so? And how
is the corresponding uncertainty estimated for counts from a short-lived species, for
which the countrate dies away even as the measurement is made? One of us (JET) had
already been presented with these types of questions while teaching courses in the
Oak Ridge Resident Graduate Program of the University of Tennessee’s Evening
School. A movement began in the late 1980s in the United States to codify
occupational radiation protection and monitoring program requirements into Fed-
eral Regulations, and to include performance testing of programs and laboratories
that provide the supporting external dosimetry and radiobioassay services. The
authors’ initial effort at a textbook consequently addressed statistics associated with
radioactive decay and measurement, and also statistics used in the development of
performance criteria and reporting of monitoring results.

What began as a short textbook grew eventually to 15 chapters, corresponding with
the authors’ growing realization that there did not appear to be a comparable text
available. The book’s scope consequently broadened from a textbook for health
physicists to one useful to a wide variety of radiation scientists.

This is a statistics textbook, but the radiological focus is immediately emphasized
in the first two chapters and continues throughout the book. Chapter 1 traces the
evolution of deterministic classical physics at the end of the nineteenth century into
the modern understanding of the wave—particle duality of nature, statistical limita-
tions on precision of observables, and the development of quantum mechanics and
its probabilistic view of nature. Chapter 2 begins with the familiar (to radiological
physicists) exponential decay equation, a continuous, differentiable equation de-
scribing the behavior of large numbers of radioactive atoms, and concludes with the
application of the binomial distribution to describe observations of small, discrete
numbers of radioactive atoms. With the reader now on somewhat familiar ground,
the next six chapters introduce probability, probability distributions, parameter and
interval estimations, and error (uncertainty) propagation in derived quantities. These
statistical tools are then applied in the remaining chapters to practical problems of
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Preface

measuring radioactivity, establishing performance measures for laboratories, instru-
ment response, Monte Carlo modeling, dose response, and regression analysis. The
final chapter introduces Bayesian analysis, which has seen increasing application in
health physics in the past decade. The book is written at the senior or beginning
graduate level as a text for a 1-year course in a curriculum of physics, health physics,
nuclear engineering, environmental engineering, or an allied discipline. A large
number of examples are worked in the text, with additional problems at the end of
each chapter. SI units are emphasized, although traditional units are also used in
some examples. SIabbreviations are used throughout. Statistical Methods in Radiation
Physics is also intended as a reference for professionals in various fields of radiation
physics and contains supporting tables, figures, appendices, and numerous
equations.

We are indebted to our students and colleagues who first stimulated our interest in
beginning such a textbook, and then who later contributed in many ways to its
evolution and kept encouraging us to finish the manuscript. Some individual and
institutional contributions are acknowledged in figure captions. We would like to
thank Daniel Strom, in particular, for his encouragement and assistance in adding a
chapter introducing Bayesian analysis.

The professional staff at Wiley-VCH has been most supportive and patient, for
which we are extremely thankful. It has been a pleasure to work with Anja
Tshcoertner, in particular, who regularly encouraged us to complete the manuscript.
We also owe a debt of gratitude to Maike Peterson and the technical staff for their help
in typesetting many equations.

We must acknowledge with great sorrow that James E. (Jim) Turner died on
December 29, 2008, and did not see the publication of Statistical Methods in Radiation
Physics. Jim conceived the idea that a statistics book applied to problems of
radiological measurements would be useful, and provided the inspiration for this
textbook. He was instrumental in choosing the topic areas and helped develop a large
portion of the material. It was our privilege to have worked with Jim on this book, and
we dedicate it to the memory of this man who professionally and personally enriched
our lives and the lives of so many of our colleagues.



1
The Statistical Nature of Radiation, Emission, and Interaction

1.1
Introduction and Scope

This book is about statistics, with emphasis on its role in radiation physics, measure-
ments, and radiation protection. That this subject is essential for understanding in
these areas stems directly from the statistical nature of the submicroscopic, atomic
world, as we briefly discuss in the next section. The principal aspects of atomic physics
with which we shall be concerned are radioactive decay, radiation transport, and
radiation interaction. Knowledge of these phenomena is necessary for success in many
practical applications, which include dose assessment, shielding design, and the
interpretation of instrument readings. Statistical topics will be further developed for
establishing criteria to measure and characterize radioactive decay, assigning confi-
dence limits for measured quantities, and formulating statistical measures of perfor-
mance and compliance with regulations. An introduction to biological dose-response
relations and to modeling the biological effects of radiation will also be included.

1.2
Classical and Modern Physics — Determinism and Probabilities

A principal objective of physical science is to discover laws and regularities that
provide a quantitative description of nature as verified by observation. A desirable and
useful outcome to be derived from such laws is the ability to make valid predictions of
future conditions from a knowledge of the present state of a system. Newton’s
classical laws of motion, for example, determine completely the future motion of a
system of objects if their positions and velocities at some instant of time and the
forces acting between them are known. On the scale of the very large, the motion of
the planets and moons can thus be calculated forward (and backward) in time, so that
eclipses and other astronomical phenomena can be predicted with great accuracy. On
the scale of everyday common life, Newton’s laws describe all manner of diverse
experience involving motion and statics. However, in the early twentieth century, the
seemingly inviolate tenets of traditional physics were found to fail on the small scale

Statistical Methods in Radiation Physics, First Edition. James E. Turner, Darryl J. Downing, and James S. Bogard
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.
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of atoms. In place of a deterministic world of classical physics, it was discovered that
atoms and radiation are governed by definite, but statistical, laws of quantum physics.
Given the present state of an atomic system, one can predict its future, but only in
statistical terms. What is the probability that a radioactive sample will undergo a
certain number of disintegrations in the next minute? What is the probability that a
given 100-keV gamma photon will penetrate a 0.5-cm layer of soft tissue? According
to modern quantum theory, these questions can be answered as fully as possible only
by giving the complete set of probabilities for obtaining any possible result of a
measurement or observation.

By the close of the nineteenth century, the classical laws of mechanics, electro-
magnetism, thermodynamics, and gravitation were firmly established in physics.
There were, however, some outstanding problems — evidence that all was not quite
right. Two examples illustrate the growing difficulties. First, in the so-called
“ultraviolet catastrophe,” classical physics incorrectly predicted the distribution of
wavelengths in the spectrum of electromagnetic radiation emitted from hot bodies,
such as the sun. Second, sensitive measurements of the relative speed of light in
different directions on earth — expected to reveal the magnitude of the velocity of the
earth through space — gave a null result (no difference!). Planck found that the first
problem could be resolved by proposing a nonclassical, quantum hypothesis related
to the emission and absorption of radiation by matter. The now famous quantum of
action, h = 6.6261 x 10 **J s, was thus introduced into physics. The second dilemma
was resolved by Einstein in 1905 with the revolutionary special theory of relativity. He
postulated that the speed of light has the same numerical value for all observers in
uniform translational motion with respect to one another, a situation wholly in
conflict with velocity addition in Newtonian mechanics. Special relativity further
predicts that energy and mass are equivalent and that the speed of light in a vacuum is
the upper limit for the speed that any object can have. The classical concepts of
absolute space and absolute time, which had been accepted as axiomatic tenets for
Newton’s laws of motion, were found to be untenable experimentally.

W Example

In a certain experiment, 1000 monoenergetic photons are normally incident
on a shield. Exactly 276 photons are observed to interact in the shield, while
724 photons pass through without interacting.

a) What is the probability that the next incident photon, under the same
conditions, will not interact in the shield?
b) What is the probability that the next photon will interact?

Solution
a) Based on the given data, we estimate that the probability for a given photon
to traverse the shield with no interaction is equal to the observed fraction
that did notinteract. Thus, the “best value” for the probability Pr(no) that the
next photon will pass through without interacting is
724

Pr(no) = 1000 — 0.724. (1.1)
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b) By the same token, the estimated probability Pr(yes) that the next photon
will interact is

276
Pr(yes) — W7oo — 0.276, (1.2)

based on the observation that 276 out of 1000 interacted.

This example suggests several aspects of statistical theory that we shall see often
throughout this book. The sum of the probabilities for all possible outcomes
considered in an experiment must add up to unity. Since only two possible alter-
natives were regarded in the example — either a photon interacted in the shield or it
did not—we had Pr(no) + Pr(yes) = 1. We might have considered further whether an
interaction was photoelectric absorption, Compton scattering, or pair production. We
could assign separate probabilities for these processes and then ask, for example,
what the probability is for the next interacting photon to be Compton scattered in the
shield. In general, whatever number and variety of possible outcomes we wish to
consider, the sum of their probabilities must be unity. This condition thus requires
that there be some outcome for each incident photon.

It is evident, too, that a larger data sample will generally enable more reliable
statistical predictions to be made. Knowing the fate of 1000 photons in the example
gives more confidence in assigning values to the probabilities Pr(no) and Pr(yes) than
would knowing the fate of, say, only 10 photons. Having data for 10® photons would be
even more informative.

Indeed, the general question arises, “How can one ever know the actual, true
numerical values for many of the statistical quantities that we must deal with?” Using
appropriate samples and protocols that we shall develop later, one can often obtain
rather precise values, but always within well-defined statistical limitations. A typical
result expresses a “best” numerical value that lies within a given range with a
specified degree of confidence. For instance, from the data given in the example
above, we can express the “measured” probability of no interaction as

Pr(no) = 0.724 £ 0.053  (95% confidence level). (1.3)

(The stated uncertainty, +0.053, is £1.96 standard deviations from an estimated
mean of 0.724, based on the single experiment, as we shall discuss later in connection
with the normal distribution.) Given the result (1.3), there is still no guarantee that the
“true” value is actually in the stated range. Many such probabilities can also be
accurately calculated from first principles by using quantum mechanics. In all known
instances, the theoretical results are in agreement with measurements. Confirmation
by observation is, of course, the final criterion for establishing the validity of the
properties we ascribe to nature.

1.3
Semiclassical Atomic Theory

Following the unexpected discovery of X-rays by Roentgen in 1895, a whole series
of new findings ushered in the rapidly developing field of atomic and radiation
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physics. Over the span of the next two decades, it became increasingly clear that
classical science did not give a correct picture of the world as new physics unfolded.
Becquerel discovered radioactivity in 1896, and Thomson measured the charge-to-
mass ratio of the electron in 1897. Millikan succeeded in precisely measuring the
charge of the electron in 1909. By 1910, a number of radioactive materials had been
investigated, and the existence of isotopes and the transmutation of elements by
radioactive decay were recognized. In 1911, Rutherford discovered the atomic
nucleus — a small, massive dot at the center of the atom, containing all of the positive
charge of the neutral atom and virtually all of its mass. The interpretation of his
experiments on alpha-particle scattering from thin layers of gold pointed to a
planetary structure for an atom, akin to a miniature solar system. The atom
was pictured as consisting of a number of negatively charged electrons traversing
most of its volume in rapid orbital motion about a tiny, massive, positively charged
nucleus.

The advance made with the discovery of the nuclear atom posed another quandary
for classical physics. The same successful classical theory (Maxwell’s equations) that
predicted many phenomena, including the existence of electromagnetic radiation,
required the emission of energy by an accelerated electric charge. An electron in orbit
about a nucleus should thus radiate energy and quickly spiral into the nucleus. The
nuclear atom could not be stable. To circumvent this dilemma, Bohrin 1913 proposed
anew, semiclassical nuclear model for the hydrogen atom. The single electron in this
system moved in classical fashion about the nucleus (a proton). However, in
nonclassical fashion Bohr postulated that the electron could occupy only certain
circular orbits in which its angular momentum about the nucleus was quantized.
(The quantum condition specified that the angular momentum was an integral
multiple of Planck’s constant divided by 27.) In place of the continuum of unstable
orbits allowed by classical mechanics, the possible orbits for the electron in Bohr’s
model were discrete. Bohr further postulated that the electron emitted radiation only
when it went from one orbit to another of lower energy, closer to the nucleus. The
radiation was then emitted in the form of a photon, having an energy equal to the
difference in the energy the electron had in the two orbits. The atom could absorb a
photon of the same energy when the electron made the reverse transition between
orbits. These criteria for the emission and absorption of atomic radiation replaced the
classical ideas. They also implied the recognized fact that the chemical elements emit
and absorb radiation at the same wavelengths and that different elements would have
their own individual, discrete, characteristic spectra. Bohr’s theory for the hydrogen
atom accounted in essential detail for the observed optical spectrum of this element.
When applied to other atomic systems, however, the extension of Bohr’s ideas often
led to incorrect results.

An intensive period of semiclassical physics then followed into the 1920s. The
structure and motion of atomic systems was first described by the equations of
motion of classical physics, and then quantum conditions were superimposed, as
Bohr had done for hydrogen. The quantized character of many variables, such as
energy and angular momentum, previously assumed to be continuous, became
increasingly evident experimentally.
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Furthermore, nature showed a puzzling wave—particle duality in its fundamental
makeup. Electromagnetic radiation, originally conceived as a purely wave phenom-
enon, exhibited properties of both waves and particles. The diffraction and inter-
ference of X-rays was demonstrated experimentally by von Laue in 1912, establishing
their wave character. Einstein’s explanation of the photoelectric effect in 1905
described electromagnetic radiation of frequency v as consisting of packets, or
photons, having energy E = hv. The massless photon carries an amount of momen-
tum that is given by the relation

_E_w

p=_="— (1.4)

where ¢=2.9979 x 10*ms ™" is the speed of light in a vacuum. This particle-like
property of momentum is exhibited experimentally, for example, by the Compton
scattering of photons from electrons (1922). The wavelength A of the radiation is
given by A=c/v. It follows from Eq. (1.4) that the relationship between the
wavelength and momentum of a photon is given by

A P (1.5)
In 1924, de Broglie postulated that this relationship applies not only to photons, but
also to other fundamental atomic particles. Electron diffraction was demonstrated
experimentally by Davisson and Germer in 1927, with the electron wavelength being
correctly given by Eq. (1.5). (Electron microscopes have much shorter wavelengths
and hence much greater resolving power than their optical counterparts.)

There was no classical analogue to these revolutionary quantization rules and
the wave—particle duality thus introduced into physics. Yet they appeared to work. The
semiclassical procedures had some notable successes, but they also led to some
unequivocally wrong predictions for other systems. There seemed to be elements of
truth in quantizing atomic properties, but nature’s secrets remained hidden in the
early 1920s.

1.4
Quantum Mechanics and the Uncertainty Principle

Heisenberg reasoned that the root of the difficulties might lie in the use of
nonobservable quantities to describe atomic constituents — attributes that the
constituents might not even possess. Only those properties should be ascribed to
an object that have an operational definition through an experiment that can be
carried out to observe or measure them. What does it mean, for example, to ask
whether an electron is blue or red, or even to ask whether an electron has a color?
Such questions must be capable of being answered by experiment, at least in
principle, or else they have no meaning in physics. Using only observable atomic
quantities, such as those associated with the frequencies of the radiation emitted by
an atom, Heisenberg in 1924 developed a new, matrix theory of quantum mechanics.
Atalmost the same time, Schrodinger formulated his wave equation from an entirely



6

1 The Statistical Nature of Radiation, Emission, and Interaction

different standpoint. He soon was able to show that his formulation and
Heisenberg’s were completely equivalent. The new quantum mechanics was born.

In the Newtonian mechanics employed by Bohr and others in the semiclassical
theories, it was assumed that an atomic electron possesses a definite position and
velocity at every instant of time. Heisenberg’s reasoning required that, in order to
have any meaning or validity, the very concept of the “position and velocity of the
electron” should be defined operationally by means of an experiment that would
determine it. He showed that the act of measuring the position of an electron ever
more precisely would, in fact, make the simultaneous determination of its momen-
tum (and hence velocity) more and more uncertain. In principle, the position of an
electron could be observed experimentally by scattering a photon from it. The
measured position would then be localized to within a distance comparable to the
wavelength of the photon used, which limits its spatial resolving power. The scattered
photon would, in turn, impart momentum to the electron being observed. Because of
the finite aperture of any apparatus used to detect the scattered photon, its direction of
scatter and hence its effect on the struck electron’s momentum would not be known
exactly. To measure the position of the electron precisely, one would need to use
photons of very short wavelength. These, however, would have large energy and
momentum, and the act of scattering would be coupled with large uncertainty in the
simultaneous knowledge of the electron’s momentum. Heisenberg showed that the
product of the uncertainties in the position Ax in any direction in space and
the component of momentum Ap, in that direction must be at least as large as
Planck’s constant divided by 27 (i = h/2m = 1.0546 x 10 >* ] s):

AxApy > . (1.6)

It is thus impossible to assign both position and momentum simultaneously with
unlimited precision. (The equality applies only under optimum conditions.) The
inequality (1.6) expresses one form of Heisenberg’s uncertainty principle. A similar
relationship exists between certain other pairs of variables, such as energy E and
time t:

AEAt > h. (1.7)

The energy of a system cannot be determined with unlimited precision within a short
interval of time.

These limits imposed by the uncertainty principle are not due to any shortcomings
in our measurement techniques. They simply reflect the way in which the act of
observation itself limits simultaneous knowledge of certain pairs of variables. To
speculate whether an electron “really does have” an exact position and velocity at every
instant of time, although we cannot know them together, apparently has no
operational meaning. As we shall see in an example below, the limits have no
practical effect on massive objects, such as those experienced in everyday life. In
contrast, however, on the atomic scale the limits reflect an essential need to define
carefully and operationally the concepts that are to have meaning and validity.

The subsequent development of quantum mechanics has provided an enormously
successful quantitative description of many phenomena: atomic and nuclear struc-
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ture, radioactive decay, lasers, semiconductors, antimatter, electron diffraction,
superconductivity, elementary particles, radiation emission and absorption, the
covalent chemical bond, and many others. It has revealed the dual wave-particle
nature of the constituents of matter. Photons, electrons, neutrons, protons, and other
particles have characteristics of both particles and waves. Instead of having a definite
position and velocity, they can be thought of as being “smeared out” in space, as
reflected by the uncertainty principle. They can be described in quantum mechanics
by wave packets related to a probability density for observing them in different
locations. They have both momentum p and wavelength A4, which are connected by
the de Broglie relation (1.5). Endowed with such characteristics, the particles exhibit
diffraction and interference effects under proper experimental conditions. Many
quantum-mechanical properties, essential for understanding atomic and radiation
physics, simply have no classical analogue in the experience of everyday life.

W Example

The electron in the hydrogen atom is localized to within about 1 A, which is the
size of the atom. Use the equality in the uncertainty relation to estimate the
uncertainty in its momentum. Estimate the order of magnitude of the kinetic
energy that the electron (mass=m=9.1094 x 10! kg) would have in
keeping with this amount of localization in its position.

Solution
With Ax=1A=10"""min Eq. (1.6), we estimate that the uncertainty in the
electron’s momentum is")

_h1.05x107*]s

:E_T% 107 ** kg ms™. (1.8)
m

We assume that the electron’s momentum is about the same order of
magnitude as this uncertainty. Denoting the electron mass by m, we estimate
for its kinetic energy

;B9 (107 kgms)’
2m 2x9.11x10 kg

~5x 107923V, (1.9)

since 1eV=1.60 x 107*? J. An electron confined to the dimensions of the
hydrogen atom would be expected to have a kinetic energy in the eV range. The
mean kinetic energy of the electron in the ground state of the hydrogen atom is
13.6eV.

The uncertainty principle requires that observing the position of a particle with
increased precision entails increased uncertainty in the simultaneous knowledge of its

1) Energy, which has the dimensions of force x distance, has units 1 ] =1 N m. The newton of force has
the same units as mass x acceleration: 1 N =1kgms ™2 Therefore, 1] sm™~' =1kgms™", which are
the units of momentum (mass X velocity).
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momentum, or energy. Greater localization of a particle, therefore, is accompanied by
greater likelihood that measurement of its energy will yield a large value. Conversely,
if the energy is known with precision, then the particle must be “spread out” in space.
Particles and photons can be described mathematically by quantum-mechanical wave
packets, which, in place of classical determinism, provide probability distributions
for the possible results of any measurement. These essential features of atomic
physics are not manifested on the scale of familiar, everyday objects.

W Example
How would the answers to the last example be affected if

a) the electron were localized to nuclear dimensions (Ax ~10~"° m) or
b) the electron mass were 100 g?

Solution

a) With Ax ~ 10~ "* m, the equality in the uncertainty principle (1.6) gives, in
place of Eq (1.8), Ap=210~" kg m s, five orders of magnitude larger
than before. The corresponding electron energy would be relativistic.
Calculation shows that the energy of an electron localized to within 10~° m
would be about 200 MeV. (The numerical solution is given in Section 2.5 in
Turner (2007), listed in the Bibliography at the end of this book.)

b) Since Axis the same as before (10 ' m), Apin Eq. (1.8) is unchanged. With
m=100g=0.1kg, the energy in place of Eq. (1.9) is now smaller by a factor
of the mass ratio (9.11 x 107>")/0.12210*°. For all practical purposes, with
the resultant extremely small value of T, the uncertainty in the velocity is
negligible. Whereas the actual electron, localized to such small dimensions,
has alarge uncertainty in its momentum, the “100-g electron” would appear
to be stationary.

Quantum-mechanical effects are generally expressed to a lesser extent with relatively
massive objects, as this example shows. By atomic standards, objects in the
macroscopic world are massive and have very large momenta. Their de Broglie
wavelengths, expressed by Eq. (1.5), are vanishingly small. Quantum mechanics
becomes important on the actual physical scale because of the small magnitude of
Planck’s constant.

1.5
Quantum Mechanics and Radioactive Decay

Before the discovery of the neutron by Chadwick in 1932, it was speculated that the
atomic nucleus must be made up of the then known elementary subatomic
particles: protons and electrons. However, according to quantum mechanics, this
assumption leads to the wrong prediction of the angular momentum for certain
nuclei. The nucleus of °Li, for example, would consist of six protons and three
electrons, representing nine particles of half-integral spin. By quantum rules for
addition of the spins of an odd number of such particles, the resulting nuclear
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angular momentum for *Li would also have to be a half-integral multiple of Planck’s
constant, 7. The measured value, however, is just . A similar circumstance occurs
for *N. These two nuclei contain even numbers (6 and 14) of spin-1/2 particles
(protons and neutrons), and hence must have integral angular momentum,
as observed.

The existence of electrons in the nucleus would also have to be reconciled with the
uncertainty principle. In part (a) of the last example, we saw that an electron confined
to nuclear dimensions would have an expected kinetic energy in the range of
200 MeV. There is no experimental evidence for such large electron energies
associated with beta decay or other nuclear phenomena.

If the electron is not there initially, how is its ejection from the nucleus in
beta decay to be accounted for? Quantum mechanics explains the emission of
the beta particle through its creation, along with an antineutrino, at the
moment of the decay. Both particles are then ejected from the nucleus, causing
it to recoil (slightly, because the momentum of the ejected mass is small). The
beta particle, the antineutrino, and the recoil nucleus share the released energy,
which is equivalent to the loss of mass (E=mc”) that accompanies the
radioactive transformation. Since the three participants can share this energy
in a continuum of ways, beta particles emitted in radioactive decay have a
continuous energy spectrum, which extends out to the total energy released.
Similarly, gamma-ray or characteristic X-ray photons are not “present” in the
nucleus or atom before emission. They are created when the quantum
transition takes place. An alpha particle, on the other hand, is a tightly bound
and stable structure of two protons and two neutrons within the nucleus. Alpha
decay is treated quantum mechanically as the tunneling of the alpha particle
through the confining nuclear barrier, a process that is energetically forbidden
in classical mechanics. The emitted alpha particle and recoil nucleus, which
separate back to back, share the released energy uniquely in inverse proportion
to their masses. The resultant alpha-particle energy spectra are therefore
discrete, in contrast to the continuous beta-particle spectra. The phenomenon
of tunneling, which is utilized in a number of modern electronic and other
applications, is purely quantum mechanical. It has no classical analogue
(see Figure 1.1).

The radioactive decay of atoms and the accompanying emission of radiation are
thus described in detail by quantum mechanics. As far as is known, radioactive decay
occurs spontaneously and randomly, without influence from external factors. The
energy thus released derives from the conversion of mass into energy, in accordance
with Einstein’s celebrated equation, E = mc”.

Example

Each of 10 identical radioactive atoms is placed in a line of 10 separate
counters, having 100% counting efficiency. The question is posed, “Which
atom will decay first?” How can the question be answered, and how can the
answer be verified?
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Figure 1.1 An early scanning tunneling
microscope (left) is used to image the electron
clouds of individual carbon atoms on the surface
of a highly oriented pyrolytic graphite sample. As
a whisker tip just above the surface scans it
horizontally in two dimensions, electrons tunnel
through a classically forbidden barrier to produce
a current through the tip. This current is

extremely sensitive to the separation between
the tip and the surface. As the separation tends
to change according to the surface contours
during the scan, negative feedback keeps it
constant by moving a micrometer vertically up or
down. These actions are translated by computer
into the surface picture shown on the right.
(Courtesy of R.). Warmack.)

Solution

Since the atoms are identical and decay is spontaneous, the most one can say is
that it is equally likely for any of the atoms, 1 through 10, to decay first. The
validity of this answer, like any other, is to be decided on an objective basis by
suitable experiments or observations. To perform such an experiment, in
principle a large number of identical sources of 10 atoms could be prepared
and then observed to see how many times the first atom to decay in a source is
atom 1, atom 2, and so on. One would find a distribution, giving the relative
frequencies for each of the 10 atoms that decays first. Because the atoms are
identical, the distribution would be expected to show random fluctuations and
become relatively flatter with an increasing number of observations.

B Example
A source consists of 20 identical radioactive atoms. Each has a 90% chance of
decaying within the next 24 h.

a) What is the probability that all 20 will decay in 24 h?
b) What is the probability that none will decay in 24 h?

Solution
a) The probability that atom 1 will decay in 24 h is 0.90. The probability that
atoms 1 and 2 will both decay in 24 h is 0.90 x 0.90 = (0.90)> = 0.81. That s,




Problems

if the experiment is repeated many times, atom 2 is expected to decay in
90% of the cases (also 90%) in which atom 1 also decays. By extension, the
probability for all atoms to decay in 24 h is

(0.90)° = 0.12. (1.10)

b) Since a given atom must either decay or not decay, the probability for not
decaying in 24h is 1 —0.90=0.10. The probability that none of the 20
atoms will decay is

(0.10)° = 1.0 x 107, (1.11)

As these examples illustrate, quantum mechanics does not generally predict a single,
definite result for a single observation. It predicts, instead, a probability for each of all
possible outcomes. Quantum mechanics thus brings into physics the idea of the
essential randomness of nature. While it is the prevalent conceptual foundation in
modern theory, as espoused by Bohr and others, this fundamental role of chance in
our universe has not been universally acceptable to all scientists. Which atom will
decay first? The contrasting viewpoint was held by Einstein, for example, summed up
in the words, “God does not play dice.”

Problems

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

The dimensions of angular momentum are those of momentum times
distance. Show that Planck’s constant, h = 6.63 x 107>* J s, has the units of
angular momentum.

Einstein’s famous equation, E = mc?, where cis the speed of light in a vacuum,
gives the energy equivalence E of mass m. If m is expressed in kg and ¢ in
m s}, show that E is given in J.

According to classical theory, how are electromagnetic waves generated?
Why would the Bohr model of the atom be unstable, according to classical
physics?

Calculate the wavelength of a 2.50-eV photon of visible light.

Calculate the wavelength of an electron having an energy of 250 eV.

What is the wavelength of a 1-MeV gamma ray?

If a neutron and an alpha particle have the same speed, how do their
wavelengths compare?

If a neutron and an alpha particle have the same wavelength, how do their
energies compare?

If a proton and an electron have the same wavelength, how do their momenta
compare?

An electron moves freely along the X-axis. According to Eq. (1.6), if the
uncertainty in its position in this direction is reduced by a factor of 2, how
is the minimum uncertainty in its momentum in this direction affected?

1
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1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

Why is the uncertainty principle, so essential for understanding atomic
physics, of no practical consequence for hitting a baseball?

Decay of the nuclide 22 Ra to the ground state of 222Rn by emission of an alpha
particle releases 4.88 MeV of energy.

a) What fraction of the total mass available is thus converted into energy? (1
atomic mass unit=931.49 MeV.)
b) What is the initial energy of the ejected alpha particle?

Two conservation laws must be satisfied whenever a radioactive atom decays.
As a result of these two conditions, the energies of the alpha particle and the
recoil nucleus are uniquely determined in the two-body disintegration by
alpha-particle emission. These two laws are also satisfied in beta decay, but do
not suffice to determine uniquely the energy of any of the three decay
products. What are these two laws, which thus require alpha-particle energies
to be discrete and beta-particle energies to be continuous?

The fission of 23> U following capture of a thermal neutron releases an average
of 195 MeV. What fraction of the total mass available (neutron plus uranium
atom) is thus converted into energy? (1 atomic mass unit=931.49 MeV.)
Five gamma rays are incident on a concrete slab. Each has a 95% chance of
penetrating the slab without experiencing an interaction.

a) What is the probability that the first three photons pass through the slab
without interacting?
b) What is the probability that all five get through without interacting?

a) In the last problem, what is the probability that photons 1, 2, and 3 penetrate
the slab without interacting, while photons 4 and 5 do not?

b) What is the probability that any three of the photons penetrate without
interaction, while the other two do not?

Each photon in the last two problems has a binary fate — it either interacts in the
slab or else goes through without interaction. A more detailed fate can be
considered: 2/3 of the photons that interact do so by photoelectric absorption
and 1/3 that interact do so by Compton scattering.

a) What is the probability that an incident photon undergoes Compton
scattering in the slab?

b) What is the probability that it undergoes photoelectric absorption?

c) What is the probability that an incident photon is not photoelectrically
absorbed in the slab?

An atom of “*K (half-life = 12.4 h) has a probability of 0.894 of surviving 2 h.
For a source that consists of five atoms,

a) what is the probability that all five will decay in 2h and
b) what is the probability that none of the five atoms will decay in 2h?

What are the answers to (a) and (b) of the last problem for a source of
100 atoms?



Neutrons

Problems

L

Figure 1.2 Neutrons normally incident on a pair of slabs, 1 and 2. See Problems 1.21-1.24.

1.21

1.22

1.23

1.24

Monoenergetic neutrons are normally incident on a pair of slabs, arranged
back to back, as shown in Figure 1.2. A neutron either is absorbed in a slab or
else goes through without interacting. The probability that a neutron gets
through slab 1is 1/3. If a neutron penetrates slab 1, then the probability that it
gets through slab 2 is 1/4. What is the probability that a neutron, incident on
the pair of slabs, will

a) traverse both slabs?
b) be absorbed in slab 1?
¢) not be absorbed in slab 2?

If, in Figure 1.2, a neutron is normally incident from the right on slab 2, then
what is the probability that it will

a) be absorbed in slab 1?
b) not be absorbed in slab 2?

For the conditions of Problem 1.21, calculate the probability that a neutron,
normally incident from the left, will

a) not traverse both slabs,
b) not be absorbed in slab 1, and
c) be absorbed in slab 2.

What is the relationship among the three answers to the last problem and the
corresponding answers to Problem 1.21?
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