Wiley Series on Information and Communication Technology Series Editors, T. Russell Hsing and Vincent K. N. Lau

BECONDERSIGNED

Richard Chi-Hsi Li

RF CIRCUIT DESIGN

RF CIRCUIT DESIGN

SECOND EDITION

Richard Chi Hsi Li

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2012 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Li, Richard Chi-Hsi, 1938-RF circuit design [electronic resource] / Richard Chi-Hsi Li. – Second edition. 1 online resource. – (Information and communication technology series ; 102) Includes bibliographical references and index. Description based on print version record and CIP data provided by publisher; resource not viewed. ISBN 978-1-118-30990-2 (Adobe PDF) – ISBN 978-1-118-30991-9 (ePub) – ISBN 978-1-118-30993-3 (MobiPocket) – ISBN 978-1-118-20801-4 (cloth) – ISBN 978-1-118-12849-7 (print) 1. Radio circuits–Design and construction. 2. Electronic circuit design. 3. Radio frequency. I. Title. TK6560 621.384'12–dc23 2012011617

CONTENTS

PRE	FACE	TO THE	SECOND EDITION	xix
PA	RT 1	DESIG	N TECHNOLOGIES AND SKILLS	1
1	DIFFI	ERENCE	BETWEEN RF AND DIGITAL CIRCUIT DESIGN	3
	1.1	Contro	versv	3
		1.1.1	Impedance Matching	4
		1.1.2	Key Parameter	5
		1.1.3	Circuit Testing and Main Test Equipment	6
	1.2	Differe	nce of RF and Digital Block in a Communication System	6
		1.2.1	Impedance	6
		1.2.2	Current Drain	7
		1.2.3	Location	7
	1.3	Conclu	sions	9
	1.4	Notes f	for High-Speed Digital Circuit Design	9
	Furth	er Readi	ng	10
	Exerc	cises		11
	Answ	vers		11
2	REFL	ECTION	AND SELF-INTERFERENCE	15
	2.1	Introdu	letion	15
	2.2	Voltage	e Delivered from a Source to a Load	16
		2.2.1	General Expression of Voltage Delivered from a Source to	
			a Load when $l \ll \lambda/4$ so that $T_{\rm d} \to 0$	16
		2.2.2	Additional Jitter or Distortion in a Digital Circuit Block	20
	2.3	Power	Delivered from a Source to a Load	23
		2.3.1	General Expression of Power Delivered from a Source to	
			a Load when $l \ll \lambda/4$ so that $T_d \to 0$	23
		2.3.2	Power Instability	26
		2.3.3	Additional Power Loss	27
		2.3.4	Additional Distortion	28
		2.3.5	Additional Interference	31
	2.4	Impeda	ince Conjugate Matching	33
		2.4.1	Maximizing Power Transport	33 25
		2.4.2	Power Transport without Phase Shift	55

		2.4.3	Impedance Matching Network	37
		2.4.4	Necessity of Impedance Matching	40
	2.5	Additio	onal Effect of Impedance Matching	42
		2.5.1	Voltage Pumped up by Means of Impedance Matching	42
		2.5.2	Power Measurement	49
	Appe	ndices		51
		2.A.1 2.A.2	VSWR and Other Reflection and Transmission Coefficients Relationships between Power (dB_m), Voltage (V), and Power (W)	51
	Dafar	-		50
	Keler E	ence D 1		
	Furin	er Readi	ng	58
	Exerc	cises		59
	Answ	vers		59
3	IMPE	DANCE	MATCHING IN THE NARROW-BAND CASE	61
	3.1	Introdu	action	61
	3.2	Impeda	ance Matching by Means of Return Loss Adjustment	63
		3.2.1	Return Loss Circles on the Smith Chart	63
		3.2.2	Relationship between Return Loss and Impedance	
			Matching	66
		3.2.3	Implementation of an Impedance Matching Network	67
	3.3	Impeda	ance Matching Network Built by One Part	68
		3.3.1	One Part Inserted into Impedance Matching Network in	(0)
		222	Series	68
		3.3.2	in Parallel	70
	3 /	Impede	ance Matching Network Built by Two Parts	74
	5.4	3 4 1	Regions in a Smith Chart	74
		3.4.2	Values of Parts	75
		3.4.3	Selection of Topology	81
	3.5	Impeda	ance Matching Network Built By Three Parts	84
		3.5.1	"IT" Type and "T" Type Topologies	84
		3.5.2	Recommended Topology	84
	3.6	Impeda	ance Matching When $Z_{\rm S}$ Or $Z_{\rm L}$ Is Not 50 Ω	85
	3.7	Parts I	n An Impedance Matching Network	93
	Appe	ndices		94
	11	3.A.1	Fundamentals of the Smith Chart	94
		3.A.2	Formula for Two-Part Impedance Matching Network	99
		3.A.3	Topology Limitations of the Two-Part Impedance	
			Matching Network	110
		3.A.4	Topology Limitation of Three Parts Impedance Matching	
			Network	114
		3.A.5	Conversion between Π and T Type Matching Network	122
		3.A.6	Possible 11 and T Impedance Matching Networks	124
	Refer	ence		124
	Furth	er Readi	ing	124

	Exercises						
Answers							
4	IMPE	DANCE	E MATCHING IN THE WIDEBAND CASE	131			
	4.1	Appear	rance of Narrow and Wideband Return Loss on a Smith Chart	131			
	4.2	Impeda	ance Variation Due to the Insertion of One Part Per Arm or				
		Per Br	anch	136			
		4.2.1	An Inductor Inserted into Impedance Matching Network				
		4.2.2	in Series	137			
		4.2.2	A Capacitor Inserted into Impedance Matching Network	120			
		423	III Series An Inductor Inserted into Impedance Matching Network	139			
		ч.2.5	in Parallel	141			
		4.2.4	A Capacitor Inserted into Impedance Matching Network	111			
			in Parallel	143			
	4.3	Impeda	ance Variation Due to the Insertion of Two Parts Per Arm or				
		Per Br	anch	145			
		4.3.1	Two Parts Connected in Series to Form One Arm	146			
		4.3.2	Two Parts Are Connected in Parallel to Form One Branch	148			
	4.4	Partial	Impedance Matching for an IQ (in Phase Quadrature)				
		Modul	ator in a UWB (Ultra Wide Band) System	151			
		4.4.1	Gilbert Cell	151			
		4.4.2	Impedances of the Gilbert Cell Impedance Metabing for LO, PE, and IE Ports Ignoring	153			
		4.4.3	the Bandwidth	155			
		4.4.4	Wide Bandwidth Required in a UWB (Ultra Wide Band)	155			
			System	159			
		4.4.5	Basic Idea to Expand the Bandwidth	160			
		4.4.6	Example 1: Impedance Matching in IQ Modulator Design				
			for Group 1 in a UWB System	161			
		4.4.7	Example 2: Impedance Matching in IQ Modulator Design				
			for Group $3 + \text{Group } 6$ in a UWB System	172			
	4.5	Discus	sion of Passive Wideband Impedance Matching Network	174			
		4.5.1	Impedance Matching for the Gate of a MOSFET Device	1/5			
	Exetle	4. <i>J.2</i>	inpedance Matching for the Drain of a MOSFET Device	170			
	Furine		ing	179			
	Exerc	ises		1/9			
	Answ	ers		180			
5	IMPE	DANCE	AND GAIN OF A RAW DEVICE	181			
	5.1	Introdu	action	181			
	5.2	Miller	Effect	183			
	5.3	Small-	Signal Model of a Bipolar Transistor	187			
	5.4	Bipola	r Transistor with CE (Common Emitter) Configuration	190			
		5.4.1	Open-Circuit Voltage Gain A _{v,CE} of a CE Device	190			

		5.4.2	Short-Circuit Current Gain β_{CE} and Frequency Response	104
		543	OI a CE Device Primary Input and Output Impedance of a CE (common	194
		5.7.5	emitter) device	196
		5.4.4	Miller's Effect in a Bipolar Transistor with CE	170
			Configuration	197
		5.4.5	Emitter Degeneration	200
	5.5	Bipolar	Transistor with CB (Common Base) Configuration	204
		5.5.1	Open-Circuit Voltage Gain $A_{v,CB}$ of a CB Device	204
		5.5.2	Short-Circuit Current Gain β_{CG} and Frequency Response	• • • •
		553	of a CB Device	206
	5 (J.J.J Dimelar	Transister with CC (Common Collector) Configuration	208
	5.0	5 6 1	Open Circuit Voltage Gain A ag of a CC Device	214
		5.6.2	Short-Circuit Current Gain β_{cc} and Frequency Response	214
		5.0.2	of the Bipolar Transistor with CC Configuration	217
		5.6.3	Input and Output Impedance of a CC Device	218
	5.7	Small-S	Signal Model of a MOSFET	221
	5.8	Similar	ity Between a Bipolar Transistor and a MOSFET	225
		5.8.1	Simplified Model of CS Device	225
		5.8.2	Simplified Model of CG Device	228
		5.8.3	Simplified Model of CD Device	230
	5.9	MOSFI	ET with CS (Common Source) Configuration	235
		5.9.1	Open-Circuit Voltage Gain $A_{v,CS}$ of a CS Device	235
		5.9.2	Short-Circuit Current Gain β_{CS} and Frequency Response of a CS Device	237
		5.9.3	Input and Output Impedance of a CS Device	239
		5.9.4	Source Degeneration	240
	5.10	MOSFI	ET with CG (Common Gate) Configuration	244
		5.10.1	Open-Circuit Voltage Gain of a CG Device	244
		5.10.2	Short-Circuit Current Gain and Frequency Response of a	245
		5 10 3	Log Device	245
	5 1 1	J.10.5	The second secon	247
	5.11	5 11 1	Open-Circuit Voltage Gain $A_{\rm ref}$ of a CD Device	249
		5.11.2	Short-Circuit Current Gain β_{CD} and Frequency Response	200
			of a CD Device	250
		5.11.3	Input and Output Impedance of a CD Device	251
	5.12	Compare with Di	rison of Transistor Configuration of Single-stage Amplifiers	252
	Furth	er Readi	na	256
	Ever	vises	"5	250
	Answ	are		256
_	AIISW	015		230
6	IMPE	DANCE	MEASUREMENT	259
	6.1	Introdu	ction	259
	6.2	Scalar a	and Vector Voltage Measurement	260

		6.2.1	Voltage Measurement by Oscilloscope	260
		6.2.2	Voltage Measurement by Vector Voltmeter	262
	6.3	Direct	Impedance Measurement by a Network Analyzer	263
		6.3.1	Direction of Impedance Measurement	263
		6.3.2	Advantage of Measuring S Parameters	265
		6.3.3	Theoretical Background of Impedance Measurement by	
			S Parameters	266
		6.3.4	S Parameter Measurement by Vector Voltmeter	268
		6.3.5	Calibration of the Network Analyzer	270
	6.4	Alterna	ative Impedance Measurement by Network Analyzer	272
		6.4.1	Accuracy of the Smith Chart	272
		6.4.2	Low- and High-Impedance Measurement	275
	6.5	Impeda	ance Measurement Using a Circulator	276
	Appe	endices		277
		6.A.1	Relationship Between the Impedance in Series and in	
			Parallel	277
	Furth	er Readi	ing	278
	Exer	cises		278
	Answ	vers		279
	Allov	VC15		21)
7	GRO		G	281
1	7 1	Implie	ation of Grounding	201
	7.1	Implica D 11		201
	1.2	Possibl	le Grounding Problems Hidden in a Schematic	283
	7.3	Imperf	ect or Inappropriate Grounding Examples	284
		7.3.1	Inappropriate Selection of Bypass Capacitor	284
		7.3.2	Imperfect Grounding	286
		1.3.3	Improper Connection	288
	7.4	'Zero'	Capacitor	290
		7.4.1	What is a Zero Capacitor	290
		7.4.2	Selection of a Zero Capacitor	290
		7.4.3	Bandwidth of a Zero Capacitor	293
		7.4.4	Combined Effect of Multi-Zero Capacitors	295
		7.4.5	Zaro Consolter in REIC Design	290
	75	7.4.0	Zero Capacitor III KITC Design	290
	1.5	Quarte	A Dunner is a Dert in DE Circuitry	200
		7.5.1	Why Quester Weyelength is so Important	300
		7.5.2	Magic Open Circuited Quarter Wavelength of Microstrip	304
		1.5.5	Line	305
		754	Testing for Width of Microstrip Line with Specific	505
		7.5.4	Characteristic Impedance	307
		7.5.5	Testing for Quarter Wavelength	307
	Δnne	ndices	Tosting for Quarter Wavelength	309
	лрре	7 A 1	Characterizing of Chin Canacitor and Chin Inductor by	509
		/ •1-1•1	Means of S_{21} Testing	309
		7.A 2	Characterizing of Chip Resistor by Means of Su of Sa	507
		,	Testing	319
			0	/

	Refere	ence		321
	Furthe	er Readi	ng	322
	Exerc	ises		322
	Answ	ers		323
8	EOUI	POTEN	FIALITY AND CURRENT COUPLING ON THE GROUND	
-	SURF	ACE		325
	8.1	Equipo	tentiality on the Ground Surface	325
		8.1.1	Equipotentiality on the Grounded Surface of an RF Cable	325
		8.1.2	Equipotentiality on the Grounded Surface of a PCB	326
		8.1.3	Possible Problems of a Large Test PCB	327
		8.1.4	Coercing Grounding	328
		8.1.5	lesting for Equipotentiality	333
	8.2	Forwar	d and Return Current Coupling	335
		8.2.1	Indifferent Assumption and Great Ignore	335
		8.2.2	Reduction of Current Coupling on a PCB	330
		8.2.5 8.2.4	Reduction of Current Coupling hetween Multiple PE	338
		0.2.4	Blocks	340
		8.2.5	A Plausible System Assembly	341
	83	PCB or	C Chin with Multimetallic Lavers	344
	Furth	er Readi	ng	346
	Evoro	icac	ing	246
	Anore	1505		240
	Answ	ers		547
9	LAYC	DUT		349
	9.1	Differe	nce in Layout between an Individual Block and a System	349
	9.2	Primary	y Considerations of a PCB	350
		9.2.1	Types of PCBs	350
		9.2.2	Main Electromagnetic Parameters	351
		9.2.3	Size	351
		9.2.4	Number of Metallic Layers	352
	9.3	Layout	of a PCB for Testing	352
	9.4	VIA M	odeling	355
		9.4.1	Single Via	355
		9.4.2	Multivias	359
	9.5	Runner		360
		9.5.1	When a Runner is Connected with the Load in Series	360
		9.5.2	When a Runner is Connected to the Load in Parallel	363
		9.5.3	Style of Runner	363
	9.6	Parts		369
		9.6.1	Device	369
		9.6.2	Inductor	369
		9.6.3	Resistor	370
		9.6.4	Capacitor	370
	9.7	Free Sp	pace	371

	Refer	ences		373
	Furth	er Readii	ng	373
	Exerc	ises		373
	Answ	ers		374
10	MAN	IUFACTI	JRABILITY OF PRODUCT DESIGN	377
	10.1	Introdu	ction	377
	10.2	Implica	tion of 6σ Design	379
		10.2.1	6σ and Yield Rate	379
		10.2.2	6σ Design for a Circuit Block	382
		10.2.3	6σ Design for a Circuit System	383
	10.3	Approa	ching 6σ Design	383
		10.3.1	By Changing of Parts' σ Value	383
		10.3.2	By Replacing Single Part with Multiple Parts	385
	10.4	Monte	Carlo Analysis	386
		10.4.1	A Band-Pass Filter	386
		10.4.2	Simulation with Monte Carlo Analysis	387
		10.4.3	Sensitivity of Parts on the Parameter of Performance	392
	Appe	ndices	Fundamentals of Dandam Drasses	392
		10.A.1	Index C and C Applied in 6g Design	392
		10.A.2	Table of the Normal Distribution	398
	Furth	ar Readi		308
	Evor		19	300
	Anous	1808		200
	Answ	ers		399
11	RFIC	(RADIO	FREQUENCY INTEGRATED CIRCUIT)	401
	11.1	Interfer	ence and Isolation	401
		11.1.1	Existence of Interference in Circuitry	401
		11.1.2	Definition and Measurement of Isolation	402
		11.1.3	Main Path of Interference in a RF Module	403
	11.0	11.1.4	Main Path of Interference in an IC Die	403
	11.2	Shieldi	ng for an RF Module by a Metallic Shielding Box	403
	11.3	Strong	Desirability to Develop RFIC	405
	11.4	Interfer	ence going along IC Substrate Path	406
		11.4.1	Experiment	406
		11.4.2	Guard Ring	408
	115	Solution	for Interformer Coming from Slav	409
	11.5	Commo	n for interference Conning from Sky	411
	11.0	11 6 1	Grounding of Circuit Branches or Blocks in Parallel	412 412
		11.6.2	DC Power Supply to Circuit Branches or Blocks in Parallel	413
	117	Bottlen	ecks in RFIC Design	414
	11./	11.7.1	Low-O Inductor and Possible Solution	414
		11.7.2	"Zero" Capacitor	419
			-	

11.7.3 Bonding Wire	419
11.7.4 Via	419
11.8 Calculating of Quarter Wavelength	420
Reference	423
Further Reading	423
Exercises	424
Answers	425

PART 2 RF SYSTEM

427

12	MAIN PARAMETERS AND SYSTEM ANALYSIS IN RF CIRCUIT				
	12.1	Introdu	ction	429	
	12.1	Daman		421	
	12.2	Power	Uain Desis Concert of Deflection Demon Coin	431	
		12.2.1	Basic Concept of Reflection Power Gain	431	
		12.2.2	Power Coin in a Unilatoral Casa	434	
		12.2.3 12.2.4	Power Gain in a Unilateral and Impedance Matched Case	437	
		12.2.4	Power Gain and Voltage Gain	430	
		12.2.5	Cascaded Equations of Power Gain	439	
	123	Noise	Cascado Equations of Forter Cam	441	
	12.5	12.3.1	Significance of Noise Figure	441	
		12.3.2	Noise Figure in a Noisy Two-Port RF Block	443	
		12.3.3	Notes on Noise Figure Testing	444	
		12.3.4	An Experimental Method to Obtain Noise Parameters	445	
		12.3.5	Cascaded Equations of Noise Figure	446	
		12.3.6	Sensitivity of a Receiver	448	
	12.4	Nonline	earity	453	
		12.4.1	Nonlinearity of a Device	453	
		12.4.2	IP (Intercept Point) and IMR (Intermodulation Rejection)	461	
		12.4.3	Cascaded Equations of Intercept Point	472	
		12.4.4	Nonlinearity and Distortion	479	
	12.5	Other F	Parameters	480	
		12.5.1	Power Supply Voltage and Current Drain	480	
		12.5.2	Part Count	482	
	12.6	Exampl	le of RF System Analysis	482	
	Appe	ndices		485	
		12.A.1	Conversion between Watts, Volts, and dB_m in a System		
			with 50 Ω Input and Output Impedance	485	
		12.A.2	Relationship between voltage reflection coefficient, Γ , and		
			Transmission coefficients when the load R_0 is equal to the		
			standard characteristic resistance, 50 Ω)	485	
		12.A.3	Definition of Powers in a Two-Port Block by Signal Flow	100	
		10 4 4	Graph	488	
		12.A.4	Main Noise Sources	489	

	References					
	Furth	er Readin	ng	491		
	Exerc	ises		493		
	Answers					
13	SPEC	IALITY C	DF "ZERO IF" SYSTEM	501		
	13.1	Why Di	ifferential Pair?	501		
		13.1.1	Superficial Difference between Single-Ended and			
			Differential Pair	501		
		13.1.2	Nonlinearity in Single-Ended Stage	503		
		13.1.3	Nonlinearity in a Differential Pair	505		
		13.1.4	Importance of Differential Configuration in a Direct	507		
		1215	Why Direct Conversion or Zero IF 2	507		
	12.0	15.1.5 C DC	Why Direct Conversion of Zero IF?	508		
	13.2	Can DC	Onset be Blocked out by a Capacitor?	508		
	13.3	Choppir	ng Mixer	511		
	13.4	DC Off	set Cancellation by Calibration	516		
	13.5	Remark	on DC Offset Cancellation	517		
	Furth	er Readin	ıg	517		
	Exercises			518		
	Answ	ers		519		
14	DIFFE	ERENTIA	L PAIRS	521		
14	DIFFE 14.1	Fundam	L PAIRS entals of Differential Pairs	521 521		
14	DIFFE 14.1	Fundam 14.1.1	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair	521 521 521		
14	DIFFI 14.1	Fundam 14.1.1 14.1.2	L PAIRS tentals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair	521 521 521 524		
14	DIFFE 14.1	Fundam 14.1.1 14.1.2 14.1.3	L PAIRS tentals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair	521 521 521 524 527		
14	DIFF 14.1	Fundam 14.1.1 14.1.2 14.1.3 14.1.4	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair	521 521 524 527 528		
14	DIFFE 14.1	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential	521 521 524 527 528		
14	DIFFI 14.1	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair	521 521 524 527 528 530		
14	DIFFI 14.1	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Communication of the Definition	521 521 524 527 528 530 531		
14	DIFFE 14.1 14.2	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Exercises of CMDB	521 521 524 527 528 530 531 533 522		
14	DIFFI 14.1 14.2	ERENTIA Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRP in a Single Ended Stage	521 521 524 527 528 530 531 533 533		
14	DIFFI 14.1 14.2	ERENTIA Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair	521 521 524 527 528 530 531 533 533 539 539		
14	DIFFI 14.1 14.2	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 539		
14	DIFFE 14.1 14.2 Refer	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4 ence	L PAIRS nentals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 539 541 542		
14	DIFFE 14.1 14.2 Refer	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4 ence	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 539 541 542 542		
14	DIFFE 14.1 14.2 Refer Furthe	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4 ence er Readin	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 541 542 542 542		
14	DIFFE 14.1 14.2 14.2 Refer Furth Exerc	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4 ence er Readin ises	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 539 541 542 542 542 542		
14	DIFFE 14.1 14.2 14.2 Refer Furth Exerc Answ	ERENTIA Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4 ence er Readin ises ers	L PAIRS nentals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Transfer Characteristic of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 541 542 542 542 542		
14	DIFFE 14.1 14.2 14.2 Refer Furthe Exerc Answ	Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4 ence er Readin ises ers	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 541 542 542 542 542 542 543		
14	DIFFE 14.1 14.2 14.2 Refer Furth Exerc Answ RF B / 15.1	ERENTIA Fundam 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 CMRR 14.2.1 14.2.2 14.2.3 14.2.4 ence er Readin ises ers ALUN Introduc	L PAIRS entals of Differential Pairs Topology and Definition of a Differential Pair Transfer Characteristic of a Bipolar Differential Pair Small Signal Approximation of a Bipolar Differential Pair Small Signal Approximation of a MOSFET Differential Pair Small Signal Approximation of a MOSFET Differential Pair What Happens If Input Signal Is Imperfect Differential (Common Mode Rejection Ratio) Expression of CMRR CMRR in a Single-Ended Stage CMRR in a Pseudo-Differential Pair Enhancement of CMRR	521 521 524 527 528 530 531 533 533 539 539 541 542 542 542 542 542 543 547		

		15.2.1	Transformer Balun in RF Circuit Design with Discrete Parts	550
		15.2.2	Transformer Balun in RFIC Design	550
		15.2.3	An Ideal Transformer Balun for Simulation	551
		15.2.4	Equivalence of Parts between Single-Ended and	
		15.2.5	Differential Pair in Respect to an Ideal Transformer Balun Impedance Matching for Differential Pair by means of	555
			Transformer Balun	568
	15.3	LC Bal	un	571
		15.3.1	Simplicity of LC Balun Design	572
		15.3.2	Performance of a Simple LC Balun	572
		15.3.3	A Practical LC Balun	576
	15.4	Microst	rip Line Balun	580
		15.4.1	Ring Balun	580
		15.4.2	Split Ring Balun	582
	15.5	Mixing	Type of Balun	583
		15.5.1	Balun Built by Microstrip Line and Chip Capacitor	583
		15.5.2	Balun Built by Chip Inductors and Chip Capacitors	585
	Appei	ndices		586
		15.A.1	Transformer Balun Built by Two Stacked Transformers	586
		15.A.2	Analysis of a Simple LC Balun	588
		15.A.3	Example of Calculating of L and C Values for a Simple	
			LC Balun	592
		15.A.4	Equivalence of Parts between Single-Ended and	
			Differential Pair with Respect to a Simple LC Balun	592
		15.A.5	Some Useful Couplers	602
		15.A.6	Cable Balun	603
	Refere	ence		604
	Furthe	er Readir	ng	604
	Exerc	ises		605
	Answ	ers		606
16	SOC	(SYSTEN	Л-ON-A-CHIP) AND NEXT	611
	16.1	SOC		611
	10.1	16.1.1	Basic Concept	611
		16.1.2	Remove Bottlenecks in Approach to RFIC	612
		16.1.3	Study Isolation between RFIC. Digital IC, and Analog IC	612
	16.2	What is	Next	612
	Δ nnei	ndices		615
	прры	16 A 1	Packaging	615
	Defor	10.71.1	i uckugnig	621
	Eneth	Deed!		622
	rurune	ei Keaulf	Ig	022
	Exerc	ises		622
	Answ	ers		623

PART 3 INDIVIDUAL RF BLOCKS

17	LNA (LOW-NOISE AMPLIFIER)			627
	17.1	Introdu	ction	627
	17.2	Single-	Ended Single Device LNA	628
		17.2.1	Size of Device	629
		17.2.2	Raw Device Setup and Testing	632
		17.2.3	Challenge for a Good LNA Design	639
		17.2.4	Input and Output Impedance Matching	646
		17.2.5	Gain Circles and Noise Figure Circles	648
		17.2.6	Stability	649
		17.2.7	Nonlinearity	653
		17.2.8	Design Procedures	655
		17.2.9	Other Examples	656
	17.3	Single-	Ended Cascode LNA	662
		17.3.1	Bipolar CE–CB Cascode Voltage Amplifier	662
		17.3.2	MOSFET CS-CG Cascode Voltage Amplifier	666
		17.3.3	Why Cascode?	669
		17.3.4	Example	671
	17.4	LNA w	with AGC (Automatic Gain Control)	684
		17.4.1	AGC Operation	684
		17.4.2	Traditional LNA with AGC	686
		17.4.3	Increase in AGC Dynamic Range	688
		17.4.4	Example	689
	Refer	ences		690
	Furth	er Readi	ng	690
	Exerc	ises		691
	Answ	vers		692

18 MIXER 695 18.1 Introduction 695 18.2 Passive Mixer 698 18.2.1 Simplest Passive Mixer 698 18.2.2 Double-Balanced Quad-Diode Mixer 699 18.2.3 Double-Balanced Resistive Mixer 702 18.3 Active Mixer 706 18.3.1 Single-End Single Device Active Mixer 706 18.3.2 Gilbert Cell 708 18.3.3 Active Mixer with Bipolar Gilbert Cell 712 18.3.4 Active Mixer with MOSFET Gilbert Cell 715 18.4 Design Schemes 717 18.4.1 Impedance Measuring and Matching 717 18.4.2 Current Bleeding 718 18.4.3 Multi-tanh Technique 719

625

		18.4.4	Input Types	722	
	Appen	dices		723	
		18.A.1	Trigonometric and Hyperbolic Functions	723	
		18.A.2	Implementation of tanh ⁻¹ Block	724	
	Refere	nces		726	
	Further Reading				
	Exerci	ses		726	
	Answe	ers		727	
19	TUNABLE FILTER				
	19.1	Tunable	e Filter in A Communication System	731	
		19.1.1	Expected Constant Bandwidth of a Tunable Filter	732	
		19.1.2	Variation of Bandwidth	732	
	19.2	Couplin	ng between two Tank Circuits	733	
		19.2.1	Inappropriate Coupling	735	
		19.2.2	Reasonable Coupling	738	
	19.3	Circuit	Description	738	
	19.4	Effect of	of Second Coupling	739	
	19.5	Perform	nance	743	
	Furthe	r Readi	ng	746	
	Exerci	ses		747	
	Answe	ers		747	
20	VCO (VOLTA	AGE-CONTROLLED OSCILLATOR)	749	
	20.1	"Three-	-Point" Types of Oscillator	749	
		20.1.1	Hartley Oscillator	751	
		20.1.2	Colpitts Oscillator	753	
		20.1.3	Clapp Oscillator	753	
	20.2	Other S	Single-Ended Oscillators	755	
		20.2.1	Phase-Shift Oscillator	755	
		20.2.2	TITO (Tuned Input and Tuned Output) Oscillator	757	
		20.2.3	Resonant Oscillator	757	
		20.2.4	Crystal Oscillator	758	
	20.3	VCO a	nd PLL (Phase Lock Loop)	759	
		20.3.1	Implication of VCO	759	
		20.3.2	Transfer Function of PLL	760	
		20.3.3	White Noise from the Input of the PLL Phase Noise from a VCO	/63	
	20.4	20.5.4		704	
	20.4	Design	Example of a Single-Ended VCO Single Ended VCO with Class Configuration	/69	
		20.4.1	Varactor	/09 770	
		20.4.2	valacion Printed Inductor	770	
		20.4.5	Simulation	773	
		20.4.5	Load-Pulling Test and VCO Buffer	776	
	20.5	Differe	ntial VCO and Ouad-Phases VCO	778	

	Refer	Reference Further Reading Exercises Answers				
	Furth					
	Exerc					
	Answ					
21	PA (F	POWER AMPLIFIER)	789			
	21.1	Classification of PA	789			
		21.1.1 Class A Power Amplifier	790			
		21.1.2 Class B Power Amplifier	790			
		21.1.3 Class C Power Amplifier	791			
		21.1.4 Class D Power Amplifier	791			
		21.1.5 Class E Power Amplifier	792			
		21.1.6 Third-Harmonic-Peaking Class F Power Amplifier	793			
		21.1.7 Class S Power Amplifier	794			
	21.2	Single-Ended PA	794			
		21.2.1 Tuning on the Bench	795			
		21.2.2 Simulation	796			
	21.3	Single-Ended PA IC Design	798			
	21.4	Push–Pull PA Design	799			
		21.4.1 Main Specification	799			
		21.4.2 Block Diagram	799			
		21.4.3 Impedance Matching	800			
		21.4.4 Reducing the Block Size	804			
		21.4.5 Double Microstrip Line Balun	808			
		21.4.6 Toroidal RF Transformer Balun	817			
	21.5	PA with Temperature Compensation	822			
	21.6	PA with Output Power Control	823			
	21.7	Linear PA	824			
	References					
	Further Reading					
	Exercises					
	Answ	Answers				

833

PREFACE TO THE SECOND EDITION

I wrote the book titled *RF Circuit Design* in the United States, which was published by John Wiley & Sons, Inc. in 2009. It contains three parts:

1. Introduction to individual RF circuit block design. This part resembles existing books on RF circuit design. The topics concern main RF blocks such as the LNA (low-noise amplifier), Mixer, PA (power amplifier), VCO (voltagecontrolled oscillator), PLL (phase lock loop), and so on. Most published RF books or articles focus largely on the description of operating principles of the circuitry. Distinctively, this part of the book emphasizes the actual engineering design procedures and schemes.

This part could be categorized as "longitudinal."

2. Summary of skills and technologies in RF circuit design. Instead of describing circuit operating principles, the second part describes general design skills and technologies, such as impedance matching, RF grounding, layout, jeopardy in RFIC and SOC (system-on-a-chip) design, 6σ design, and so on. This part is derived from my own design experience of over 20 years, highlighting both successes and failures. Therefore, it is unique among the published books on RF circuit design and represents the special feature of this book.

This part could be categorized as "transversal."

3. Basic parameters of an RF system and the fundamentals of RF system design. This part considers a "must" theoretical background to an RF circuit designer, who should fully understand the basic RF parameters so that he can design the RF circuitry to serve the entire system.

Till date, more than 60 lectures on the subjects of this book have been held in mainland China, Taiwan, Hong Kong, and Singapore.

I received many precious comments and valuable inputs from readers after the first edition was published. This encouraged me and promoted the desire to work on a second edition. The following are the main changes in this book from the first edition:

- Emphasis of the skills and technologies in RF circuit design. In order to emphasize
 the importance of the skills and technologies in the RF circuit design, the second
 part in the first edition that covers skills and technologies in RF circuit design is
 shifted as the first part in the second edition. To an RF circuit designer, no matter
 whether he or she would like to be a good engineer, a qualified professor, or an
 authoritative academic, the foremost objective is to master the design skills and
 technologies in the RF circuit design.
- 2. It is expected that this book can be adapted as a textbook for university courses. In order to help students further familiarize themselves with the topics of this

book, exercises are included at the end of each chapter. This may be convenient to those professors who would like to select this book as a textbook in their electrical engineering courses. In other words, it is expected that this book would be not only a science-technology-engineering reference but also a candidate for a textbook.

3. Expansion of topics. In addition to the rearranging of chapters or paragraphs, some chapters have been split up and new chapters have been inserted, increasing the number of chapters from 18 in the first edition to 21 in the second edition.

Finally, I express my deep appreciation to my lovely sons, Bruno Sie Li and Bruce Xin Li, who checked and corrected my English writing for this book. Also, it should be noted that unconventional descriptions, prejudices, or mistakes may inevitably appear in this book since most of the raw material comes from my own engineering designs and theoretical derivations. Comments or corrections from readers would be highly appreciated. My email address is chihsili@yahoo.com.cn.

Fort Worth, TX, USA, 2011

RICHARD CHI HSI LI

PART 1

DESIGN TECHNOLOGIES AND SKILLS

1

DIFFERENCE BETWEEN RF AND DIGITAL CIRCUIT DESIGN

1.1 CONTROVERSY

For many years, there has been continued controversy between digital and RF circuit designers, some of which are given below:

- RF circuit designers emphasize impedance matching, whereas digital circuit designers are indifferent to it.
- RF circuit designers are concerned with frequency response, whereas digital circuit designers are interested in the waveform, or "eye's diagram." In other words, RF circuit designers prefer to work in the frequency domain, whereas digital circuit designers like to work in the time domain.
- As a consequence of the above, in a discussion of the budget for equipment, RF circuit designers like to purchase good network analyzers, whereas digital circuit designers prefer to buy the best oscilloscopes.
- RF circuit designers use the unit of dB_W, whereas digital circuit designers insist on using dB_V.
- Not only are the design methodologies different, so are their respective jargons. Digital circuit designers talk about AC bypass capacitors or DC blocking capacitors, but RF circuit designers rename those as "zero" capacitors.

It almost seems as if they were two different kinds of aliens from different planets. Even in some conferences or publications, these two kinds of "aliens" argue with

RF Circuit Design, Second Edition. Richard Chi Hsi Li.

^{© 2012} John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.

each other. Each tries to prove that their design methodology is superior to the others'. Eventually, nobody is the winner.

Let us outline the main controversies in the following.

1.1.1 Impedance Matching

The phrase "impedance matching" comes out of RF circuit designers' mouths almost everyday. They were told by their supervisors that impedance matching is a "must" skill in circuit design. On the other hand, such terminology is never heard among digital circuit designers. Their supervisors tell them, "ignore that 'foreign language' just focus on the 'eye diagram,' or waveform."

It is not just digital circuit designers who ignore impedance matching. Even some RF circuit designers "discovered" something new in their "advanced" RFIC (RF integrated circuit) design. While it was necessary to take care of impedance matching in RF module design or in RF blocks built by discrete parts, where the incident and reflected power in the circuit really existed, they thought it unnecessary to take care of impedance matching in an RFIC circuit design because the size of an IC die is so small as to render distinguishing the incident and reflective power or voltage redundant or meaningless. In agreement with their assertions, in the IC realm the design methodology for the RF circuit should be more or less the same as that for the digital circuit. Since then, they have been designing RF circuit blocks with the same method as used for digital circuit blocks. All the individual RF blocks are simply crowded together since "impedance matching between the individual blocks is not necessary." Their design methodology for RF blocks is specially named as the "Combo" or "Jumbo" design. Theoretically, they thought that all kinds of circuitry must obey Ohm's law and follow KCL (Kirchhoff's current law) and KVL (Kirchhoff's voltage law) rules without exception. So, why is the difference of design methodology? From their viewpoint, it seems unnecessary to divide the circuit design team into an RF and a digital circuit design group accordingly.

RF circuit designers would be very happy if impedance matching was unnecessary because impedance matching is the most difficult task in RF circuit design, especially in RFIC design for the UWB (ultrawide-band) system. Unfortunately, design experience indicates that the Combo or Jumbo design philosophy is absolutely wrong. For instance, without impedance matching, a LNA (low-noise amplifier) becomes a noisy attenuator or an oscillator in an RFIC chip. Without impedance matching, a mixer would become a "real" mixer indeed, blending all desired signals and undesired interference or noise together!

The key point to stop the controversy is whether the concept of voltage or power reflection is available in RF or digital circuitry. Should the reflection of voltage or power not exist in a practical circuitry, the idea of a Combo or Jumbo design could be a correct design methodology. On the contrary, if the reflection of voltage or power exists in a practical circuitry, impedance matching would be important for power transportation or manipulation in a circuitry, and then the idea of Combo or Jumbo design would be an incorrect design methodology.

As a matter of fact, the existence of power or voltage reflection can be deduced from a rough analysis of an RF block. For example, without impedance matching, the insertion loss of an LC passive filter could be significant. However, if the Q values of the inductors or capacitors are high, the LC passive filter itself should not conceivably produce a loss of power. This significant insertion loss demonstrates that quite a lot of power is reflected from the filter or load to the source. On the other hand, power or voltage reflection is not related to the size of the block but to the impedance matching status between the source and the load. A simple example could illustrate the validity of such an assertion: light is reflected from a mirror in the same way no matter whether the light source is far from or very close to the mirror.

1.1.2 Key Parameter

There is a true story from a start-up company researching and developing a wireless communication system.

In spite of different opinions and various comments among his engineering teams, the engineering director asked both his RF and digital circuit design teams to work together for the system design of a communication system. He ruled that *voltage* must be taken as the key parameter to measure the performance of every block, including digital and RF blocks. In other words, the goal of the input and the output in every block, no matter RF or digital, must be specified with the voltage value. This engineering director hates the RF circuit designers' incessant "gossip" about power and impedance.

The engineers did try very hard to follow his instructions. There seemed to be no problem for the digital circuit blocks. However, the engineers were confused and did not know how to specify the goals for RF blocks by voltage instead of power.

By the RF engineers' understanding, all the parameters including G (power gain), NF (noise figure), IP_3 (3rd order intercept point), and IP_2 (2nd order intercept point) applied in RF circuit design were expressed by power but not voltage. In order to follow the director's instructions, they spent a lot of time to convert all the parameters from power to voltage, since power was the traditional unit and was read by most equipment. Sometimes, the conversion was meaningless or uncertain. For instance, by the unit of voltage, CNR (carrier-to-noise ratio) at the input of the demodulator was significantly dependent on the output impedance of the stage before the demodulator and the input impedance of the demodulator. Especially when the output impedance of the stage before the demodulator and the input impedance of the demodulator were different from each other, the conversion becomes impossible. Even more awkwardly, members of audience who attended the presentation meeting held by this system design team could not understand why the values appearing in the system plan were surprisingly higher or lower than those from other companies. Eventually, after they learnt of the extraordinary instructions given by the engineering director, the part of the audience equipped with calculators at hand could not but convert those values back from voltage to power!

Among this system design team, selection of a common key parameter for both RF and digital circuit designs became a hot topic. People argued with each other without result, while the director still insisted on his original instructions. After a couple of weeks, the system design still hung in the air and, finally, for unknown reasons the plan for the system design was dropped quietly. Some RF circuit designers felt upset and left the company despite the director's exhortations: "Nothing is Impossible!"

As a matter of fact, system design for a communication system must be divided into two portions: the digital portion and the RF portion. Yes, the key parameter in the digital circuit design is voltage or current. By means of voltage or current, all the intermediate parameters can be characterized. However, the key parameter in RF circuit design must be power or impedance. By means of power and impedance, all the intermediate parameters in a RF circuit block can be characterized. Impedance matching ensures the best performance of power transportation or manipulation in RF circuit blocks; therefore, impedance can be taken as the key parameter in RF circuit design.

Why? The answer can be found in the following sections.

1.1.3 Circuit Testing and Main Test Equipment

In addition to the arguments about impedance matching and the key parameters, the difference between digital and RF circuit design can also be found in circuit testing and test equipment.

In a digital test laboratory, the test objective is always voltage, and occasionally current. There are many pieces of test equipment available in a digital test laboratory; however, the main test equipment is the oscilloscope. The oscilloscope can sense the voltage at any node in the circuitry and display its eye diagram or a waveform on screen, which characterizes the performance of a digital circuit intuitionally. In general, digital circuit designers prefer to analyze the circuitry in the time domain because the speed of response is important to the performance of a digital circuit block.

In an RF test laboratory, the test objective is always power. Most RF test equipment, such as the spectrum analyzer, noise meter, signal generator, and so on, measure the parameters of an RF circuit block in terms of power but not voltage. The main test equipment is the network analyzer. The performance of an RF circuit block can be characterized mainly by its frequency response on network analyzer screen, which is expressed by power gain or loss, in decibels. The RF circuit designer prefers to analyze the circuitry in the frequency domain because coverage of bandwidth is important to the performance of an RF block.

In the test laboratory, testing a digital circuit block is somewhat easier than testing an RF circuit block. In testing for a digital circuit block, the probe of an oscilloscope is usually a sensor with high impedance. It does not disturb the circuit performance when it touches a node in the circuitry.

On the other hand, while using a network analyzer, the circuit designers may worry about the difference of circuit performance before and after the tested equipment is connected to the desired test node, because the input and output impedance of the equipment is low, usually 50 Ω . In most cases, it certainly will disturb the circuit performance.

Instead of voltage testing, the RF circuit designer is concerned with power testing. All power testing must be conducted under a good impedance matching condition so the test equipment must be well calibrated. Unlike the testing for a digital circuit block by an oscilloscope, a buffer connected between the desired test node and the input of the network analyzer is not allowed because all the power tests for the RF block must be conducted under the condition of impedance matching.

So far, the different methodology between RF and digital circuit design has been introduced only in terms of the three main aspects above. More differences exist but will not be listed. We are going to focus on the explanation of where these differences come from.

1.2 DIFFERENCE OF RF AND DIGITAL BLOCK IN A COMMUNICATION SYSTEM

1.2.1 Impedance

The input and output impedance of an RF circuitry are usually pretty low. In most cases, they are typically 50 Ω . On the contrary, the input and output impedances in a digital circuitry are usually quite high. For example, the input and output impedances of an Op-Amp (operating amplifier) are mostly higher than 10 k Ω .

The lower impedance in an RF circuitry is beneficial to deliver power to a block or a part. It is well known that the power of a signal delivered to a block or a part with impedance Z can be expressed by

 $P = vi = \frac{v^2}{Z},\tag{1.1}$

where

- P = the power delivered to a block or a part,
- v = the AC or RF voltage across the block or the part,
- i = the AC or RF current flowing through the block or part, and
- Z = the impedance of the block or the part.

For a given value of power, v^2 is proportional to Z. This implies that, in order to deliver a given power to a block or a part, a higher voltage must be provided if its impedance is high. On the contrary, a lower voltage across the block is enough to deliver the same given power to a block or a part if its impedance is low. From the viewpoint of either cost or engineering design of the circuit, the application of a lower voltage is much better than that of a higher voltage. It is one of the reasons why the input and output impedance in the RF blocks are intentionally assigned to be low because only a lower voltage is needed in order to deliver the same given power to a block or part with low impedance.

However, it is just the opposite for a digital signal. The higher impedance in digital circuitry is beneficial to the voltage swing in a digital block or part. For a given current, a higher impedance can have a higher voltage swing across a block or a part, and then the signal can ON/OFF the device more effectively, because

$$v = iZ. \tag{1.2}$$

The question is: why is RF circuitry focused on the power while digital circuitry is concerned about voltage?

1.2.2 Current Drain

In RF circuit blocks, the current drains are usually in the order of milliamperes while in digital circuit blocks they are usually in the order of microamperes. That is, the difference of the current drain's magnitude between RF and digital circuit blocks is approximately 1000 times.

In RF circuit blocks, it is desirable to increase the power of the RF signal as much as possible. This implies that higher current drains are preferred in RF circuit blocks because they are beneficial to deliver power to the block or the part for a given voltage.

In digital circuit blocks, it is desirable to reduce the power of the digital signal as much as possible. This implies that lower current drains are preferred in digital circuit blocks as long as the voltage swing is high enough.

Again, the question is: why is RF circuitry focused on power while digital circuitry is concerned with voltage? The answer can be found in the following section.

1.2.3 Location

In a communication system, the demodulator is a remarkable demarcation in the receiver. As shown in Figure 1.1, before the demodulator, the blocks operate in the range of radio

frequency so that they are called *RF blocks*. They are sometimes called the *RF front end* in the receiver, where the RF circuit design is conducted. After demodulation, the blocks operate in the range of intermediate frequency or in the low digital data rate and are categorized as baseband blocks, or the digital/analog section. They are sometimes called the *back end* in the receiver, where digital/analog circuit design is conducted. The demodulator is a critical block in which both digital and RF design technology are needed.

The order of blocks in the transmitter is just opposite. Before the modulator, the blocks operate in the range of intermediate frequency or in the low digital data rate and are categorized as baseband blocks, or the digital/analog section. They are sometimes called the *front end* in the transmitter, where digital/analog circuit design is conducted. After the modulator, the blocks operate in the range of radio frequency so that they are called *RF blocks* and sometimes the *RF back end* in the transmitter, where RF circuit design is conducted. The modulator is also a critical block, in which both digital and RF design technology are needed.

A common feature can be seen from Figure 1.1. In either the receiver or the transmitter, the circuit portion close to the antenna side contains RF blocks and the portion farther from antenna side contains digital/analog circuit blocks.

Figure 1.1. Demarcation line in a communication system. (a) Receiver. (b) Transmitter.