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The relative motion between the transmitter and the receiver modifies the nonstationarity 
properties of the transmitted signal. In particular, the almost-cyclostationarity property 
exhibited by almost all modulated signals adopted in communications, radar, sonar,  
and telemetry can be transformed into more general kinds of nonstationarity. A proper  
statistical characterization of the received signal allows for the design of signal processing 
algorithms for detection, estimation, and classification that significantly outperform 
algorithms based on classical descriptions of signals. Generalizations of Cyclostationary 
Signal Processing addresses these issues and includes the following key features:

•	Presents the underlying theoretical framework, accompanied by details of 
their practical application, for the mathematical models of generalized almost-
cyclostationary processes and spectrally correlated processes; two classes of signals 
finding growing importance in areas such as mobile communications, radar and sonar.

•	Explains second- and higher-order characterization of nonstationary stochastic 
processes in time and frequency domains.

•	Discusses continuous- and discrete-time estimators of statistical functions of 
generalized almost-cyclostationary processes and spectrally correlated processes.

•	Provides analysis of mean-square consistency and asymptotic Normality of 
statistical function estimators.

•	Offers extensive analysis of Doppler channels owing to the relative motion between 
transmitter and receiver and/or surrounding scatterers.

•	Performs signal analysis using both the classical stochastic-process approach and 
the functional approach, where statistical functions are built starting from a single 
function of time.
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Preface

Many processes in nature arise from the interaction of periodic phenomena with random phe-
nomena. The results are processes which are not periodic, but whose statistical functions are
periodic functions of time. These processes are called cyclostationary and are an appropriate
mathematical model for signals encountered in telecommunications, radar, sonar, telemetry,
astronomy, mechanics, econometric, biology. In contrast, the classical model of stationary
processes considers statistical functions which do not depend on time. More generally, if dif-
ferent periodicities are present in the generation mechanism of the process, the process is
called almost cyclostationary (ACS). Almost all modulated signals adopted in communica-
tions, radar, and sonar can be modeled as ACS. Thus, in the past twenty years the exploitation
of almost-cyclostationarity properties in communications and radar has allowed the design
of signal processing algorithms for detection, estimation, and classification that significantly
outperform classical algorithms based on a stationary description of signals. The gain in per-
formance is due to a proper description of the nonstationarity of the signals, that is, the time
variability of their statistical functions.

In this book, mathematical models for two general classes of nonstationary processes are
presented: generalized almost-cyclostationary (GACS) processes and spectrally correlated
(SC) processes. Both classes of processes include cyclostationary and ACS processes as special
cases. SC and GACS processes are appropriate models for the received signal in mobile com-
munications or radar scenarios when the transmitted signal is ACS and the propagation channel
is a (possibly multipath) Doppler channel due to the relative motion between transmitter,
receiver, and/or surrounding scatters or targets. SC processes are shown to be useful in the de-
scription of processes encountered in multirate systems and spectral analysis with nonuniform
frequency spacing. GACS processes find application in the description of communications
signals with slowly varying parameters such as carrier frequency, baud rate, etc.

The problem of statistical function estimation is addressed for both GACS and SC processes.
This problem is challenging and of great interest at the applications level. In fact, once the
nonstationary behavior of the observed signal has been characterized, statistical functions need
to be estimated to be exploited in applications. The existence of reliable statistical function
estimators for ACS processes is one of the main motivations for the success of signal pro-
cessing algorithms based on this model. The results presented in this book extend most of
the techniques used for ACS signals to the more general classes of GACS and SC signals.
Mean-square consistency and asymptotic Normality properties are proved for the considered
statistical function estimators. Both continuous- and discrete-time cases are considered and
the problem of sampling and aliasing is addressed. Extensive simulation results are presented
to corroborate the theoretical results.
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How to use this book

The book is organized so that it can be used by readers with different requirements. Chapter
1 contains background material for easy reference in the subsequent chapters. Chapters 2
and 4 contain the main results presented in the form of theorems with sketches of proofs
and illustrative examples. Thus, these chapters can be used by the non-specialist who is only
interested in recipes or results and wants to grasp the main ideas. Each of these two chapters
is followed by a chapter containing complements and proofs (Chapters 3 and 5). Each proof
is divided into two parts. The first part consists of the formal manipulations to find the result.
This part is aimed at advanced readers with a background of graduate students in engineering.
The second part of the proof consists of the justification of the formal manipulations and is
therefore aimed at specialists (e.g., mathematicians).

Book outline

In Chapter 1, the statistical characterization of persistent (finite-power) nonstationary stochas-
tic processes is presented. Both strict-sense and wide-sense characterizations are considered.
Harmonizability and time-frequency representations are treated. Definition and properties of
almost periodic functions are provided. A brief review of ACS processes is also presented. The
chapter ends with some properties of cumulants.

In Chapter 2, GACS processes are presented and characterized. GACS processes have
multivariate statistical functions that are almost-periodic function of time. The (generalized)
Fourier series of these functions have both coefficients and frequencies, named lag-dependent
cycle frequencies, which depend on the lag shifts of the processes. ACS processes are obtained
as special case when the frequencies do not depend on the lag parameters. The problems
of linear filtering and sampling of GACS processes are addressed. The cyclic correlogram
is shown to be, under mild conditions, a mean-square consistent and asymptotically Normal
estimator of the cyclic autocorrelation function. Such a function allows a complete second-order
characterization in the wide-sense of GACS processes. Numerical examples of communications
through Doppler channels due to relative motion between transmitter and receiver with constant
relative radial acceleration are considered. Simulation results on statistical function estimation
are carried out to illustrate the theoretical results. Proofs of the results in Chapter 2 are reported
in Chapter 3.

In Chapter 3, complements and proofs for the results presented in Chapter 2 are reported.
Each proof consists of two parts. The first part contains formal manipulations that lead to the
result. The second part contains the justifications of the mathematical manipulations of the
first part. Thus, proofs can be followed with two different levels of rigor, depending on the
background and interest of the reader.

In Chapter 4, SC processes are presented and characterized. SC processes have the Loève
bifrequency spectrum with spectral masses concentrated on a countable set of support curves in
the bifrequency plane. ACS processes are obtained as a special case when the curves are lines
with a unit slope. The problems of linear filtering and sampling of SC processes are addressed.
The time-smoothed and the frequency-smoothed cross-periodograms are considered as esti-
mators of the spectral correlation density. Consistency and asymptotic Normality properties
are analyzed. Illustrative examples and simulation results are presented. Proofs of the results
in Chapter 4 are reported in Chapter 5.



Preface xix

In Chapter 5, complements and proofs for the results presented in Chapter 4 are reported.
The system used is the same as in Chapter 3.

In Chapter 6, the problem of signal modeling and statistical function estimation is addressed
in the functional or fraction-of-time (FOT) approach. Such an approach is an alternative to the
classical one where signals are modeled as sample paths or realizations of a stochastic process.
In the FOT approach, a signal is modeled as a single function of time and a probabilistic model
is constructed by this sole function of time. Nonstationary models that can be treated in this
approach are discussed.

In Chapter 7, applications in mobile communications and radar/sonar systems are presented.
A model for the wireless channel is developed. It is shown how, in the case of relative motion
between transmitter and receiver or between radar and target, the ACS transmitted signal is
modified into a received signal with a different kind of nonstationarity. Conditions under which
the GACS or SC model are appropriate for the received signal are derived.

In Chapter 8, citations are classified into categories and listed in chronological order.
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1
Background

In this chapter, background material that will be referred to in the subsequent chapters is
reviewed. In Section 1.1, the statistical characterization of persistent (finite-power) nonsta-
tionary stochastic processes is presented. Second-order statistics in both time, frequency, and
time-frequency domains are considered. In Section 1.2, definitions of almost-periodic func-
tions and their generalizations (Besicovitch 1932) and related results are reviewed. Almost-
cyclostationary (ACS) processes (Gardner 1985, 1987d) are treated in Section 1.3. Finally, in
Section 1.4, some results on cumulants are reviewed.

1.1 Second-Order Characterization of Stochastic Processes

1.1.1 Time-Domain Characterization

In the classical stochastic-process framework, statistical functions are defined in terms of
ensemble averages of functions of the process and its time-shifted versions. Nonstationary
processes have these statistical functions that depend on time.

Let us consider a continuous-time real-valued process {x(t, ω), t ∈ R, ω ∈ �}, with ab-
breviate notation x(t) when it does not create ambiguity, where � is a sample space equipped
with a σ-field F and a probability measure P defined on the elements of F . The cumulative
distribution function of x(t) is defined as (Doob 1953)

Fx(ξ; t) � P[x(t, ω) � ξ] =
∫

�

1{ω : x(t,ω)�ξ} dP(ω) � E
{

1{ω : x(t,ω)�ξ}
}

(1.1)

where

1{ω : x(t,ω)�ξ} �
{

1, ω : x(t, ω) � ξ,

0, ω : x(t, ω) > ξ
(1.2)

Generalizations of Cyclostationary Signal Processing: Spectral Analysis and Applications, First Edition.
Antonio Napolitano. © 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



2 Generalizations of Cyclostationary Signal Processing

is the indicator of the set {ω ∈ � : x(t, ω) � ξ} and E{·} denotes statistical expectation
(ensemble average). The expected value corresponding to the distribution Fx(ξ; t) is the
statistical mean ∫

R

ξ dFx(ξ; t) =
∫

�

x(t, ω) dP(ω) = E {x(t, ω)} . (1.3)

Analogously, at second-order, the process is characterized by the second-order joint distribution
function (Doob 1953)

Fx(ξ1, ξ2; t, τ) � P[x(t + τ, ω) � ξ1, x(t, ω) � ξ2]

= E
{

1{ω : x(t+τ,ω)�ξ1} 1{ω : x(t,ω)�ξ2}
}

(1.4)

and the autocorrelation function

E {x(t + τ, ω) x(t, ω)} =
∫
R2

ξ1ξ2 dFx(ξ1, ξ2; t, τ). (1.5)

If Fx(ξ; t) and Fx(ξ1, ξ2; t, τ) depend on t, the process is said to be nonstationary in the strict
sense. If Fx(ξ; t) [Fx(ξ1, ξ2; t, τ)] does not depend on t, the process x(t) is said to be 1st-order
[2nd-order] stationary in the strict sense. If both mean and autocorrelation function do not
depend on t, the process is said to be wide-sense stationary (WSS) (Doob 1953).

In the following, we will focus on the second-order statistics of complex-valued nonstation-
arity processes.

The complex-valued stochastic process x(t) is said to be a second-order process if the
second-order moments

Rx(t, τ) � E
{

x(t + τ) x(∗)(t)
}

(1.6)

exist ∀t and ∀τ. In Equation (1.6), superscript (∗) denotes optional complex conjugation, and
subscript x � [x, x(∗)]. That is, Rx(t, τ) denotes one of two different functions depending if
the complex conjugation is considered or not in subscript x. If conjugation is present, then
(1.6) is the autocorrelation function. If the conjugation is absent, then (1.6) is the conjugate
autocorrelation function also referred to as relation function (Picinbono and Bondon 1997) or
complementary correlation (Schreier and Scharf 2003a). Note that, in the complex case the
order of the distribution functions turns out to be doubled with respect to the real case. For
example, the joint distribution function of x(t) and x(t + τ) is a fourth-order joint distribution
of the real and imaginary parts of x(t) and x(t + τ).

The (conjugate) autocovariance is the (conjugate) autocorrelation of the process reduced to
be zero mean by subtracting its mean value

Cx(t, τ) � E
{[

x(t + τ) − E{x(t + τ)}] [x(t) − E{x(t)}](∗)
}

. (1.7)

Even if Cx(t, τ) = Rx(t, τ) only for zero-mean processes, in some cases the terms autocorrela-
tion, autocovariance, and covariance are used interchangeably. When the terms autocovariance
or covariance are adopted, from the context it is understood if the mean value is subtracted or
not. In statistics, the definition of autocorrelation includes in (1.6) also a normalization by the
standard deviations of x(t) and x(t + τ).
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1.1.2 Spectral-Domain Characterization

The characterization of stochastic processes in the spectral domain can be made by resorting
to the concept of harmonizability (Loève 1963). A second-order stochastic process x(t) is
said to be harmonizable if its (conjugate) autocorrelation function can be expressed by the
Fourier-Stieltjes integral

E
{

x(t1) x(∗)(t2)
}

=
∫
R2

ej2π[f1t1+(−)f2t2] dγx(f1, f2) (1.8)

where γx(f1, f2) is a spectral correlation function of bounded variation (Loève 1963):∫
R2

| dγx(f1, f2)| < ∞. (1.9)

In (1.8), (−) is an optional minus sign that is linked to (∗). γx(f1, f2) denotes one of two different
functions depending if the complex conjugation is considered or not in subscript x.

Under the harmonizability condition, x(t) is said to be (strongly) harmonizable and can be
expressed by the Cramér representation (Cramér 1940)

x(t) =
∫
R

ej2πft dχ(f ) (1.10)

where χ(f ) is the integrated spectrum of x(t).
In (Loève 1963), it is shown that a necessary condition for a stochastic process to be harmo-

nizable is that it is second-order continuous (or mean-square continuous) (Definition 2.2.11,
Theorem 2.2.12). Moreover, it is shown that a stochastic process is harmonizable if and only if
its covariance function is harmonizable. In fact, convergence of integrals in (1.8) and (1.10) is
in the mean-square sense. In (Hurd 1973), the harmonizability of processes obtained by some
processing of other harmonizable processes is studied.

If the absolutely continuous and the discrete component of χ(f ) are (possibly) nonzero
and the singular component of χ(f ) is zero with probability 1 (w.p.1) (Cramér 1940), we can
formally write dχ(f ) = X(f ) df (w.p.1) (Gardner 1985, Chapter 10.1.2), where

X(f ) =
∫
R

x(t) e−j2πft dt (1.11)

is the Fourier transform of x(t) which possibly contains Dirac deltas in correspondence of
the jumps of the discrete component of χ(f ). For finite-power processes, that is such that the
time-averaged power

Px � lim
T→∞

1

T

∫ T/2

−T/2
E
{

|x(t)|2
}

dt (1.12)

exists and is finite, relation (1.11) is intended in the sense of distributions (Gelfand and Vilenkin
1964, Chapter 3), (Henniger 1970).

Let x(t) be an harmonizable stochastic process. Its bifrequency spectral correlation function
or Loève bifrequency spectrum (Loève 1963; Thomson 1982), also called generalized spectrum
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in (Gerr and Allen 1994), cointensity spectrum in (Middleton 1967), or dual frequency spectral
correlation in (Hanssen and Scharf 2003), is defined as

Sx(f1, f2) � E
{

X(f1) X(∗)(f2)
}

(1.13)

and if χ(f ) and γx(f1, f2) do not contain singular components w.p.1, in the sense of distribu-
tions the result is that

dγx(f1, f2) = E
{

dχ(f1) dχ(∗)(f2)
}

(1.14a)

= E
{

X(f1) X(∗)(f2)
}

df1 df2 (1.14b)

and, accordingly with (1.8), we can formally write

E
{

x(t1) x(∗)(t2)
}

=
∫
R2

E
{

X(f1) X(∗)(f2)
}

ej2π[f1t1+(−)f2t2] df1 df2 (1.15)

E
{

X(f1) X(∗)(f2)
}

=
∫
R2

E
{

x(t1) x(∗)(t2)
}

e−j2π[f1t1+(−)f2t2] dt1 dt2 (1.16)

A spectral characterization for nonstationary processes that resembles that for WSS pro-
cesses (Section 1.1.4) can be obtained starting from the time-averaged (conjugate) autocorre-
lation function

Rx(τ) � lim
T→∞

1

T

∫ T/2

−T/2
E
{

x(t + τ) x(∗)(t)
}

dt

≡
〈

E
{

x(t + τ) x(∗)(t)
}〉

t
(1.17)

when the limit exists. Its Fourier transform is called the power spectrum, is denoted by Sx(f ),
and represents the spectral density of the time-averaged power Rx(0) of the process. The
time-averaged autocorrelation function and the power spectrum defined here for nonstationary
processes exhibit the same properties of the autocorrelation function and power spectrum
defined for wide-sense stationary processes (Wu and Lev-Ari 1997).

1.1.3 Time-Frequency Characterization

The Loève bifrequency spectrum (1.13) provides a description of the nonstationary behavior
of the process x(t) in the frequency domain. A description in terms of functions of time and
frequency can be obtained by resorting to the time-variant spectrum, the Rihaczek distribution,
and the Wigner-Ville spectrum.

The Fourier transform of the second-order moment (1.6) with respect to (w.r.t.) the lag
parameter τ is the time-variant spectrum

Sx(t, f ) �
∫
R

Rx(t, τ) e−j2πfτ dτ. (1.18)
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By substituting (1.6) into (1.18), interchanging the order of the expectation and Fourier-
transform operators, and accounting for the formal relation dχ(f ) = X(f ) df , one obtains

Sx(t, f ) df = E
{

dχ(f ) x(∗)(t)
}

ej2πft (1.19)

where the right-hand-side is referred to as the (conjugate) Rihaczek distribution of x(t) (Scharf
et al. 2005).

By the variable change t′ = t + τ/2 in (1.6) and Fourier transforming w.r.t. τ, we obtain
a time-frequency representation in terms of Wigner-Ville spectrum for stochastic processes
(Martin and Flandrin 1985)

Wx(t′, f ) �
∫
R

E
{

x(t′ + τ/2) x(∗)(t′ − τ/2)
}

e−j2πfτ dτ (1.20a)

=
∫
R

E
{

X(f + ν/2) X(∗)(f − ν/2)
}

ej2πνt′ dν (1.20b)

where the second equality follows using (1.11).
Extensive treatments on time-frequency characterizations of nonstationary signals are given

in (Amin 1992), (Boashash et al. 1995), (Cohen 1989, 1995), (Flandrin 1999), (Hlawatsch and
Bourdeaux-Bartels 1992). Most of these references refer to finite-energy signals.

1.1.4 Wide-Sense Stationary Processes

Second-order nonstationary processes have (conjugate) autocorrelation function depending
on both time t and lag parameter τ and the function defined in (1.6) is also called the time-
lag (conjugate) autocorrelation function. Equivalently, their time-variant spectrum depends on
both time t and frequency f . In contrast, second-order WSS processes are characterized by a
(conjugate) autocorrelation and time-variant spectrum not depending on t. That is

Rx(t, τ) = Rx(τ) (1.21a)

Sx(t, f ) = Sx(f ). (1.21b)

In such a case, for (∗) present, the Fourier-transform (1.18) specializes into the Wiener-
Khinchin relation that links the autocorrelation function and the power spectrum Sx(f )
(Gardner 1985)

Sx(f ) =
∫
R

Rx(τ) e−j2πfτ dτ. (1.22)

Condition (1.21a) is equivalent to the fact that the time–time (conjugate) autocorrelation func-
tion (1.8) depends only on the time difference t1 − t2. This time dependence in the spectral
domain corresponds to the property that the Loève bifrequency spectrum (1.13) is nonzero
only on the diagonal f2 = −(−)f1. That is,

Sx(f1, f2) = Sx(f1) δ(f2 + (−)f1) (1.23)

where δ(·) denotes Dirac delta. When (∗) is present, Sx(f1) is the power spectrum of the
process x(t). From (1.23), it follows that for WSS processes distinct spectral component are
uncorrelated. In contrast, the presence of spectral correlation outside the diagonal is evidence of
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nonstationarity in the process x(t) (Loève 1963). Finally, for WSS processes the Wigner-Ville
spectrum is independent of t′ and is coincident with the power spectrum. That is, Wx(t′, f ) =
Sx(f ).

Extensive treatments on WSS processes are given in (Brillinger 1981), (Cramér 1940),
(Doob 1953), (Grenander and Rosenblatt 1957), (Papoulis 1991), (Prohorov and Rozanov
1989), (Rosenblatt 1974, 1985).

1.1.5 Evolutionary Spectral Analysis

In (Priestley 1965), the class of zero-mean processes for which the autocovariance function
admits the representation

E
{
x(t1) x∗(t2)

} =
∫
R

φt1 (ω) φ∗
t2

(ω) dμ(ω) (1.24)

is considered, where {φt(ω)} is a family of functions defined on the real line (ω ∈ R) indexed
by the suffix t and dμ(ω) is a measure on the real line. In (Grenander and Rosenblatt 1957,
paragraph 1.4), it is shown that if the autocovariance has the representation (1.24), then the
process x(t) admits the representation

x(t) =
∫
R

φt(ω) dZ(ω) (1.25)

where Z(ω) is an orthogonal process with

E
{

dZ(ω1) dZ∗(ω2)
} = δ(ω1 − ω2) dμ(ω1). (1.26)

In fact, we formally have

E
{
x(t1) x∗(t2)

} = E
{∫
R

φt1 (ω1) dZ(ω1)
∫
R

φ∗
t2

(ω2) dZ∗(ω2)
}

=
∫
R

∫
R

φt1 (ω1) φ∗
t2

(ω2)E
{

dZ(ω1) dZ∗(ω2)
}

=
∫
R

∫
R

φt1 (ω1) φ∗
t2

(ω2) δ(ω1 − ω2) dμ(ω1)

=
∫
R

φt1 (ω1) φ∗
t2

(ω1) dμ(ω1) (1.27)

where, in the last equality, the sampling property of the Dirac delta (Zemanian 1987,
Section 1.7) is used.

When the process is second-order WSS, a valid choice for the family {φt(ω)} is φt(ω) = ejωt .
The autocovariance is

E
{
x(t1) x∗(t2)

} =
∫
R

ejω(t1−t2) dμ(ω) (1.28)

which is function of t1 − t2. The function μ(ω) is the integrated power spectrum. If μ(ω)
is absolutely continuous or contains jumps and has zero singular component (Cramér 1940),
then in the sense of distributions dμ(ω) = S(ω) d(ω), where S(ω) is the power spectrum (with
ω = 2πf ) which contains Dirac deltas in correspondence of the jumps in μ(ω).


