Handbook of Troubleshooting
Plastics Processes
Polymer Science and Plastics Engineering

The “Polymer Science and Plastics Engineering” series publishes both short and standard length monographs, textbooks, edited volumes, practical guides, and reference works related to all aspects of polymer science and plastics engineering including, but not limited to, renewable and synthetic polymer chemistry and physics, compositions (e.g. blends, composites, additives), processing, characterization, testing, design, and applications. The books will serve a variety of industries such as automotive, food packaging, medical, and plastics as well as academia.

Series Editor: Srikanth Pilla, PhD
Wisconsin Institute for Discovery
University of Wisconsin-Madison
pilla@wid.wisc.edu

Publishers at Scrivener
Martin Scrivener (martin@scrivenerpublishing.com)
Phillip Carmical (pcarmical@scrivenerpublishing.com)
Contents

Preface xvii
List of Contributors xix

Part 1: Troubleshooting Basics

1 The Economics of Troubleshooting Polymer Processing Systems 3
Mark D. Wetzel
1.1 Introduction 3
1.2 Economic Incentives and Necessities 4
1.3 Troubleshooting Resources and Their Cost 6
1.4 Managing Resources and Costs 11
1.5 Troubleshooting Techniques and Their Relative Costs 12
1.6 Case Histories 14
1.6.1 Single Screw Extrusion Instability 14
1.6.2 Compounding Extruder Catastrophic Failure 14
1.6.3 Polymer Degradation During Melt Processing 16
1.7 Conclusions 20
References 20

2 Troubleshooting Philosophy 21
John R. Wagner, Jr.
2.1 Introduction 21
2.2 Troubleshooting Methodology 23
Bibliography 25

3 Statistical Tools for Trouble Shooting a Process 27
Vincent Vezza
3.1 Introduction 27
3.2 Basic Statistical Concepts 28
3.2.1 Histogram 28
3.2.2 Scatter Diagram 28
3.3 Sample Mean and Standard Deviation 29
3.4 Design of Experiments (DOE) 31
3.4.1 Factorial Design 31
3.4.2 Fractional Factorial Design 34
3.5 Process Capability 37
3.6 Control Charts 38
3.7.1 Central Limit Theorem 39
3.7.2 Variable Data Control Charts 41
3.7.3 Control Charts for Attribute Data 43
vi CONTENTS

References 45
Bibliography 45
Statistics 45
Design of Experiments 45
Statistical Process Control 45

Part 2: Extrusion Processes 47

4 Single Screw Extrusion 49
John R. Wagner, Jr.
4.1 Introduction 49
4.2 Process Description 51
References 54

5 Troubleshooting the Co-rotating Fully Intermeshing Twin-screw Compounding System 57
Paul Andersen, Rich Kanarski and John R. Wagner, Jr.
5.1 Introduction 57
5.2 Equipment Description 58
5.3 Troubleshooting 59
5.3.1 What is Troubleshooting? 60
5.4 Tools of the Successful Troubleshooter 60
5.4.1 Experience 60
5.4.2 Vent Flow Problem 61
5.5 Product, Process and Equipment Knowledge 62
5.5.1 High Discharge Pressure Problem 64
5.5.2 Barrel Temperatures Higher than Set Points Problem 65
5.5.3 Climbing Discharge Temperature Problem 65
5.5.4 Gels and Un-melts in the Extrudate Problem 65
5.5.5 Holes or Bubbles in the Extrudate Problem 65
5.5.6 Process Surging Problem 66
5.6 Conclusion 66
References 67

6 Troubleshooting for Injection Molding 69
James J. Wenskus
6.1 Introduction 69
6.1.1 The Basic Approach 70
6.2 Understanding Temperature Control 70
6.3 Product Shift to a Different Machine 72
6.3.1 Calculate the New Pressure Settings 72
6.3.2 Procedure 73
6.4 Part Weight as an Analytical Tool 74
6.4.1 Example – Part Weight for Process Variability Analysis 75
6.4.2 Long Term Variability Analysis 76
6.4.3 Short Term Variability Analysis 76
6.4.4 Variability Evaluation 76
6.4.5 Process Benchmarking for Quality 77
6.4.6 Benchmark Evaluation 78
6.4.7 Summary 79
9 Oriented Films-Troubleshooting and Characterization

Eldridge M. Mount, III

9.1 Introduction 133
9.2 Process Overview: Biaxial Orientation 134
9.3 Oriented Film Markets 141
9.3.1 Oriented Polypropylene OPP or BOPP 141
9.3.2 Oriented Polyester OPET 143
9.3.3 Oriented Polystyrene OPS 144
9.3.4 Oriented Polyamide (Nylon) OPA 145
9.4 Troubleshooting the Film Orientation Process as Applied to OPP Films 146
9.4.1 Control Variables 146
9.4.1.1 Resin Drying 146
9.4.1.2 Extrusion 147
9.4.1.3 Casting and Pinning 149
9.4.1.4 Machine Direction Orientation 153
9.4.1.5 Transverse Direction Orientation 153
9.4.1.6 Web Handling and Surface Treatment 156
9.4.1.7 Winding 156
9.4.2 Noise Variables 157
9.4.3 Dependent Variables 157
9.5 Special Tools for Troubleshooting 158
9.6 Case Studies 159
9.6.1 Casting Capacity Limitation in PET Film Production 159
9.6.2 Floating Gauge – Extrusion Instability and MDO Heat Transfer Limitations 160
9.6.3 Output Limitation from Coextrusion Instability 162
References 164
Bibliography 164
10 Troubleshooting the Thermoforming Process

James L. Throne

10.1 General Concepts in Thermoforming 167
10.2 Categorization of the Process 169
 10.2.1 Thick-Gauge Process 169
 10.2.2 Thin-Gauge Process 170
10.3 Specific Aspects of the Thermoforming Process 172
 10.3.1 Critical Material Issues 172
 10.3.2 Molds and Mold Design 173
 10.3.3 Incoming Sheet Quality Issues 174
 10.3.4 Materials Handling – Ingress 174
 10.3.5 Heating 175
 10.3.6 Pre-stretching (Plug Assist) 176
 10.3.7 Pre-stretching (Vacuum/Air Pressure Formation) 176
 10.3.8 Contacting the Mold 176
 10.3.9 Cooling and Rigidifying the Formed Part 177
 10.3.10 Removing the Formed Part from the Mold 178
 10.3.11 Materials Handling – Egress 178
 10.3.12 Trimming 178
 10.3.13 Post-trimming Issues 179
 10.3.14 Regrind 180
10.4 Problem Solving Methodology 180
 10.4.1 Trimming 182
10.5 General Preventative Maintenance Concepts 183
 10.5.1 Crisis Maintenance 184
 10.5.2 Routine Maintenance 184
10.6 General Predictive Maintenance Concepts 187
10.7 Safety during Troubleshooting 188
 10.7.1 Make-up of a Troubleshooting Team 192

Appendix 1: Thermoforming References with Troubleshooting Sections 193

Appendix 2: Plastic Materials References 193

Appendix 3: Troubleshooting Guidelines for Thick-Gauge Thermoforming 194

Appendix 4: Troubleshooting Guidelines for Thin-Gauge Thermoforming 199

Appendix 5: Time-dependent Ranking of Typical Courses of Action 209

Appendix 6: Troubleshooting Guidelines for Trimming Parts
 210
 Thin-Gauge
 210
 Thick-Gauge
 213

11 Proper Equipment Processing for Industrial/Technical Blow Molding

Robert A. Slawska

11.1 Introduction of Blow Molding 218
 11.1.1 How Parts are Blow Molded 218
 11.1.2 Positive Benefits of the Process 219
 11.1.3 Negative Factors of Accumulator Head Blow Molding 219
11.2 Select the Proper Equipment 220
11.3 Extruder 222
11.4 Accumulator Head 225
11.5 Importance of Cleaning 226
12 PET Stretch Blow Molding

Dan Weissmann

12.1 Introduction
12.2 The PET Universe
12.3 Technology History
12.4 PET Chemistry
12.5 PET Morphology
12.6 Bottle Universe
12.7 Bottle Manufacturing
12.8 Commercial Manufacturing Processes
12.9 Process Elements
 12.9.1 Injection Molding
 12.9.1.1 IV Drop
 12.9.1.2 Acetaldehyde
 12.9.1.3 Molding Stresses
 12.9.2 Hot Runner System
 12.9.2.1 Gate Crystallinity and Separation
 12.9.2.2 Gate Pin Holes
 12.9.3 Mold Cooling
 12.9.3.1 Preform Problem Analysis
 12.9.4 Blow Molding
 12.9.4.1 General Principles – Reheating and Preform Temperature
 12.9.5 Preform Temperature Profiling
 12.9.6 Blowing
 12.9.6.1 Quality Attributes and Performance Issues
 12.9.6.2 Blow Molding Process Monitoring
 12.9.6.3 On Line Inspection
 12.9.6.4 Testing and Test Procedures
 12.9.6.5 Special Processes
12.10 Case Sample: Thermal Stability Failure of CSD Bottles

References

13 Blow Molding – Problems and Solutions

Norman C. Lee

13.1 Introduction
13.2 Troubleshooting
13.3 Variables Affecting the Blow Molding Process
 13.3.1 PART I: Defects in Article
 13.3.1.1 PART I – Defect in Finished Article
 13.3.2 PART II: Parison Defects
 13.3.2.1 PART II – Defects of the Parison

References
13.3.3 Noise 293
13.3.4 Ambient Conditions 293
13.4 Preventative Maintenance 293
 13.4.1 Maintenance Recommendations 293
 13.4.2 Machine Check Out 294
13.5 Injection and Stretch Blow Molding 294
13.6 Computer Integrated Manufacturing (CIM) in Extrusion Blow Molding 295
Acknowledgement 297
Bibliography 298

14 Extrusion Coating Troubleshooting 299
Beth M. Foederer and Andrew W. Christie
14.1 Coextrusion Extrusion Coating/Laminating Systems 299
14.2 Troubleshooting Method 300
14.3 Common Problems, Hypotheses and Tests 301
 14.3.1 Gels in Film 301
 14.3.2 Poor Adhesion 304
 14.3.3 Wrinkling 305
 14.3.4 Low Output 306
 14.3.5 Poor Melt Mixing 307
 14.3.6 Melt Temperature Too Low 308
 14.3.7 Melt Temperature Too High 308
 14.3.8 Extruder Power Insufficient 309
 14.3.9 Die Lines 309
 14.3.10 Melt Appearance Defects 309
 14.3.11 Thickness Variation – Cross Direction 310
 14.3.12 Thickness Variation – Machine Direction 310
 14.3.13 Poor Wound Roll Appearance 311
 14.3.14 Edge Tear (Unstable Edges) 311
 14.3.15 Pin Holes 312
 14.3.16 Extruder Surging 312
 14.3.17 Draw Resonance 312
 14.3.18 Poor Heatseal 313
 14.3.19 Odor – Flavor Scalping 313
 14.3.20 Poor Printability 313
 14.3.21 Camber or Curl 314
 14.3.22 Scratches 314
References 314

Part 3: Non-extrusion Processes 315

15 Adhesive and Thermal Lamination 317
Tom Dunn
15.1 Introduction 317
 15.1.1 Process Overview 317
 15.1.2 Markets Served 318
 15.1.3 Historical and Future Growth Projections – Technology Challenges and Threats 318
Contents

15.2 Process Description 319
 15.2.1 Major Process Components 319
 15.2.2 Equipment Production Ranges 319
 15.2.3 Manufacturers 319
15.3 Control Variables 320
15.4 Random Cause Variables 324
15.5 Dependent Variables 325
15.6 Special Tools for Troubleshooting 326
 15.6.1 Product 327
15.7 Case Studies 328
 15.7.1 Easy-peel or Rip-off 328
 15.7.2 Spotty Results 330
Bibliography 330

16 Troubleshooting for Rotomolding 331

Paul Nugent

16.1 The Basic Process 331
16.2 Key Quality Control Steps in Rotomolding 336
 16.2.1 Materials In-bound and Powder Preparation 337
 16.2.2 Colorants and Additives 339
 16.2.3 Material Mixing 339
 16.2.4 Molds and Fixtures 339
 16.2.5 Machinery 340
 16.2.6 Calibration 340
 16.2.7 Production Process and Records 340
16.3 Typical Rotomolding Problems 343
16.4 Typical Solutions 347
 16.4.1 Adhesion – Difficulty in Painting or Applying Labels 347
 16.4.2 Blowholes – Around Inserts 347
 16.4.3 Blowholes – Other Areas 348
 16.4.4 Blowholes – Parting Line 348
 16.4.5 Bubbles on Part Surface or in the Cross-section 349
 16.4.6 Coining (Pockmarks) 350
 16.4.7 Color – Part Burned/Discolored 350
 16.4.8 Color – Static Swirl 351
 16.4.9 Color – Unevenness 352
 16.4.10 Flash at the Parting Line 352
 16.4.11 Foaming – Coarse or Uneven Foam 353
 16.4.12 Foaming – Gaps in Wall Cross-section 353
 16.4.13 Foaming – Part Deformation 354
 16.4.14 Incomplete Material Fusion 354
 16.4.15 Incomplete Mold Fill (Bridging) 355
 16.4.16 Low Impact Strength 355
 16.4.17 Low Part Stiffness 356
 16.4.18 Long Oven Cycle 357
 16.4.19 Long-term Part Failure 357
 16.4.20 Mold Distortion, Explosion 358
CONTENTS xiii

16.4.21 Plate Out 358
16.4.22 Sticking in Mold 359
16.4.23 Wall Thickness – Uneven 360
16.4.24 Warpage 360
16.4.25 Whitish Part Appearance 361

17 Plastics Calendering 363
Chellappa Chandrasekaran
17.1 Introduction 363
17.2 Blending and Fluxing 364
17.3 Mills and Strainers 365
17.4 Calender 365
17.5 General Description of a Calendering Machine 367
 17.5.1 Rolls 367
 17.5.2 Sheet Finishes 368
 17.5.3 Roll Contours 369
 17.5.4 Frame 370
 17.5.5 Roll Adjustment 370
 17.5.6 Bed Plate 370
 17.5.7 Lubrication 371
 17.5.8 Temperature Control 371
 17.5.9 Safety and Safety Regulations 372
17.6 The Calendering Process 372
 17.6.1 Heating and Delivery to the Calender 373
 17.6.2 Roll Banks 373
 17.6.3 Sheet Takeoff and Post-processing 374
 17.6.4 Embossing and Laminating 374
17.7 Input Materials and Products 375
 17.7.1 The Formulas 375
17.8 Why Calendering is Preferred to Extrusion 377
17.9 Calendering Process Variables 377
 17.9.1 Barring and Noise Due to Roll Vibration 377
 17.9.2 Machine Dependent Variable 378
 17.9.3 Product Variation 379
 17.9.4 Overcoming and Correcting Process Variation 381
17.10 Conclusion 381
References 382
Bibliography 382

18 Compression Molding 383
Muralisrinivasan Natamai Subramanian
18.1 Introduction 383
18.2 Materials 384
 18.2.1 Thermoplastics and Compression Molding 384
 18.2.2 Thermosets and Compression Molding 385
 18.2.3 Premix or Prepreg Preparation 386
 18.2.4 Fiber Alignment 386
18.2.5 Pre-form 386
18.2.6 Prepreg 386

18.3 Sheet Molding Compound – Production 386
 18.3.1 Mold 388

18.4 Technology – Compression Molding 388
 18.4.1 Important Variables during Processing 389

18.5 Troubleshooting 390
18.6 Problems and Solution(s) 392
18.7 Summary 393
 18.7.1 Fundamentals 393
 18.7.2 Advantages 393
 18.7.3 Disadvantages 394
 18.7.4 Future Trends 394

References 395

19 Transfer Molding 397
 Muralisrinivasan Natamai Subramanian
 19.1 Introduction 397
 19.2 Curing 398
 19.3 Processing 399
 19.4 Mold 400
 19.5 Process Optimization 400
 19.6 Method 401
 19.7 Pot Type Transfer Molding 401
 19.7.1 Plunger/Transfer Molding 402
 19.7.2 Screw Type Transfer Molding 402
 19.7.3 Screw Injection Type 402
 19.8 Troubleshooting 403
 19.9 Summary 404
 19.9.1 Advantages 404
 19.9.2 Disadvantages 404
 19.9.3 Future Trends 405
 19.9.4 Fundamentals 405

References 405

20 Pultrusion Process Troubleshooting 407
 Joseph E. Sumerak
 20.1 Introduction 407
 20.1.1 Pultruded Products are Governed by a Performance Specification 409
 20.2 Materials Review 410
 20.2.1 Resin 410
 20.2.2 Resin Reactivity 411
 20.2.3 Resin Reactivity Measurement 412
 20.2.4 Resin Viscosity 414
 20.2.5 Reinforcements 415
 20.3 Process Parameters 416
 20.3.1 Composition and Process Specification 417
20.4 Manufacturing Defects
 20.4.1 Defects
20.5 Material Related Defects
 20.5.1 Resin
 20.5.2 Reinforcements
20.6 Process Parameter Related Defects
20.7 Methods Related Defects
20.8 The Troubleshooting Process
 20.8.1 Subjective versus Objective
 20.8.2 Visual Tools
 20.8.3 On-Line Quantitative Analysis Tools
 20.8.4 Off-Line Quality Assessment Tools
20.9 Troubleshooting Examples
20.10 Summary
Acknowledgement
References

21 Troubleshooting Static Problems in Plastics Processes
 Kelly Robinson
21.1 Introduction
 21.1.1 Nature and Character of Static
 21.1.2 Cost of Static Problems
21.2 Root Causes of Static
 21.2.1 Tribocharging/Contact Charging
 21.2.1.1 Triboelectric Series
 21.2.2 Application of the Triboelectric Series
 21.2.3 Charge Induction
 21.2.4 Ionizer Imbalance (Active Charging)
21.3 Static Measurement Tools
 21.3.1 Electrostatic Fieldmeters (FMs) and Non-Contacting Electrostatic Voltmeters (ESVMs)
 21.3.1.1 Electrostatic Fieldmeters – Fieldmeters Respond to Net Charge
 21.3.1.2 Non-contacting Electrostatic Voltmeter – Voltmeters Respond to Surface Charge
 21.3.1.3 Spatial Resolution and Response Time
 21.3.1.4 Typical Applications – Monitor Static Performance with Fieldmeters and Voltmeters
 21.3.2 Charge Meter – Coulomb Meters are a Direct Measure of Charge
 21.3.2.1 Principles of Operation
 21.3.2.2 Typical Applications
 21.3.3 Resistivity Meters
 21.3.3.1 Volumetric Resistivity Meters
 21.3.3.2 Surface Resistivity Meters
 21.3.4 Charge Dissipation Time Measurements
 21.3.4.1 Importance of Charge Dissipation Time
 21.3.4.2 Principles of Operation – Static Dissipation Time
 21.3.4.3 Typical Application – Static Dissipation Time
21.4 Static Problem Diagnosis 464
 21.4.1 Understand the Problem 464
 21.4.2 Baseline Data and Control Charts 465
 21.4.3 Hot Rolls 467
 21.4.4 Static Specifications 469
21.5 Solving Static Problems 470
 21.5.1 Locate the Source of Charge Separation 471
 21.5.1.1 Unwinding Roll 471
 21.5.1.2 Drive Roller 472
 21.5.1.3 Coater Backing Roller 472
 21.5.1.4 Dryer Conveyance Rollers 474
 21.5.1.5 Dryer Exit Nip Roller 474
 21.5.1.6 Winder Lay-on Roller 474
 21.5.2 Static Control System Maintenance 475
 21.5.2.1 Clean Static Bars 476
 21.5.2.2 Replace Ionizing String 476
 21.5.2.3 Verify Gaps 476
 21.5.2.4 Verify Performance 476
 21.5.2.5 Clean Rollers, Belts and Guides 476
 21.5.2.6 Restore Surfaces of Tacky (Cleaning) Rollers 476
 21.5.2.7 Check the Electrical Resistivity of Static Dissipative Rollers 476
 21.5.2.8 Test the Bearing Drag on Low Wrap Rollers 477
 21.5.2.9 Align Roller 477
 21.5.2.10 Nip Pressure 477
 21.5.2.11 Lay-on Rollers 477
 21.5.2.12 Web Tension 477
 21.5.2.13 Winding Tension Profile 477
 21.5.2.14 Humidifier Maintenance 477
 21.5.3 Conductive Layers in Products 477
References 478
Recommended Reading for Further Study 479
Preface

The goal of all troubleshooting operations is to restore the process to its original performance as quickly as possible with the least amount of cost. If the process is operational and producing a high level of off specification product, then the manufacturing costs can be very high. Restoring the line to its original performance quickly will reduce costs by eliminating some quality control operations and labor wasted in making product that is not fit for use, reducing resin consumption, eliminating recycle due to off specification product, and decreasing energy consumption. Moreover, if the line is inoperable due to the defect, the line downtime can be extremely costly, especially if the line is sold out. In this latter case, the goal would be to bring the line back to production operation as quickly as possible. Often, several different technical solutions will be possible. The best technical solution will be based on a combination of the cost of lost production, the time and cost to implement, machine owner acceptance, and the risk associated with the modified process.

This book provides a very practical guide to the troubleshooting of the most commonly used polymer processing operations, including injection molding, extrusion, films, blow molding, calendaring, lamination, and pultrusion. In every chapter, the process is described and the most common problems are discussed along with the root causes and potential technical solutions. Numerous case studies are provided that illustrate the troubleshooting process. Several additional chapters provide supporting information including statistics, economics, static electricity, and general troubleshooting. All chapters were written by expert troubleshooters with years of experience in their field.

The book was written for engineers and technologists that are performing troubleshooting operations on the plant floor. It provides the approach required for solving these types of problems quickly. The book provides key information for both the beginning and seasoned troubleshooters.

Mark A. Spalding
The Dow Chemical Company
List of Contributors

Paul Andersen is the Director of Process Technology for Coperion Corporation, Ramsey, NJ. He is responsible for process engineering and new technology development for twin-screw extrusion/compounding. He has 35 years of industrial experience and holds several patents related to twin-screw compounding.

Chellappa Chandrasekaran obtained his BS from the American College, Madras University, India in the 60s and thereafter his Licentiateship from the Institution of Rubber Industry (London), now IOM3 (Institute of Materials, Minerals and Mining). He has served corporate and defense sectors for more than four decades in a senior capacity and has had several technical papers published in leading national and international journals. He is an author of four books in the advanced area of Rubber Technology published by leading publishers in the USA, UK and India. He has travelled widely in the Far East, and the West in North America and Canada. Presently he is CEO of Can C Consulting India.

Andrew Christie is President of Optex Process Solutions, Inc., the consulting group he founded in 2002. Optex provides extrusion process support, troubleshooting and training, and also machinery audits and upgrades for converters in thin film extrusion (cast film, blown film, and extrusion coating). In 2009 he became Managing Director of SAM North America, the subsidiary company established to support the growing business of Sung An Machinery in North & South America. Andy holds a BS in mechanical engineering from Rochester Institute of Technology. After several years in product design and development outside the extrusion processing field he joined the Black Clawson Company as an extrusion systems design engineer. Over his 15 years at Black Clawson he advanced in design and applications engineering positions to eventually lead the extrusion group as Extrusion Business Unit Manager. He left Black Clawson in 2001 to form Optex. He is active in the SPE Flexible Packaging Division where he serves as Division Chairman and has also been active in the TAPPI PLACE division where he received the Technical Merit Award in 2006 for contributions to the industry. He is a frequent presenter at technical conferences on a variety of extrusion topics. Andy was awarded three US Patents for extruder feedscrew and feedblock design.

Thomas Dunn has over thirty years’ experience developing and applying flexible packaging laminations for consumer products. He has served in leadership roles for several industry and trade associations. He is a frequent speaker and writer for industry forums.

Beth Foederer has been in the converting industry for 23 years. She has a BS in mechanical engineering, a masters in manufacturing engineering and is a licensed Professional Engineer in the State of New York. She worked for the Black Clawson Converting Systems Division of Davis Standard, LLC for over 18 years. She has been working since 2008 as a principle engineer for Optex Process Solutions, Inc. doing consulting work for the plastics industry.

Steve Gammell is the Area Sales Manager for Macro Engineering & Technology (US) Inc.
Rich Kanarski is a process engineer at Coperion Corporation. He holds a BS degree in chemical engineering from New Jersey Institute of Technology. He has been a part of the plastics community and has been a member of the Society of Plastic Engineers for several years. Currently, Kanarski focuses on polymer processing, twin-screw extrusion technology, reactive processing, polymer rheology, and process scale up. His process development research spans various applications ranging from food to engineering plastics.

Norman C. Lee is a Blow Molding Consultant who is the author of text books and a video that are used in his SPE courses. He has two decades in the plastic industry with experience in blow molding, injection molding, thermoforming and rotational molding. His main focus for the last twenty years has been in blow molding. Norman Lee has been granted 30 US and foreign patents and has been active in SPE in the Plastic Recycling and Blow Molding Divisions.

Eldridge M. Mount, III is an independent consultant in the field of extrusion, coextrusion, cast and oriented films since 2000. In addition he is an expert in high barrier film metallization and oriented coextruded film product and process design. Originally a synthetic chemist he received a PhD in chemical engineering from Rensselaer Polytechnic for the study of polymer melting in extrusion in 1979. Since 1978 he has worked in the field of oriented polyester and propylene film research and manufacturing.

Paul Nugent is an international consultant who has specialized for the past 24 years in the field of rotational molding. A native of Northern Ireland living in Pennsylvania he holds a Masters of Engineering degree in aeronautical engineering and a PhD in mechanical engineering from The Queen’s University of Belfast. His work involves extensive travel across six continents assisting clients in many roles, from teaching to expert witness and from process troubleshooting to the streamlining of manufacturing operations, as well as assisting with licensing of products and technology.

Kelly Robinson founded Electrostatic Answers, an engineering consulting company dedicated to eliminating injury and waste from static electricity. Kelly is a Professional Engineer, earned his PhD in electrical engineering from Colorado State University, and is a Fellow of the IEEE. He has worked for over 20 years solving static problems in manufacturing operations and holds 13 patents on static control and copier technology. He shares insights in “Static Beat,” a monthly column on static control in Paper Film and Foil Converter, an on-line magazine for the converting industry.

Robert Slawska has more than 45 years’ experience in industrial blow molding. He founded Sterling Blow Molding Division in 1978. In 1994, he started his consulting firm, Proven Technology Inc. Mr. Slawska was awarded the Honored Service Member in 1998 from SPE. He received SPE’s Lifetime Achievement Award for Blow Molding in 2002. In March 2012, he became a member of The Plastics Pioneers Association.

Muralisrinivasan Subramanian is a plastics technology consultant specializing in materials, additives, and processing equipment, including troubleshooting. He obtained his BS in chemistry from the Madurai Kamaraj University and his MS (1988) in polymer technology from Bharathiar University. He received his Post Graduate Diploma in Plastics Processing Technology from CIPET, Chennai and completed his Doctor of Philosophy in Polymer Science from Madurai Kamaraj University. He has worked in the plastic process industry, mainly in R & D, for 13 years before turning to consultancy and building up an international client base. Muralisrinivasan teaches plastics processing seminars as well as being a Board of Studies Expert member of colleges in India dealing with curriculum of technology subjects. He authored Update on Troubleshooting in Thermoforming in 2010, Basics of Troubleshooting in Plastics Processing in 2011, Troubleshooting in PVC Extrusion Process and Polymer Testing – New Instrumental Method.

Joseph E. Sumerak holds BS and MS Engineering degrees from Case Western Reserve University’s Polymer Science program and has 38 years of experience in the pultrusion industry. His career focus
has included equipment and tooling design and manufacturing, process optimization and new product development. He has been a principal of several firms including Pultrusion Technology, Inc., Pultrusion Dynamics and currently Sumerak Pultrusion Resource.

James L. Throne is an international consultant in plastics process engineering, with emphasis on thermoforming, foam processing, and powder processing. Prior to founding Sherwood Technologies in 1985, Jim held senior research positions at several major plastics corporations and teaching positions at several universities. He is author/coauthor of more than two hundred technical papers, more than a dozen book chapters, more than a dozen technical books, and ten US Patents. He holds a PhD in chemical engineering from University of Delaware and was the 2000 SPE Thermoformer of the Year.

Vincent Vezza has over 35 years' experience in industry. He is retired from Ortho Clinical Diagnostics, a Johnson and Johnson Company, and is now an independent consultant. He has held positions as Statistician, Quality Engineer and Process Engineer at Eastman Kodak Company and Ortho Clinical Diagnostics. He holds a MS degree in applied and mathematical statistics and BS degree in chemistry from Rochester Institute of Technology.

John R. Wagner, Jr. obtained his MS in chemical engineering from the University of Notre Dame in 1964, and worked in the Films Division at Mobile Chemical Company for the next 30 years. He is now a consultant in plastics products and processes. He has 23 patents to his name, is the editor of *Journal of Plastic Film & Sheet*, as well as the editor or co-editor of 4 books on extrusion and packaging. John is a Fellow of the Society of Plastics Engineers and serves on the Extrusion Division and Flexible Plastics Packaging Division Boards.

Dan Weissmann is a consultant specializing in plastics and packaging. He has been involved in plastic beverage bottles development since its beginning in the 1970s. He led the startup of production of one of the first PET carbonated soft drink bottle plants and later the first US production of hot filled bottles. Dr. Weissmann has also worked in the areas of sheet extrusion and material development. He is a fellow of SPE and past board member of the Blow Molding Division and chairman of the technical program committee. He is a regular contributor to *Plastic in Packaging* magazine.

James J. Wenskus has been involved in processing research and development for injection molding for over 40 years. Jim began his development work at Stromberg Carlson working on telephone components and then at Eastman Kodak for 33 years, concentrating on processing very high-volume photographic components. He was one of the first Fellow's elected by the Society of Plastics Engineers for his early work on in-cavity pressure applications and analysis and is also a Certified Plastics Technologist (CplasT). He has seven US Patents and several foreign patents. He holds a degree in chemistry from MIT.

Mark D. Wetzel is a Research Fellow for DuPont Engineering Research and Technology Polymer Engineering. He provides technical leadership for the DuPont Engineering function in the area of polymer process development, scale-up and analysis. He has over 32 years of experience in the areas of the fundamentals of extrusion and compounding, new product development through process innovation, polymer nanocomposites and the safe handling of nanomaterials. Mark was elected a Society of Plastics Engineers Fellow in 2008 and served as the Extrusion Division chair in 2010.

Karen Xiao was the R&D director for Brampton Engineering. Her areas of expertise are screw and die designs in multi-layer coextrusion, structure-processing-property relationships, polymer extrusion and rheology. Karen has published many papers in the area and is a frequent presenter at various industry conferences. She's currently serving on the board of directors of the SPE extrusion division.
PART 1
TROUBLESHOOTING BASICS
The Economics of Troubleshooting Polymer Processing Systems

Mark D. Wetzel
E. I. du Pont de Nemours and Company
Engineering Research and Technology
Wilmington, Delaware, USA

Abstract
Polymer processing is a very cost competitive, but capital intensive endeavor. Most industrial operations consist of a sequence of complex mechanical, electric and thermal components, where ingredients are combined or transformed into higher value products to be sold to customers in the market. The equipment can experience problems that can negatively impact productivity and quality. Proper investments are required in expertise, hardware and software to enable a manufacturing organization to troubleshoot and resolve these problems in order for the business to remain viable in the global marketplace. This chapter examines the economics of key aspects of polymer processing troubleshooting in order to assist the reader in making decisions about how to plan for and make strategic investments in technology and expertise in order to maintain and optimize equipment performance and manufacturing productivity.

Keywords: Extrusion, compounding, economics, troubleshooting, uptime, yield, cost, safety, productivity, facilities, equipment, process, measurement, analysis

1.1 Introduction
The industrial practice of polymer processing has become very cost competitive while requiring a capital intensive set of operations that includes synthesis (polymerization), chemical modification, compounding, and forming or shaping steps. Most systems consist of a sequence of complex mechanical, electric and thermal components, where ingredients are combined or transformed into higher value products to be sold to customers in the market. In order to establish, grow or maintain a profitable business, manufacturing assets must operate at or near peak performance levels that deliver products with consistent properties and high quality. However, polymer processing equipment does experience many problems that can negatively impact productivity and quality. Proper investments are required in expertise, hardware and software to enable a manufacturing organization to troubleshoot and resolve these problems in order for the business to remain viable in the global marketplace.

This chapter examines the economics of polymer processing troubleshooting to assist the reader in making decisions about how to plan for and make strategic investments in
technology and expertise in order to maintain and optimize equipment performance and manufacturing productivity. Another objective is to show how it could cost more money or put a business at risk by avoiding the proper commitment to the resources required to identify the causes of processing problems and resolve them in a timely and economically viable way.

1.2 Economic Incentives and Necessities

Competitive industries like plastics processing demand high productivity in order to be profitable. Capital intensive manufacturing operations require high asset utilization. Key metrics can be used to quantify system economic performance and justify or track the costs of troubleshooting investments. The following measures are useful in determining the financial contribution of a process or set of resources allocated to that operation.

1. **Uptime** can be defined as the time that an asset is used to make a product that can be sold divided by the time that the asset is available to run:

 \[
 \% \text{Uptime} = \frac{t_{\text{Run}}}{t_{\text{Available}}} \times 100
 \]

 The time available can include or exclude a number of normal production events. For example, annual plant shutdowns or routine, scheduled equipment overhauls may be excluded from the calculation. It is important that the uptime calculation be consistent over long times, so that performance changes can be compared with benchmarks. Depending on the process, uptime can range from 50 to over 95 percent. For example, a continuous polymerization unit can operate at uptimes from 90–95 percent. A small-lots custom compounding line may have an uptime of 50 to 65 percent. Catastrophic equipment problems, such as extruder screw and shaft breakage or motor drive failures have a serious impact on uptime. Material feed bridging, die hole freeze-off, die drips and plugged vacuum ports are examples of operational problems that also affect uptime.

2. **Yield** is the material produced that can be sold, divided by the total material processed. First-pass yield is the material that can be sold as a premium product meeting all specifications, divided by the total processed. Product that can be sold as second-grade or scrap may provide income, but first-pass yield is the goal-setting standard. Processes that are unstable or experience frequent upsets can produce significant off-spec products, adversely impacting yield. Uptime and yield are the two most common metrics used to assess manufacturing line productivity.

3. **Customer satisfaction and demand** is the most important measure of a product’s market value and viability. Poor quality can put a company out of business. Failure to meet demand could constrain growth and prompt a competitor to invest in a new asset to make the same or similar products that take market share.

4. **Labor cost** includes all resources allocated to a production line. This includes operators, engineers, chemists, mechanics and other skilled trades, contractors,
consultants, quality control or analytical laboratory staff, management and other overhead. Processes with frequent equipment failures can experience high labor costs.

5. **Energy cost** can be used to measure process efficiency. An extrusion line with poor temperature control may cost more to operate than one equipped with a modern computer system and well-tuned closed-loop controllers.

6. **Auxiliary or support equipment** includes the hardware or systems required to maintain process operations. Computers, software, instrumentation and testing tools may be needed in order to diagnose and resolve problems or prevent upsets or failure that impact uptime and yield.

7. **Waste generation and disposal** is another economic indicator of asset productivity and sustainability. Processes with frequent upsets or equipment problems can generate more waste that incurs a disposal and potential environmental cost. Excessive edge trim in a film line could increase the waste or material used as "re-work."

8. **Safety, health and environmental** events and impacts can be related to process problems and equipment failures. The cost of safety and environmental incidents or near misses can be tracked and correlated to process performance metrics, including uptime and yield. The failure to diagnose and resolve a process problem quickly could result in a serious injury or environmental release that could shut a line down for an indefinite period with potential legal consequences, not to mention the pain and suffering caused to individuals, families or the community.

9. **Capital productivity** can be calculated using uptime or yield data and the known fixed capital investment and depreciation costs. One may also include labor, energy and feedstock costs.

10. **Process capability** is a measure of how well an operation performs under the best conditions. It establishes valid uptime, yield and cost metrics to be compared over time. As problems arise, uptime, yield and costs will change and can be tracked over short and long time periods.

11. **Financial metrics and conventional accounting methods** can be applied to quantify manufacturing performance by combining sales or income with operating costs. Calculations that can be used include RONA (Return on Net Assets), ROI (Return on Investment) and other standard accounting practices that are used to manage costs and determine profitability. These methods will reflect the impact troubleshooting investments have on sales and costs.

These and other measures represent "hard" numbers that quantify process performance from a cost and benefit perspective. While minimizing production cost is critical in a competitive environment, uptime, yield and customer satisfaction ultimately determine if a company will thrive. In order to determine the investment needed for troubleshooting and its impact to the business, benchmark productivity values must be established. Uptime, yield and other baseline values can be estimated based on a manufacturing line's current or past performance. Daily, weekly or monthly calculations can be used to track short term trends, while quarterly or yearly measures may be used to quantify long term behavior. For some systems, short-term production throughput may be recorded and tracked (pounds/hour, parts/hour, feet/minute, rejects/hour and the like). Dynamic fluctuations and
running averages may be useful in identifying process problems and gauging the impact of troubleshooting efforts. Economic metrics can be normalized to account for changes in labor, materials, energy and other variable costs. Standard financial and statistical methods can be applied to analyze and compare long and short term performance estimates as compared to the baseline. These data can be used to establish a benchmark level, or to create measurable goals for an operation to strive for.

1.3 Troubleshooting Resources and Their Cost

A proper investment in troubleshooting expertise and equipment should be made in order to maintain a process operation at its designed capacity and benchmark uptime or first-pass yield, while minimizing the contributors to costs as outlined above. While troubleshooting infrastructure (expertise, hardware and software) can incur a significant cost to a business, it can easily pay for itself by solving problems quickly that might otherwise result in a catastrophic failure. State-of-the-art process equipment from established suppliers is usually equipped with sensors, electronic hardware and control system and diagnostic software that are critical tools for troubleshooting activities. Older manufacturing lines should be considered for replacement or upgrading with the latest diagnostic capabilities. The technical components of a typical extrusion compounding line will be used to exemplify how required expertise and capabilities can be identified.

1. Feed stock materials and additives (inputs). Reputable suppliers provide materials that consistently meet technical specifications. However, there are occasions where an off-spec lot of material may be delivered to a compounding plant. Furthermore, the supplier may change their process or their own sourcing, so that the material properties change slightly, but still meet product specifications. Your own formulation may change or replace one component with a material from a different supplier. Small changes in ingredients or formulation could result in problems that affect product quality, yield or process uptime. For example, two different high density polyethylene (HDPE) feed stocks may have the same melt flow index, but their molecular weight distributions may differ. A simple HDPE substitution could result in poor compounding performance as indicated by torque and pressure oscillations that could affect the time-temperature-stress history experienced by the formulation resulting in product property variability. Furthermore, customers might experience process upsets resulting in poor film quality or excess flash or mold deposit in injection molded parts. Thus, sufficient knowledge of polymers, additives and their interactions is required in order to diagnose material-related problems. Material suppliers may provide some information and expertise, but they do not know about your proprietary formulations and processing systems. Thus, sufficient expertise and infrastructure are needed in the fields of polymer chemistry and processing. A large company can support in-house expertise that can be leveraged across business units and product types. A toll manufacturer may know their technology, but they may require contract partners (suppliers, consultants, and engineering firms) to provide expertise for the materials used and the process methodology employed.