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Foreword

Organic semiconductors now provide an important technology base, supported by
a rapidly growing body of science. The field is not new; interest in the semi-
conducting properties of pi-conjugated molecules was already well established in
the 1960s and the foundations of their semiconductor science were built then
using molecular materials such as anthracene as model systems. As with inorganic
semiconductors, the prospect of engineering toward applications has provided sev-
eral major boosts to the field. The initial drive in the late 1970s was to use organic
photoconductors in place of selenium as the photoactive drum in electrophotogra-
phy applications. Molecular semiconductor “guests’ in polymer “hosts” were suc-
cessfully engineered and are now the ubiquitous technology for this application.
They also provided the working systems for the understanding of electronic
transport in disordered semiconductors.
The explosion of interest, dating from the late 1980s, was triggered by the observa-

tion of relatively efficient electroluminescence in thin-film diode structures, in both
molecular semiconductors and solution-processed polymeric semiconductors.
Though electroluminescence had been observed in single-crystal semiconductors in
the 1960s, it was the prospect of practicalmaterials processing to deliver useful devices
such as pixelated displays that drew industrial and commercial attention, and this has
supported a vibrant global research community. Besides light-emitting diodes, now in
products such as smart phone displays, other devices have been brought to realistic
levels of performance: field-effect transistors today match the performance of thin-
film silicon, and solar cells offer realistic energy conversion efficiency, at 10%.
The level of device performance has been achieved on the back of a wide range of

scientific and engineering breakthroughs. Perceived obstacles to performance
(such as limits to solid-state luminescence efficiency or to field-effect carrier
mobility) have been pushed aside and a remarkable landscape of new science and
new phenomena is now revealed. This is captured by the excellent series of
chapters in this book that cover both the richness of the physics-based science and
the global reach of the field, with authors from leading research groups across
North America, Europe. and Asia.

Cavendish Laboratory Richard Friend
University of Cambridge, UK

jV





Preface

With the invention of the transistor around the middle of the last century, inorganic
semiconductors like Si or GaAs began to take over the role as dominant materials
in electronics from the prevailing metals. At the same time, the replacement of
vacuum tube-based electronics by solid-state devices initiated a development that
by the end of the twentieth century led to the omnipresence of semiconductor
microelectronics in our everyday life. Since the beginning of the twenty-first cen-
tury, we are facing a new electronics revolution that has become possible due to the
development and understanding of a new class of materials, commonly known as
organic semiconductors. The enormous progress in this field has been driven by the
expectation to realize new applications, such as large area, flexible light sources and
displays, low-cost printed integrated circuits, or plastic solar cells from these
materials.
Strictly speaking, organic semiconductors are not new. The first studies of the

dark and photoconductivity of anthracene crystals (a prototype organic semi-
conductor) date back to the early twentieth century. Later on, triggered by the dis-
covery of electroluminescence in the 1960s, molecular crystals were intensely
investigated by many researchers. These investigations could establish the basic
processes involved in optical excitation and charge carrier transport. Nevertheless,
in spite of the principal demonstration of an organic electroluminescent diode
incorporating even an encapsulation similar to the ones used in nowadays commer-
cial display applications, there were several drawbacks preventing practical use of
these early devices. Since the 1970s, the successful synthesis and controlled doping
of conjugated polymers established the second important class of organic semicon-
ductors. Together with organic photoconductors (molecularly doped polymers),
these conducting polymers have initiated the first applications of organic materials
as conductive coatings or photoreceptors in electrophotography. The interest in the
semiconducting properties of molecular materials revived in the 1980s due to the
demonstration of an efficient photovoltaic cell incorporating an organic heterojunc-
tion of “p- and n-type” semiconductors as well as the first successful fabrication of
thin-film transistors from conjugated polymers and oligomers. The main impetus,
however, came from the demonstration of high-performance electroluminescent
diodes from vacuum-evaporated molecular films and from conjugated polymers.
Owing to the large efforts of both academic and industrial research laboratories
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during the past two decades, organic semiconductor devices have progressed rap-
idly and meanwhile led to first commercial products incorporating displays and
light sources made of organic light-emitting diodes (OLEDs), logic circuits utilizing
organic field-effect transistors (OFETs) or solar energy harvesting modules on the
basis of organic photovoltaic cells (OPVs).
This book focuses on the fundamental physics behind this rapidly developing

field of organic electronics. It ties in with the previous edition of “Physics of
Organic Semiconductors” published in 2005. Due to the big success of the first
edition and the rapidly developing and still growing field, a new edition with com-
pletely restructured contents and new contributing authors was put together in
order to include novel exciting developments over the past 6 years. In spite of the
appearance of first commercial products, there is still a large interest in fundamen-
tal issues in the field of organic semiconductors. This book, therefore, tries to
bridge the gap between textbook knowledge largely based on crystalline molecular
solids on the one side (see, for example, Pope & Swenberg, Electronic Processes in
Organic Crystals and Polymers, or Schwoerer & Wolf, Organic Molecular Solids) and
other books focusing more on device applications.
The editors want to thank all contributing authors for writing high-quality up-to-

date chapters of their work, including the state of the art in the respective field.
Without their efforts this book would not have been possible. Furthermore, we
want to thank Russell J. Holmes (University of Minnesota) who acted as consultant
editor in the early stages of this book project. We are also indebted to our academic
teachers, Prof. Em. Markus Schwoerer (Bayreuth University) and Prof. Em. Tetsuo
Tsutsui (Kyushu University), who brought us in touch with this fascinating subject
more than 20 years ago.

Wolfgang Brütting and
Chihaya Adachi

VIIIj Preface



List of Contributors

Chihaya Adachi
Kyushu University
Center for Future Chemistry
744 Motooka
Nishi
Fukuoka 819-0395
Japan

Marc A. Baldo
Massachusetts Institute
of Technology
Department of Electrical
Engineering and Computer Science
Cambridge
MA 02139
USA

Andreas Baumann
Bavarian Center for Applied Energy
Research (ZAE Bayern)
Am Hubland
D - 97074 Würzburg
Germany

David Beljonne
Universit�e de Mons-Hainaut
Service de Chimie des Mat�eriaux
Nouveaux
Place du Parc 20
7000 Mons
Belgium

Peter A. Bobbert
Eindhoven University of Technology
Department of Applied Physics
P.O. Box 513
Eindhoven
5600 MB
The Netherlands

Wolfgang Br€utting
University of Augsburg
Institute of Physics
Universitätsstr. 1
86159 Augsburg
Germany

Jui-Fen Chang
Department of Optics and Photonics
National Central University
Chung-Li, 320, R.O.C.
Taiwan

Reinder Coehoorn
Philips Research Laboratories
High Tech Campus 4
Eindhoven
5656 AE
The Netherlands

and

Eindhoven University of Technology
Department of Applied Physics
P.O. Box 513
Eindhoven
5600 MB
The Netherlands

jXIX



Rafa» Czerwieniec
Universit€at Regensburg
Institut f€ur Physikalische und
Theoretische Chemie
Universit€atsstr. 31
93053 Regensburg
Germany

Carsten Deibel
Experimental Physics VI
Julius-Maximilian-University of
Würzburg
Am Hubland
D - 97074 Würzburg
Germany

Vladimir Dyakonov
Experimental Physics VI
Julius-Maximilian-University of
Würzburg
Am Hubland
D - 97074 Würzburg
Germany

and

Bavarian Center for Applied Energy
Research e.V. (ZAE Bayern)
Am Hubland
D - 97074 Würzburg
Germany

J€org Frischeisen
University of Augsburg
Institute of Physics
Universitätsstr. 1
86159 Augsburg
Germany

Neil Greenham
University of Cambridge
Cavendish Laboratory
J.J. Thomson Avenue
Cambridge CB3 0HE
UK

Hisao Ishii
Chiba University
Center for Frontier Science
1-33 Yayoi-cho
Inage Chiba 263-8522
Japan

Paul-Ludovic Karsenti
Universit�e de Montr�eal
D�epartement de physique &
Regroupement qu�eb�ecois sur les
mat�eriaux de pointe
C.P. 6128
Succursale Center-ville
Montr�eal
QC H3C 3J7
Canada

Jang-Joo Kim
Department of Materials Science and
Engineering
Seoul National University
San 56-1
Shillim-dong
Gwanak-gu
Seoul 151-744
Korea

Norbert Koch
Humboldt-Universit€at zu Berlin
Institut f€ur Physik
Newtonstr. 15
12489 Berlin
Germany

Gianluca Latini
Istituto Italiano di Tecnologia
Centre for Biomolecular
Nanotechnologies @UNILE
Via Barsanti
73010, Arnesano (LE)
Italy

XXj List of Contributors



Jae-Hyun Lee
School of Global Convergence
Studies
Hanbat National University
San 16-1
Duckmyoung-dong
Daejeon 305-719
Korea

Karl Leo
Technische Universität Dresden
Institut für Angewandte Photophysik
George-Bähr-Str. 1
01069 Dresden
Germany

Bj€orn L€ussem
Technische Universität Dresden
Institut für Angewandte Photophysik
George-Bähr-Str. 1
01069 Dresden
Germany

Yukimasa Miyazaki
Chiba University
Graduate School of Advanced
Integration Science
1-33 Yayoi-cho
Inage Chiba 263-8522
Japan

Hajime Nakanotani
Kyushu University
Center for Future Chemistry
744 Motooka
Nishi
Fukuoka 819-0395
Japan

Yasuo Nakayama
Chiba University
Center for Frontier Science
1-33 Yayoi-cho
Inage Chiba 263-8522
Japan

Yutaka Noguchi
Chiba University
Center for Frontier Science
1-33 Yayoi-cho
Inage Chiba 263-8522
Japan

Andreas Opitz
University of Augsburg
Institute of Physics
Universitätsstr. 1
86159 Augsburg
Germany

and

Humboldt-Universität zu Berlin
Institut für Physik
Newtonstr. 15
12489 Berlin
Germany

Francis Paquin
Universit�e de Montr�eal
D�epartement de physique &
Regroupement qu�eb�ecois sur les
mat�eriaux de pointe
C.P. 6128
Succursale Center-ville
Montr�eal
QC H3C 3J7
Canada

Andreas F. Rausch
Universit€at Regensburg
Institut f€ur Physikalische und
Theoretische Chemie
Universit€atsstr. 31
93053 Regensburg
Germany

List of Contributors jXXI



Sebastian Reineke
Massachusetts Institute of
Technology
Department of Electrical
Engineering and Computer Science
Cambridge
MA 02139
USA

Moritz Riede
Technische Universität Dresden
Institut für Angewandte Photophysik
George-Bähr-Str. 1
01069 Dresden
Germany

Tomo Sakanoue
Organic Electronics Research Center
Yamagata University, 4-3-16 Jonan
Yonezawa, Yamagata
992-8510
Japan

Maciej Sakowicz
Universit�e de Montr�eal
D�epartement de physique &
Regroupement qu�eb�ecois sur les
mat�eriaux de pointe
C.P. 6128
Succursale Center-ville
Montr�eal
QC H3C 3J7
Canada

Naoki Sato
Chiba University
Graduate School of Advanced
Integration Science
1-33 Yayoi-cho
Inage Chiba 263-8522
Japan

Frank Schreiber
Universit€at T€ubingen
Institut f€ur Angewandte Physik
Auf der Morgenstelle 10
72076 T€ubingen
Germany

Carlos Silva
Universit�e de Montr�eal
D�epartement de physique &
Regroupement qu�eb�ecois sur les
mat�eriaux de pointe
C.P. 6128
Succursale Center-ville
Montr�eal
QC H3C 3J7
Canada

Henning Sirringhaus
Cavendish Laboratory
University of Cambridge
Cambridge CB3 OHE
UK

Natalie Stingelin
Imperial College London
Department of Materials and Centre
for Plastic Electronics
South Kensington Campus
London SW7 2AZ
UK

Yuya Tanaka
Chiba University
Graduate School of Advanced
Integration Science
1-33 Yayoi-cho
Inage Chiba 263-8522
Japan

XXIIj List of Contributors



Chih-Hung Tsai
National Taiwan University
Graduate Institute of Photonics and
Optoelectronics
No. 1, Sec. 4, Roosevelt Rd.
Taipei 10617, Taiwan
Republic of China

Nobuo Ueno
Chiba University
Graduate School of Advanced
Integration Science
Inage-ku
Chiba 263-8522
Japan

Linjun Wang
Universit�e de Mons-Hainaut
Service de Chimie des Mat�eriaux
Nouveaux
Place du Parc 20
7000 Mons
Belgium

Markus Wohlgenannt
University of Iowa
Department of Physics and
Astronomy
Optical Science and Technology
Center
205 North Madison Street
126 IATL
Iowa City
IA 52242
USA

Chung-Chih Wu
National Taiwan University
Department of Electrical
Engineering
No. 1, Sec. 4, Roosevelt Rd.
Taipei 10617, Taiwan
Republic of China

Hartmut Yersin
Universit€at Regensburg
Institut f€ur Physikalische und
Theoretische Chemie
Universit€atsstr. 31
93053 Regensburg
Germany

List of Contributors jXXIII





Part One
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1
Organic Molecular Beam Deposition
Frank Schreiber

1.1
Introduction

Organic semiconductors exhibit a range of interesting properties, and their applica-
tion potential is rather broad, as seen in many other chapters in this book. For the
crystalline “small-molecule” systems, grown by organic molecular beam deposition
(OMBD), the subject of this chapter, it is generally agreed that the structural defini-
tion is important for the functional properties. The following list should serve to
illustrate the various aspects:

1) The definition of interfaces (degree of interdiffusion and roughness)
a) Organic–organic (e.g., in organic diodes)
b) Organic–metal (e.g., for electrical contacts)
c) Organic–insulator (e.g., in transistors, insulating layer between gate and

semiconductor)
2) The crystal structure

a) Which structure is present? (Note that polymorphism is very common in
organics).

b) Are different structures coexisting?
c) Orientation of the structure (epitaxy)?
d) Is the structure strained (epitaxy)?

3) Crystalline quality/defect structure
a) Mosaicity (note that in a thin film one has to distinguish between quality in

the xy-plane and in z-direction (surface normal)).
b) Homogeneity within a given film (density of domain boundaries etc.)
c) Density of defects (and their nature), which also impacts the electronic

properties.
4) Issues related to multicomponent systems

a) Phase segregation versus intermixing; size of “domains.”
b) Possible new structural phases of the mixed system; superstructures?
c) Tuning of properties by graded concentration profiles?
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Since the structure has a strong impact on the functional properties, understand-
ing the structure formation, that is, the growth process, and finding ways to opti-
mize the structural definition is a prerequisite for technological progress.
Moreover, understanding the physics of the growth process raises several funda-
mental challenges.
We will mostly focus on “thicker” films, their growth modes, and the evolution

of the morphology for thickness ranges that are typically employed in organic
semiconductor applications. We will discuss only to a limited extent the work on
the first monolayer, although as the “seed layer” for the following layers this is
obviously important. Thus, some of the classical surface science issues, such as
binding distances and associated interface dipoles, although very important
[1, 2], epitaxial relation, and so on, are not the focus of this chapter. For these
issues and also for information on the history of the field, we refer to Refs [3–15].
Also, we will not discuss issues related to chirality, although they are undoubtedly
intriguing [11, 16–18].
In terms of growth technology, the equipment is essentially the same as for

inorganic molecular beam epitaxy. Evaporation cells on a vacuum chamber are
used to provide a flux of molecules at the substrate surface (typically some
range around 1A

�
/s to 1 A

�
/min), and ideally the growth can be monitored in situ.

Virtually, all surface and interface techniques have been used for OMBD-grown
films, and we refer to standard textbooks for details of the experimental
methodology.
This chapter is organized as follows. We first present some of the general issues

in thin film growth and then what is specific and potentially different for organics
(Section 1.2). In Section 1.3, we give an overview of the most popular systems. Sec-
tion 1.4 contains a number of case studies, trying to highlight the issues that we
feel are particularly relevant and typical for OMBD. The case studies are based on a
few selected compounds and are not intended as an exhaustive list. They are orga-
nized according to the (inorganic) substrates, covering, insulators, metals, and
semiconductors. In Section 1.7, we briefly indicate the issues for organics-based
heterostructures, inorganic–organic, and organic–organic. Some conclusions are
given in Section 1.8.
In a review with limited space such as the present one, it cannot be our goal to

give a complete and exhaustive overview. Instead, the examples are centered mostly
around our own work, which we try to discuss in the context of the general field.
This selection is obviously unbalanced, and we apologize for omissions of other
important work.
We note that this chapter is an updated version of the 2005 edition of this book

and related to Ref. [13]. Important developments since then are, inter alia, the preci-
sion determination of binding distances of organic semiconductors on metal con-
tacts along with the associated electronic properties (e.g., Refs [1, 2]), the further
development of real-time monitoring of growth (e.g., Ref. [19]) and an increased
understanding of organic–organic heterostructures, as reviewed at the end of this
chapter.
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