Plants are equipped with a sophisticated immune system that allows for the recognition and defense against disease and infection. The pathogens that plants face are constantly evolving and developing new strategies to circumvent immune responses. Increased demands on plants as a source of both food and energy necessitate a better understanding of the molecular mechanisms that allow plants to ward off pathogens and flourish in their environments. Molecular Plant Immunity provides comprehensive coverage of the molecular basis of plant disease resistance.

Molecular Plant Immunity looks at plant immune responses at a molecular level to provide readers with a foundational understanding of the cellular processes that allow plants to fight pathogens and disease. Chapters look at the various roles played by receptors, resistance proteins, effector proteins, and plant hormones in immune response. Coverage also extends to plant-viral interactions and closes with a chapter looking forward at the prospects of genetic-engineering efforts to increase plant immunity.

Molecular Plant Immunity collects the latest research into a cohesive and broad-ranging review of the plant immune processes and will provide readers with a deeper understanding of how plants combat pathogens and are able to thrive in complex environments. This book will be an essential resource for plant biologists, pathologists, virologists, plant biotechnologists, and crop scientists.

Editor
Guido Sessa is Associate Professor of Molecular Plant Pathology in the Department of Molecular Biology and Ecology of Plants at Tel-Aviv University, Tel-Aviv, Israel.

Related Titles
Effectors in Plant-Microbe Interactions
Edited by Francis Martin and Sophien Kamoun

Biocomplexity of Plant-Fungal Interactions
Edited by Darlene Southworth
Molecular Plant Immunity
Molecular Plant Immunity

Editor
GUIDO SESSA
Department of Molecular Biology and Ecology of Plants
Tel-Aviv University
Tel-Aviv, Israel
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
</tbody>
</table>

Chapter 1 The Rice Xa21 Immune Receptor Recognizes a Novel Bacterial Quorum Sensing Factor
Chang Jin Park and Pamela C. Ronald

- Introduction 1
- Plants and Animal Immune Systems 2
- A Plethora of Immune Receptors Recognize Conserved Microbial Signatures 2
- Ax21 Conserved Molecular Signature 3
- Non-RD Receptor Kinase Xa21 8
- XA21-Mediated Signaling Components 11
- Cleavage and Nuclear Localization of the Rice XA21 Immune Receptor 13
- Regulation in the Endoplasmic Reticulum: Quality Control of XA21 14
- Systems Biology of the Innate Immune Response 15
- Acknowledgments 16
- References 16

Chapter 2 Molecular Basis of Effector Recognition by Plant NB-LRR Proteins
Lisong Ma, Harrold A. van den Burg, Ben J. C. Cornelissen, and Frank L. W. Takken

- Introduction 23
- Building Blocks of NB-LRRs; Classification and Structural Features of Subdomains 24
- Putting the Parts Together: Combining the Domains to Build a Signaling Competent NB-LRR Protein 29
- Stabilization and Accumulation of NB-LRR Proteins: Their Maturation and Stabilization 30
- When the Pathogen Attacks: Perception and Signaling by NB-LRR Proteins 33
- Conclusion 35
- Acknowledgments 35
- References 36
CONTENTS

Chapter 3 Signal Transduction Pathways Activated by R Proteins 41
Gitta Coaker and Douglas Baker

Introduction 41
R Protein Stability 42
Genetic Separation of CC and TIR-NB-LRR Signaling 42
NB-LRRs Exhibit Modular Structure and Function 44
Subcellular Localization of NB-LRRs 45
NB-LRRs Can Function in Pairs 47
Common Immune Signaling Events Downstream of R Protein Activation 48
Conclusion 50
Acknowledgments 50
References 50

Chapter 4 The Roles of Salicylic Acid and Jasmonic Acid in Plant Immunity 55
Pradeep Kachroo and Aardra Kachroo

Introduction 55
Biosynthesis of SA 55
Derivatives of SA 57
SA and Systemic Acquired Resistance 58
SA Signaling Pathway 60
Jasmonates Mediate Plant Immunity 62
JA Biosynthetic Mutants Are Altered in Microbial Defense 63
Receptor Protein Complex Perceives JA 65
Transcription Factors Regulate JA-Derived Signaling 66
JA Regulates Defense Gene Expression 68
Conclusion 68
Acknowledgments 69
References 69

Chapter 5 Effectors of Bacterial Pathogens: Modes of Action and Plant Targets 81
Feng Feng and Jian-Min Zhou

Introduction 81
Overview of Plant Innate Immunity 81
Overview of Type III Effectors 83
Host Targets and Biochemical Functions 86
Conclusion 99
Acknowledgments 99
References 99

Chapter 6 The Roles of Transcription Activator–Like (TAL) Effectors in Virulence and Avirulence of Xanthomonas 107
Aaron W. Hummel and Adam J. Bogdanove

Introduction 107
TAL Effectors Are Delivered into and May Dimerize in the Host Cell 107
CONTENTS

TAL Effectors Function in the Plant Cell Nucleus 108
AvrBS4 Is Recognized in the Plant Cell Cytoplasm 109
TAL Effectors Activate Host Gene Expression 109
Central Repeat Region of TAL Effectors Determines DNA Binding Specificity 110
TAL Effectors Wrap Around DNA in a Right-Handed Superhelix 111
TAL Effector Targets Include Different Susceptibility and Candidate Susceptibility Genes 112
MtN3 Gene Family Is Targeted by Multiple TAL Effectors 114
Promoter Polymorphisms Prevent S Gene Activation to Provide Disease Resistance 115
Nature of the Rice Bacterial Blight Resistance Gene xas5 Suggests TAL Effector Interaction With Plant Transcriptional Machinery 115
Executor R Genes Exploit TAL Effector Activity for Resistance 116
Diversity of TAL Effectors in Xanthomonas Populations Is Largely Unexplored 117
TAL Effectors Are Useful Tools for DNA Targeting 118
Conclusion 118
References 119

Chapter 7 Effectors of Fungi and Oomycetes: Their Virulence and Avirulence Functions and Translocation From Pathogen to Host Cells 123
Brett M. Tyler and Thierry Rouxel

Introduction 123
Plant-Associated Fungi and Oomycetes 125
Identification of Fungal and Oomycete Effectors 126
Defensive Effectors: Effectors That Interfere With Plant Immunity 137
Offensive Effectors: Effectors That Debilitate Plant Tissue 146
Effectors That Contribute to Fitness via Unknown Mechanisms 149
Entry of Intracellular Effectors 149
Genome Location and Consequences for Adaptation/Dispensability 152
Conclusion 153
Acknowledgments 154
References 154

Chapter 8 Plant-Virus Interaction: Defense and Counter-Defense 169
Amy Wahba Foreman, Gail J. Pruss, and Vicki Vance

Introduction 169
RNA Silencing as an Antiviral Defense Pathway – the Beginning of the Story 169
Small Regulatory RNA Biogenesis and Function 172
The Silencing Mafia – the Protein Families 174
Defense: Antiviral RNA Silencing Pathways 177
Counter-Defense: Viral Suppressors of Silencing and Their Targets 178
Viral Suppressors of Silencing and Endogenous Small Regulatory RNA Pathways 181
References 182
CONTENTS

Chapter 9 Molecular Mechanisms Involved in the Interaction Between Tomato and *Pseudomonas syringae* pv. *tomato* 187
André C. Velásquez and Gregory B. Martin

Introduction 187
PAMP-Triggered Immunity in Solanaceae 188
Pseudomonas syringae pv. *tomato* Virulence Mechanisms 192
Effector-Triggered Immunity in Solanaceae 197
Races of *Pseudomonas syringae* pv. *tomato* 200
ETI Is Involved in Nonhost Resistance to *Pseudomonas syringae* Pathovars 200
ETI Signaling Pathways in Solanaceae 201
Conclusion 203
Acknowledgments 204
References 204

Chapter 10 *Cladosporium fulvum*–Tomato Pathosystem: Fungal Infection Strategy and Plant Responses 211
Bilal Ökmen and Pierre J. G. M. de Wit

Introduction 211
History of the Interaction Between *C. fulvum* and Tomato 212
Compatible and Incompatible Interactions 212
Cf-Mediated Downstream Signaling 219
Effectors in Other Fungi with Similar Infection Strategies 220
Conclusion 221
References 221

Chapter 11 Cucumber Mosaic Virus–*Arabidopsis* Interaction: Interplay of Virulence Strategies and Plant Responses 225
Jack H. Westwood and John P. Carr

Introduction 225
Biology of CMV 226
Host Resistance Responses to Virus Infection 230
Targeting of Host Factors by the Virus 236
Phenomenon of Cross-Protection 237
Functions of SA in Antiviral Defense 237
Metabolic Responses to CMV Infection 239
Vector-Mediated Transmission 240
Conclusion 242
Acknowledgments 242
References 243

Chapter 12 Future Prospects for Genetically Engineering Disease-Resistant Plants 251
Yan-Jun Chen, Michael F. Lyngkjær, and David B. Collinge

Introduction 251
Targets for Second-Generation Transgenic Strategies for Resistance 252
Hormones 253
CONTENTS

Defense Modulation 256
Transcription Factors 260
Promoters for Transgenic Disease Resistance 265
Implementation of Transgenic Resistance in the Field 266
Why Choose a Transgenic Approach? 267
Conclusion 269
Acknowledgments 269
References 269

Index 277
Contributors

Douglas Baker
Department of Plant Pathology
University of California at Davis
Davis, California, USA

Adam J. Bogdanove
Department of Plant Pathology and Microbiology
Iowa State University
Ames, Iowa, USA

John P. Carr
Department of Plant Sciences
University of Cambridge
Cambridge, United Kingdom

Yan-Jun Chen
Department of Plant Biology and Biotechnology
University of Copenhagen
Copenhagen, Denmark

Gitta Coaker
Department of Plant Pathology
University of California at Davis
Davis, California, USA

David B. Collinge
Department of Plant Biology and Biotechnology
University of Copenhagen
Copenhagen, Denmark

Ben J. C. Cornelissen
University of Amsterdam
Faculty of Science, SILS
Molecular Plant Pathology
Amsterdam, The Netherlands

Pierre J. G. M. de Wit
Laboratory of Phytopathology
Wageningen University
The Netherlands

Feng Feng
State Key Laboratory of Plant Genomics
and National Center for Plant Gene Research
Institute of Genetics and Developmental Biology
Chinese Academy of Sciences
Beijing, China
CONTRIBUTORS

Amy Wahba Foreman Department of Biological Sciences University of South Carolina Columbia, South Carolina, USA

Aaron W. Hummel Department of Plant Pathology and Microbiology Iowa State University Ames, Iowa, USA

Aardra Kachroo Department of Plant Pathology University of Kentucky Lexington, Kentucky, USA

Pradeep Kachroo Department of Plant Pathology University of Kentucky Lexington, Kentucky, USA

Michael F. Lyngkjaer Department of Plant Biology and Biotechnology University of Copenhagen Copenhagen, Denmark

Lisong Ma University of Amsterdam Faculty of Science, SILS Molecular Plant Pathology Amsterdam, The Netherlands

Gregory B. Martin Boyce Thompson Institute for Plant Research Ithaca, New York, USA

Bilal Okmen Laboratory of Phytopathology Wageningen University The Netherlands

Chang Jin Park Department of Plant Pathology and the Genome Center University of California at Davis Davis, California, USA

Gail J. Pruss Department of Biological Sciences University of South Carolina Columbia, South Carolina, USA

Pamela C. Ronald Department of Plant Pathology and the Genome Center University of California at Davis Davis, California, USA

Thierry Rouxel INRA-Bioger Thiverval-Grignon, France

Frank L. W. Takken University of Amsterdam Faculty of Science, SILS Molecular Plant Pathology Amsterdam, The Netherlands
CONTRIBUTORS

Brett M. Tyler
Center for Genome Research and Biocomputing
Department of Botany and Plant Pathology
Oregon State University
Corvallis, Oregon, USA

Vicki Vance
Department of Biological Sciences
University of South Carolina
Columbia, South Carolina, USA

Harrold A. van den Burg
University of Amsterdam
Faculty of Science, SILS
Molecular Plant Pathology
Amsterdam, The Netherlands

André C. Velásquez
Department of Plant Pathology and Plant-Microbe Biology
Cornell University
Ithaca, New York, USA

Jack H. Westwood
Department of Plant Sciences
University of Cambridge
Cambridge, United Kingdom

Jian-Min Zhou
State Key Laboratory of Plant Genomics and National Center for Plant Gene Research
Institute of Genetics and Developmental Biology
Chinese Academy of Sciences
Beijing, China
Preface

Plants and pathogens are constantly engaged in an “arms race,” each party competing to develop molecular weapons for the defeat of its enemy. As a result, plants are equipped with a sophisticated immune system for the recognition of invading pathogens, transmission of alarm signals, and rapid activation of efficient defense responses that limit infection. Concurrently, pathogens have developed strategies to cause disease through sabotaging the plant immune system. In an era of growing food demand for the sustainment of the world’s population, understanding the molecular mechanisms of plant immunity and microbial pathogenicity is of cardinal importance for devising strategies that limit the large yield losses owing to plant diseases.

This book provides comprehensive coverage of the molecular basis of plant disease resistance by reviewing fundamental features of the plant immune system as well as the most recent insights into this important field of plant biology. Chapter 1 describes recognition of a novel bacterial quorum sensing factor by the rice Xa21 receptor, representing a paradigm for how a first line of immune responses is activated on recognition of conserved molecular signatures of microbial pathogens by plant transmembrane receptors. Chapters 2 and 3 review molecular mechanisms involving resistance (R) proteins, an additional class of immune receptors responsible for the activation of a second line of immune responses. Topics covered in these chapters include structure, control, and activation of R proteins; molecular mechanisms mediating effector recognition by R proteins; and signaling pathways acting downstream of R proteins and leading to the activation of effective immune responses. Chapter 4 describes the role of the plant hormones salicylic acid and jasmonic acid in signaling pathways downstream of immune receptors. Chapters 5, 6, and 7 discuss molecular features of pathogen effector proteins of bacteria, fungi, and oomycetes that interfere with plant immunity and contribute to bacterial and fungal pathogenicity. Chapter 8 presents molecular mechanisms that modulate the interaction between plants and viruses. Chapters 9, 10, and 11 focus on plant-pathogen interactions representing model systems for the interplay between host plants and bacterial, fungal, or viral pathogens. Chapter 12 describes future prospects for genetically engineering disease-resistant plants.

I would like to thank all the authors for their excellent contributions that integrate well-established and emerging concepts to provide an up-to-date review of the state of the art in the challenging field of molecular plant immunity.

Guido Sessa
Molecular Plant Immunity
1 The Rice Xa21 Immune Receptor Recognizes a Novel Bacterial Quorum Sensing Factor
Chang Jin Park and Pamela C. Ronald

Introduction

During the course of evolution, plants and animals have acquired the capability to perceive microbes and respond with robust defense responses. Plant diseases were mentioned in 750 BCE in the Hebrew Bible and again in the writings of Democritus, around 470 BCE (Agrios 1997). Theophrastus made plants and plant disease a subject of systematic studies in 300 BCE. He and his contemporaries believed that plant diseases were a manifestation of the wrath of God (Agrios 1997). Very little useful knowledge about plant diseases was gained for another 2000 years.

The devastating late blight of potatoes, an epidemic that began in 1845 and destroyed the principal food source for millions of people in Ireland, launched the first serious investigations into the basis of plant disease. Although some scientists believed that the causal agent was a microbe (Kelman and Peterson 2002), this hypothesis flew in the face of the prevailing scientific view that microbes commonly found in diseased plant tissues were the products rather than the cause of disease. In 1853, through studies of rusts and smut fungi infection of cereal crops, De Bary conclusively demonstrated that microbes are the causal agents of infectious disease (Agrios 1997).

A quarter century later, the causal role of microorganisms in animal diseases was demonstrated by Koch (1876), who studied anthrax in cattle, using the mouse as a model host. Koch’s postulates, developed in the course of these studies, applied equally thereafter to work with plant and animal pathogens. Biffen (1894–1949), a British geneticist and plant breeder, speculated that resistance to disease would be inherited in Mendelian ratios, and in 1905 he demonstrated that this was true for resistance to yellow rust, a fungal disease of wheat (http://www.answers.com/topic/rowland-biffen).

In 1946, Flor (1942, 1971) working with the rust disease of flax proposed the gene-for-gene hypothesis based on genetic analyses of the variation within host and pathogen populations. He used the terms “host resistance genes” and “pathogen avirulence (avr) genes.” The presence of corresponding avr-R genes in each organism leads to recognition and the activation of defense responses, limiting infection. Flor’s hypothesis suggested that specific sensors for microbial molecules were present in their hosts. Although some resistance genes conferred broad-spectrum resistance, others did not, specifying resistance to only some races of a particular pathogen species.
Plants and Animal Immune Systems

Since the discoveries of Biffen > 100 years ago, plant breeders have introduced resistance genes into virtually all crops that we eat today. However, for many years, the molecular basis of this resistance remained elusive.

In the 1990s, an avalanche of genetic experiments in numerous laboratories led to the isolation of the first resistance genes from multiple plant species. These discoveries established that diverse molecules and mechanisms govern the resistance phenotypes described in 1946 by Flor. Two of these resistance genes encode cytoplasmic NLRs (nucleotide-binding site domain [NBS], leucine-rich repeat [LRR]–containing intracellular proteins). These include Arabidopsis RPS2 (resistance to Pseudomonas syringae 2) (Kunkel et al. 1993; Yu et al. 1993), the tobacco mosaic virus resistance gene N (Whitham et al. 1994), and the flax L6 gene. These NLR proteins later were shown to perceive directly or indirectly highly conserved effector proteins that target the host immune system.

Other resistance genes isolated at this time encoded the tomato Pto kinase (Martin et al. 1993), the rice XA21 receptor kinase (Song et al. 1995), and the tomato receptor–like protein Cf9 that lacked a kinase domain (Jones et al. 1994). In contrast to the narrow-spectrum resistance conferred by RPS2, N, L6, Pto, and Cf9, XA21 conferred broad-spectrum resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and was predicted to recognize a conserved microbial signature (Ronald et al. 1992). The XA21 kinase belongs to a subclass of kinases that carry the non–arginine-aspartate (non-RD) motif (Dardick and Ronald, 2006).

Shortly after the discovery of the first plant resistance genes, work in Drosophila established that Toll, originally known for its function in development and its ability to elicit an nuclear factor κB (NF-κB) response, is a key transducer of responses to fungal and gram-positive bacterial infection (Ronald and Beutler 2010). Similar to XA21, Toll carried LRRs in the predicted extracellular domain and signaled through a non-RD kinase called Pelle (which associates with Toll through an adapter protein). Toll also shared the Toll/IL-1 Receptor (TIR) domain with the tobacco N and flax L6 proteins.

Toll does not serve as a receptor for any known molecule of fungal origin. Instead, Toll responds to Spaetzle, which is cleaved from an endogenous protein as a result of infection. This recognition leads to activation of Pelle and to signals that culminate in the production of antimicrobial peptides and hundreds of other proteins, most of unknown function.

In 1998, mouse TLR4 was isolated by positional cloning. TLR4 shared the same structure as Toll. Similar to XA21, TLR4 was predicted to recognize a conserved microbial signature, lipopolysaccharide (LPS), an important component of bacterial cell walls present in most gram-negative bacteria (Poltorak et al. 1998). Widely known for its ability to induce septic shock, LPS is a powerful elicitor of inflammation in mammals. TLR4 binds LPS in conjunction with MD-2, a secreted host protein with a hydrophobic pocket into which most of the LPS lipid chains become inserted (Kim et al. 2007). An essential contribution to LPS sensing is also made by CD14, an LRR protein that facilitates engagement of LPS by the TLR4/MD-2 complex and is absolutely required for the detection of highly glycosylated (“smooth”) LPS. Similar to Xa21 and Toll, TLR4 also signals through a non-RD kinase. The discovery of a role for Toll and TLR4 in the innate immune response provided a structural link between sensors used by plants and animals to detect infection.

A Plethora of Immune Receptors Recognize Conserved Microbial Signatures

Knowledge about the molecular structures of microbial molecules that elicit an immune response and their cognate receptors provided a critical framework for understanding plant response to
infection (Nünberger et al. 2004; Jones and Dangl 2006; Boller and Felix 2009). This review focuses on receptors of conserved microbial signatures (also called pattern recognition receptors) (Nünberger et al. 2004). These conserved microbial signatures, which are equivalent to animal pathogen-associated molecular patterns (PAMPs), also called microbe-associated molecular patterns (MAMPs), are defined as being (a) fundamental to the pathogens’ fitness, (b) widely distributed within a class of microbes, and (c) absent from the host (Medzhitov and Janeway 1997).

Since the discovery of Xa21 (Song et al. 1995) and TLR4 (Poltorak et al. 1998), a plethora of additional receptors of conserved microbial signatures have been isolated from plants and animals. In plants, in addition to rice XA21 (Song et al. 1995), two receptors of conserved microbial signatures have been well characterized: Arabidopsis flagellin sensitive 2 (FLS2) (Gomez-Gomez and Boller 2000) and Arabidopsis elongation factor (EF)-Tu receptor (EFR) (Zipfel et al. 2006). XA21, FLS2, and EFR recognize a sulfated peptide (AxYS22) derived from the N-terminal region of Ax21 (Lee et al. 2009), flg22 peptide derived from bacterial flagellin (Gomez-Gomez and Boller 2000; Zipfel et al. 2004), and peptide elf18 derived from the EF-Tu (elongation factor thermo-unstable) protein (Zipfel et al. 2006). Many other candidate receptors of conserved microbial signatures have also been isolated or predicted in plant genomes; genomes of monocotyledonous species carry approximately 10-fold more than genomes of the dicots (Schwessinger and Ronald 2012).

In animals, 12 mouse TLRs and 10 human TLRs are now recognized, and most respond to infection, each detecting a specific set of molecules of microbial origin. In flies, only Toll (one of nine paralogs) seems to have a role in the immune response. Mutations that abolish the function of individual TLRs cause selective susceptibility to a certain spectrum of microbes; mutations that prevent all TLR signaling cause severe and general immunodeficiency (Beutler 2009). In addition to the TLRs, animals use RLRs (retinoic acid-inducible gene 1–like receptors) to detect infection by RNA viruses (Satoh et al. 2010). Microbial carbohydrates and viral nucleic acids are detected by C-type lectins (dectin-1 and DC-SIGN) and kinases of eIF2α/H9251 (eukaryotic translation initiation factor 2α) (PKR and GCN2).

Inflammasomes also detect and respond to some pathogens and danger signals (including asbestos, silica, and nigericin) often in a subsidiary, TLR-dependent manner. The cores of these inflammasomes are formed by intracellular proteins of the NOD-like receptor (NLR) family, including Nlsp1, Nlsp3, IPAF, and AIM2. NLR proteins mediate apoptotic and inflammatory responses. The NLR proteins are structurally similar to plant NLR proteins but do not carry TIR domains, which are apparently reserved for signaling by TLRs or IL-1, IL-18, or IL-33, either at the cell surface or within endosomes. In contrast to the animal NLR proteins, none of the plant NLRs has been demonstrated to bind conserved microbial signatures, and they do not associate with non-RD kinases, suggesting a distinct mode of activation for the plant NLR proteins (Dardick and Ronald 2006).

Ax21 Conserved Molecular Signature

Because rice Xa21 conferred resistance to virtually all Xoo strains tested, we hypothesized that it recognized a conserved microbial signature (Ronald et al. 1992). We showed more recently that XA21 binds a sulfated peptide, called AxYS22, derived from the Xa21 (activator of XA21-mediated immunity) protein from Xoo. XA21/AxYS22 binding triggers XA21-mediated innate immunity (Song et al. 1995; Lee et al. 2009).

The conservation of Ax21 in all sequenced Xanthomonas spp., Xylella fastidiosa, and the human pathogen Stenotrophomonas maltophilia suggests that Ax21 serves a key biological function. To elucidate this function, we previously isolated and characterized eight rax genes (genes required
MOLECULAR PLANT IMMUNITY

Figure 1.1 Model for Ax21-mediated quorum sensing. Ax21 is sulfated by RaxST, a tyrosine sulfotransferase. As a substrate, RaxST uses 3′-phosphoadenosine 5′-phosphosulfate (PAPS), the production of which is catalyzed by RaxP, an adenosine-5′-triphosphate (ATP) sulfurylase, and RaxQ, adenosine-5′-phosphosulfate (APS) kinase. Sulfated Ax21 is recognized by the rice XA21 receptor. The PhoP/Q two-component regulatory system can sense low concentrations of Mg2+ and Ca2+ ions present in the environment, which triggers expression of hrp and virulence-related genes. This model suggests that the two two-component regulatory systems control different stages of bacterial growth and infection as described in the text. S indicates addition of a sulfuryl group.

phoQ and phoP
hrp genes and virulence-related genes

raxH and raxR
raxST, raxA, raxB, raxC, raxP, and raxQ

raxST, raxA, raxB, raxC, raxP, and raxQ

phoQ and phoP

raxA, raxB, and raxC encode components of a predicted type I secretion system (TOSS) (Figure 1.1).

The five other rax genes include raxST, raxP, and raxQ, encoding enzymes involved in sulfation, and raxH and raxR, which encode a predicted histidine kinase and cognate response regulator (Shen et al. 2002; Burdman et al. 2004; da Silva et al. 2004; Han et al. 2011b). The expression of the eight rax genes is density-dependent (Lee et al. 2006). Their expression at low densities can be rescued by the addition of high-performance liquid chromatography–fractionated Xoo PXO99 supernatants. Fractions from Xoo strains lacking Ax21 activity cannot induce density-dependent expression. Therefore, we hypothesized that Ax21 is required for quorum sensing (QS) (Figure 1.1).

QS is a process where small molecules serve as signals to recognize cell population size, leading to changes in expression of specific genes when the QS factor has accumulated to a certain threshold concentration (Fuqua and Winans 1994; Fuqua et al. 1994; Waters and Bassler 2005). In gram-positive bacteria, QS is controlled by oligopeptides, whereas gram-negative bacteria generally use acylated homoserine lactones (AHLs) or diffusible signal factors (DSF) for QS (Jayaraman and Wood 2008; Ng and Bassler 2009). One instance of peptide-mediated QS in gram-negative bacteria was reported (Kolodkin-Gal et al. 2007).

To determine if Ax21 can serve as a QS factor to regulate density-dependent expression of rax genes, we monitored rax gene expression in PXO99 and in a mutant strain lacking Ax21 for Ax21 activity).
THE RICE XA21 IMMUNE RECEPTOR RECOGNIZES A NOVEL BACTERIAL QUORUM SENSING FACTOR (PXO99Δax21). We found that the six rax genes were highly expressed in PXO99 cultures grown to high population densities (10^8 colony-forming units [CFU]/ml) but not in PXO99Δax21 cultures (Han et al. 2011a). Exogenous addition of purified recombinant rAx21 complemented rax gene expression in PXO99Δax21, whereas control fractions did not (Han et al. 2011a). These results demonstrate that the mature rAx21 protein is required for QS.

As an additional test to investigate the nature of Ax21, we carried out liquid chromatography–tandem mass spectrometry of supernatants from PXO99Δax21 (rAx21). Nine peptides spanning nearly the entire Ax21 protein except for the predicted N-terminal signal sequence were identified. These results demonstrate that the entire mature Ax21 protein is secreted and that the predicted N-terminal signal sequence is cleaved before secretion.

Bacteria use QS communication to regulate diverse biological processes, including motility, virulence, and transition from a planktonic (free swimming) state to a sessile state, called a biofilm. To elucidate the biological function of Ax21, we compared expression profiles of PXO99 and PXO99Δax21 at three different population densities and found that 489 genes (approximately 10% of the Xoo genome) are significantly differentially regulated by Ax21 (Han et al. 2011a).

Ten of these genes encode proteins containing the amino acid domains GGDEF, EAL, and HD-GYP. Such proteins have previously been shown to control cyclic diguanylate (c-di-GMP) turnover, a nucleotide-based secondary messenger that regulates diverse microbial phenotypes including growth, motility, virulence, and biofilm formation. In Xanthomonas spp., the RpfC/G sensor kinase and response regulator are required for DSF perception and signal transduction leading to c-di-GMP degradation through a protein containing an HD-GYP domain (Dow et al. 2006). In the opportunistic pathogen Pseudomonas aeruginosa, AHL-mediated c-di-GMP production is regulated by a tyrosine phosphatase (TpbA) (Ueda and Wood 2009). Thus, three distinct QS systems (AHL-mediated, DSF-mediated, and Ax21-mediated) control the expression of genes encoding proteins that regulate c-di-GMP turnover. Bacterial c-di-GMP has also more recently been shown to trigger the innate immune response of mouse and human cells (Karaolis et al. 2007; McWhirter et al. 2009).

Our expression analysis also identified a set of genes that are upregulated by Ax21 during early log phase (Han et al. 2011a). These include the gumE, gumJ, and gumK genes, which encode proteins required for biosynthesis of xanthan gum, an important component of the Xanthomonas extracellular polymeric substance (EPS) (Crossman and Dow 2004). EPS enables bacteria to adhere to each other or to a solid surface, a key component of biofilms.

To assess if Ax21 is required for biofilm formation, we examined biofilm formation in the PXO99, PXO99Δax21, and PXO99ΔraxST strains using a plate adherence assay. The PXO99Δax21 strain formed significantly fewer biofilms compared with the PXO99 strain. Exogenous addition of purified rAx21 restored biofilm formation in PXO99Δax21. Aggregation assays comparing PXO99Δax21 and PXO99 revealed that Ax21 is also required for in vivo aggregation of Xoo (Han et al. 2011a). These experiments demonstrate that Ax21-mediated QS controls biofilm formation in Xoo.

Our microarray data also revealed that at early log phase, Ax21 upregulates expression of genes involved in bacterial motility. To test whether Ax21 controls Xoo motility, we assayed the phenotype of Xoo PXO99 and PXO99Δax21 strains using a swimming motility plate assay. We found that the motility of PXO99 was twofold higher than the motility of PXO99Δax21 (Han et al. 2011a) indicating that Ax21 regulates Xoo swimming motility on semisolid media.

We previously showed that the predicted histidine kinases PhoQ and RaxH are required for Ax21-mediated activities (Burdman et al. 2004; Lee et al. 2008b). We hypothesized that one of these proteins was the bacterial receptor for Ax21. In support of this hypothesis, we observed that biofilm formation in both the PXO99ΔraxH and PXO99ΔphoQ strains is reduced compared with the PXO99 strain. We next tested whether biofilm activity could be rescued by addition of purified
rAx21 protein to these mutant strains. We found that PXO99ΔphoQ but not PXO99ΔraxH could form biofilms after complementation with rAx21 (Han et al. 2011a).

The observation that Ax21 is required for QS and for control of density-dependent expression of genes involved in motility, c-di-GMP turnover, and biofilm formation suggests that PXO99Δax21 strains would be impaired in virulence. However, earlier experiments indicated no significant changes in virulence phenotypes when PXO99Δax21 infection was tested by clipping rice leaves with bacteria dipped in high-density cultures (10^8 CFU/ml) (Kauffman et al. 1973; Lee et al. 2009). Because under field conditions, Xoo infection through hydathodes or wounded sites requires only a low inoculation density (10^4 CFU/ml) to initiate infection (Mizukami 1961), we hypothesized that an effect of Ax21 on virulence has been masked by the high-density inoculation approach.

To test this hypothesis, we established a new inoculation method. Xoo strains PXO99, PXO99ΔraxST, and PXO99Δax21 strains were cultured in PSA (peptone sucrose media) plates and diluted with water to 10^3 CFU/ml. Unclipped rice leaves were soaked in bacterial suspensions for 2 days, and bacterial populations were assessed 2 days after inoculation. We found that the population of the wild-type PXO99 strain was twofold higher than that of the PXO99ΔraxST and PXO99Δax21 strains using the low-density soaking method (Han et al. 2011a). In contrast, the populations of all three strains were similar 2 days after inoculation using the high-density scissor clipping method. These results indicate that ax21 and raxST are required for full virulence during early stages of infection that mimic field conditions.

To investigate the mechanism with which Ax21 regulates motility, virulence, and biofilm formation, we generated Xoo strains mutated for 12 genes that are regulated by Ax21. Virulence of five strains was partially or completely lost in the knockout mutants. Six strains displayed a reduction in biofilm formation, and 11 strains partially lost swimming motility. These analyses indicate that Ax21 exerts its complex control through the regulation of target genes.

The discovery that a small protein from a gram-negative bacterium has a dual role in QS and in activation of the host innate immune response has not previously been demonstrated. However, we do not believe this is an anomaly or that the biological importance of Ax21 is restricted to plant pathogens. For example, we previously reported that Ax21 is also conserved in the nosocomial pathogen Stenotrophomonas maltophilia and proposed a similar role for Ax21 in this species (Lee et al. 2009). Consistent with our hypothesis, a synthetic Ax21 protein was shown to regulate gene expression, motility, and biofilm formation in S. maltophilia, extending our findings to an animal pathogen (McCarthy et al. 2011).

These results suggest that not only do these other gram-negative bacteria use N-terminal processed small proteins for QS, but also that some of the hundreds of predicted receptors in rice and other species, for which no corresponding conserved microbial signature has yet been identified, detect such molecules (Dardick and Ronald 2006). Such knowledge can be used to develop reagents to immunize hosts against infection or antagonists to disrupt QS-mediated virulence activities and biofilm formation (Swem et al. 2008), a process thought to be involved in 65%–80% of bacterial infections of plants and animals (Davies 2003).

Post-translation Modification of Ax21 Influences Biological Activity and Recognition by XA21

Tyrosine sulfation is one of the most abundant post-translational modifications (Kehoe and Bertozzi 2000). In contrast to phosphorylation, which regulates processes that occur inside the cell, sulfated proteins/peptides are typically directed to the outside of the cell where they modulate cell-cell and ligand-receptor interactions.
THE RICE XA21 IMMUNE RECEPTOR RECOGNIZES A NOVEL BACTERIAL QUORUM SENSING FACTOR

A notable example pertinent to agriculture is sulfation of the *Sinorhizobium meliloti* Nod factor that is required for specific recognition by its host alfalfa (Roche *et al.* 1991). In humans, sulfation of residues in the C-terminus of the α subunit of the hCG (human chorionic gonadotropin) ligand is required for binding with the N-terminal LRR domain of the hCG receptor (Bielinska 1987; Bhowmick *et al.* 1996). Another example of regulation of receptor-ligand reactions controlled by sulfation is the binding of the gp120 subunit of the envelope glycoprotein of human immunodeficiency virus (HIV) to the human chemokine co-receptors CD4 and CCR5. Sulfation of tyrosine residues in the N-terminal segment of CCR5 appears to be critical for both HIV-1 entry and binding of gp120-CD4 complexes (Farzan *et al.* 1999, 2000).

We have shown that a 17-amino acid synthetic peptide containing a sulfated tyrosine-22 (AxYS22), derived from Ax21, binds the XA21 receptor and is sufficient for triggering XA21-mediated immunity. In contrast, peptides lacking tyrosine sulfation are inactive (Lee *et al.* 2009). Thus, AxYS22 represents a previously uncharacterized type of conserved microbial signature recognized by host receptors: a sulfated peptide. Isolated field strains that lack the predicted secretion or sulfation components are only weakly virulent in plants carrying XA21 (Choi *et al.* 2003; da Silva *et al.* 2004). This suggests that the sulfated Ax21 protein is required for bacterial fitness under field infection conditions and that *Xoo* evades XA21-mediated recognition by altering secretion or post-translational modification of the Ax21 protein, or both.

Ax21 tyrosine sulfation on Tyr22 is mediated by the sulfotransferase encoded by *raxST* (Han and Ronald, unpublished data) (Figure 1.1). Similar to *Pseudomonas* ORF1, which is critical for glycosylation and determines host specificity, *raxST* can be considered the avirulence determinant because strains lacking *raxST* are not recognized by XA21 and are virulent in rice greenhouse tests. The specificity conferred by a post-translational modification, supports an emerging theme for conserved microbial signatures – that sequence variation and post-translational modifications such as glycosylation, acetylation, and sulfation can modulate receptor recognition (Taguchi *et al.* 2003; Kunze *et al.* 2004; Sun *et al.* 2006). In the XA21/Ax21 system, the AxYS22 peptide sequence is invariant in all sequenced *Xanthomonas* species. Sulfation provides specificity to the system, just as flagellin recognition in plant species is modulated by glycosylation (Takeuchi *et al.* 2003).

PhoPQ Two-Component Regulatory System Detects and Responds to Extracellular Nutrient Status and Controls Expression of hrp Genes

Pathogens have evolved integrated regulatory circuits that control the coordinated expression of one set of genes in one environment and a different set of genes in another environment. In pathogenic bacteria, these regulatory circuits are generally controlled by two-component systems (TCSs), composed of histidine kinases (HKs) and response regulators (RRs). In response to environmental stimuli, HKs phosphorylate cognate RRss, which then activate gene expression (Charles *et al.* 1992).

In *Salmonella typhimurium*, PhoQ activity is modulated by extracellular levels of Mg$^{2+}$ and Ca$^{2+}$. Low cation concentrations promote activation of *mgtA*, *phgC*, *pcgE*, *pcgG*, *mgtCB*, and *psiD* genes, whereas high concentrations result in repression of these genes (Vescovi *et al.* 1996; Cheung *et al.* 2008). These results indicate that *Salmonella* PhoQ is a sensor for periplasmic concentrations of divalent cations. The role of divalent cations as signals for PhoQ is also supported by the crystal structures of the PhoQ periplasmic sensor domains from *S. typhimurium* and *E. coli* (Cheung *et al.* 2008). Similarly, we have shown that the *Xoo* PhoPQ system is required for sensing low extracellular Mg$^{2+}$ and Ca$^{2+}$ concentrations, conditions that the pathogen likely is confronted with on entry into the xylem of the rice plant (Lee *et al.* 2008b). In addition, we showed that Ax21 activity is impaired
in a *phoQ* knockout strain (PXO99Δ*phoQ*) as reflected by enhanced growth of this strain in rice lines carrying XA21 (i.e., increased susceptibility) (Lee et al. 2008b). These data suggest that PhoQ not only senses divalent cations but also regulates Ax21 activity.

Which biological activities are controlled by the PhoP/Q regulatory system? We have reported that a *phoP* knockout strain (PXO99Δ*phoP*) is impaired in Xoo virulence and is no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca\(^{2+}\) (Lee et al. 2008b). The impaired virulence of the PXO99Δ*phoP* strain can be partially complemented by constitutive expression of *hrpG*, indicating that PhoP/Q controls a key aspect of Xoo virulence through regulation of *hrpG*. These results are reminiscent of the fact that the PhoP/Q TCS is required for virulence in *Shigella flexneri* and *Yersinia pestis* (Moss et al. 2000; Oyston et al. 2000).

In *Xanthomonas* spp. and *R. solanacearum*, HrpG activates *hrpX* and *hrpA* expression. HrpX upregulates the expression of the *hrpB* to *hrpF* operons, which encode components of a type III secretion system (T3SS). T3SS secretes proteins directly into host cells. HrpX also controls expression of type III effectors (T3E), which are proteins secreted via T3SS (Merighi et al. 2003; Wei et al. 2007). We showed that expression of *hrpA* and *hrpX* in Xoo is significantly higher in the presence of low Ca\(^{2+}\) concentrations in the wild-type strain but not in the PXO99Δ*phoP* strain (Lee et al. 2008b). These results demonstrate that the PhoP/Q TCS senses cation concentrations to regulate *hrp* gene expression through HrpG.

Because we have shown that RaxR negatively regulates *phoP* gene expression (Burdman et al. 2004), we hypothesized that *hrpG*, *hrpA*, and *hrpX*, which are positively regulated by PhoP, would be negatively regulated by RaxR. We found that 23 *hrp* and *hrp*-related genes, including *hrpG*, *hrpA*, and *hrpX*, are downregulated in RaxR overexpression strains and upregulated in the PXO99Δ*raxR* strain (Lee et al. 2008b). These results support a model in which *Xoo* *hrp* gene expression is under control of PhoP, which is negatively regulated by the RaxR/H TCS (Figure 1.1). According to this model, the *Xoo* PhoP/Q TCS works in partnership with RaxR/H to assess population density and control the regulation of effectors. Our results suggest the presence of an integrated regulatory circuit that the bacterium uses to respond to environmental fluctuations.

These findings led to the hypothesis that Ax21 triggers a transition from a quiescent or epiphytic state to an invasive or pathogenic state of the bacterium in response to changing extracellular conditions sensed by the two TCSs. This hypothesis would explain why the PhoP/Q TCS, which triggers expression of a set of genes, including *hrp* genes, through the negative regulation of RaxR/H, is also required for Ax21 activity. Because Xoo must monitor population size under changing conditions, an integrated and flexible response system is desirable. In this model, Xoo can sense low concentrations of Mg\(^{2+}\) or Ca\(^{2+}\) in the host via the PhoP/Q TCS. These conditions would trigger *phoP*-regulated gene expression. The consequence would be an increased expression of genes required for virulence such as *hrp* genes. Bacteria would propagate, resulting in accumulation of Ax21, which is sensed by the RaxR/H TCS. This perception would lead to upregulation of *rax* genes and repression of *hrp* genes.

Non-RD Receptor Kinase Xa21

Non-RD Kinase Domain

XA21 is a receptor kinase that consists of LRR, transmembrane, juxtamembrane (JM), and intracellular kinase domains (Song et al. 1995) (Figure 1.2). Kinases are classified as arginine-aspartate
THE RICE XA21 IMMUNE RECEPTOR RECOGNIZES A NOVEL BACTERIAL QUORUM SENSING FACTOR

Figure 1.2 Model for XA21-mediated immunity. The ER chaperone and co-chaperone BiP3 and SDF2 are involved in XA21 biogenesis (Park et al. 2010). XA21 is processed through the ER and translocated to the PM where it binds the XA21-associated kinase 1 (XAK1) (Chen et al. Submitted). XB24 physically associates with XA21, keeping the XA21 protein in an inactive state (Chen et al. 2010b). Ax21 binding to XA21 activates its cytoplasmic non-RD kinase, inducing dissociation of XA21 from XB24 (Lee et al. 2009; Wang et al. 1998; Chen et al. 2010b). Autophosphorylated Thr705 transfers its phosphoryl group to other XA21 residues, activating XA21 (Chen et al. 2010a). Activated XA21 is cleaved and translocates to the nucleus (Park and Ronald, 2012). XA21 is hypothesized to transphosphorylate downstream target proteins that have not yet been identified. XB3 may serve to activate a downstream MAPK cascade (Wang et al. 2006). In the nucleus, XA21 binds WRKY transcription factors that regulate defense-related genes, such as PR1 and PR10, either positively or negatively (Peng et al. 2008, 2010). Recruitment of XB15 to Ser697 in the XA21 JM domain and subsequent dephosphorylation of phosphorylated residues attenuates the XA21-mediated immune response.

(RD) or non-RD kinases. RD kinases carry a conserved arginine (R) immediately preceding the catalytic aspartate (D) (Dardick and Ronald 2006). In contrast to RD kinases, non-RD kinases typically carry a cysteine or glycine in place of the arginine. It was previously reported that non-RD kinases are associated with the control of early signaling events in both plant and animal innate immunity (Dardick and Ronald 2006). For example, in humans, recognition of PAMPs at the cell surface is largely carried out by TLRs (Nürnberg and Brunner 2002). TLR1, TLR3, TLR5, TLR6, TLR7, TLR8, and TLR9 associate with the non-RD interleukin-1 receptor associated kinase (IRAK) family (Akira and Takeda 2004), and TLR3 and TLR4 associate with the non-RD receptor interacting-protein (RIP) kinases (Meylan et al. 2004) via adapter proteins.

In plants, receptors of conserved microbial signatures carry kinases of the non-RD class (Dardick and Ronald 2006). Plant genome analyses have revealed the presence of a large family of the non-RD receptor kinases at the cell surface, with >30 encoded in the Arabidopsis genome and >320 found
in the rice genome (Dardick and Ronald 2006). In addition to the rice XA21 receptor, members include the Arabidopsis PRRs FLS2 and EFR (Gomez-Gomez and Boller 2000; Zipfel et al. 2006), the barley PRG1 (resistance to Puccinia graminis f. sp. tritici) (Brueggeman et al. 2002), and the rice XA26, Pid2 (Sun et al. 2004; Chen et al. 2006). The predicted intracellular receptor of conserved microbial signature, wheat WKS-1, also carries a non-RD kinase (Fu et al. 2009).

The activation mechanism of RD kinases, which carry a conserved arginine immediately preceding the catalytic aspartate in subdomain VIb (Johnson et al. 1996; Nolen et al. 2004), is well studied. Most require phosphorylation of the activation segment for full kinase activity (Nolen et al. 2004). The phosho group in the activation segment coordinates the positively charged amino group of the arginine, leading to stabilization of the otherwise highly flexible activation segment, and enhances enzymatic activity.

In non-RD kinases, an uncharged amino acid, usually a cysteine or glycine, replaces the arginine of RD kinases, suggesting a different mechanism of activation (Dardick and Ronald 2006). Several different regulatory mechanisms have been observed for mammalian non-RD kinases, such as relief of autoinhibition by C-terminal extension (Kobe et al. 1996; Shin et al. 2011) or tyrosine phosphorylation in the P+1 loop immediately downstream of the activation segment (Mayans et al. 1998). The crystal structures of several non-RD kinases reveal a highly ordered conformation of the activation segment in the absence of phosphorylation (Nolen et al. 2001; Tereshko et al. 2001; Scheeff et al. 2009; Shin et al. 2011). These results suggest that non-RD kinases are constitutively active, which might represent a general theme of non-RD kinase regulation. Support for this hypothesis comes from more recent results showing that the ATPase XB24 promotes XA21 autophosphorylation, holding it in a biologically inactive state. Only on ligand binding does the ATPase disassociate, triggering XA21 activation (Chen et al. 2010a, b) (Figure 1.2).

Arabidopsis FLS2 and EFR and rice XA21 display relatively weak kinase activity in vitro compared with their co-regulatory RD kinase counterparts and with other RD kinases involved in development (X. Chen et al. unpublished data). In addition, the kinase activity of the non-RD kinases IRAK1, RIP-1, RIP-2, RIP-4, and XA21 is at least partially dispensable for their function in immunity (Wang et al. 1998; Andaya and Ronald 2003; Ronald and Beutler 2010). In contrast, the catalytic activity of several co-regulatory RD kinases, such as IRAK4 (Janssens and Beyaert 2003), RIP-3 (Cho et al. 2009; He et al. 2009), and AtBAK1 (Roux et al. 2011; Schwessinger et al. 2011), appears to be critical for their function. Taken together, these observations suggest that at least part of the function of non-RD kinases is to serve as phosphorylation-dependent scaffold proteins (Dardick and Ronald 2006; Good et al. 2011).

XA21 LRR Domain

An Xa21 family member called Xa21D is able to confer partial resistance to Xoo and confers the same broad-spectrum resistance, suggesting that recognition of Axa21 also triggers XA21D-mediated resistance. Xa21D encodes a predicted secreted extracellular soluble protein with an LRR domain 98% identical to that of XA21 (Wang et al. 1998). In contrast to XA21, XA21D lacks both TM and intracellular signaling relay domains. How does an exclusively extracellular-localized receptor induce an intracellular signaling cascade? XA21D potentially works analogously to MD2, an extracellular soluble protein necessary for LPS perception in mammals. LPS binding to MD2 induces a heterocomplex formation with subsequent TLR4 intracellular signaling (Akashi-Takamura and Miyake 2008).

In animals, microbial-induced receptor dimerization is often required for transphosphorylation and the activation of downstream signaling pathway. Heterodimerization or homodimerization