Food safety has been a global concern for many years. While global sourcing of foods and ingredients provides great opportunity for variety and diversity of cultural products, there are significant risks. Programs that regulate food safety and quality in countries around the world vary in their scope and effectiveness, with many being underfunded. Rapidly developing countries may lack the expertise, laboratory resources for testing, and established inspection programs to adequately promote the safety of foods. Rather, these countries may be more focused on providing enough food for their citizens. Lack of documentation or traceability in the exporting country can further exacerbate the situation. Of course, safety problems in food imported from more developed countries also occur, and the source of food borne disease outbreaks are found regularly within the United States.

Improving Import Food Safety gathers together vital information on the food safety programs of national governments, the food industry, and the testing industry. Chapters have been contributed by authors from the United States, Latin America, Europe, and Asia. Readers will learn about a variety of regulatory approaches to food safety at the federal and state levels in the United States, as well as in selected countries and within the food industry itself. They will also gain insights into the nature and source of safety problems, in addition to approaches to food safety around the world.

The book is divided into three sections:

• Highlighting Key Issues: authors illustrate the millions of permutations for the origin of ingredients, discussing the difficulty of policing imports, providing a unique perspective on the economic situation in China, and insight into development of support for small farm producers in Mexico.

• Legal and Regulatory Issues/Structures in the USA and Abroad: describes the legal and regulatory system in the European Union, the United States, and China, plus a chapter addressing global approaches to fraud.

• Potential Strategies to Improve Import Safety: presents strategies to deal with what are ultimately global issues, but on multiple levels. Perspectives are provided by authors from industry, an industry trade association, academia, and a recently semi-retired, global ambassador of food safety.

Readers will find this book noteworthy because of the diverse topics and perspectives offered on the challenges of keeping food safe in a global economy. Authors come from a variety of backgrounds, and each has provided a unique perspective on this critical topic. The volume is aimed at importers and exporters of foods and ingredients; food microbiologists, food safety and QC/QA personnel; regulatory and legal personnel in food manufacturing companies; food policy makers and regulatory officials; and faculty and graduate students in food science.

The Editors
Wayne Ellefson, Covance Laboratories, Inc., Madison, Wisconsin, USA.
Lorna Zach, Center for Human Performance and Risk Analysis, Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA and System Solutions for the Food Industry, Mt. Horeb, Wisconsin, USA.
Darryl Sullivan, Covance Laboratories, Inc., Madison, Wisconsin, USA.
Improving Import Food Safety
The *IFT Press* series reflects the mission of the Institute of Food Technologists — to advance the science of food contributing to healthier people everywhere. Developed in partnership with Wiley-Blackwell, *IFT Press* books serve as leading-edge handbooks for industrial application and reference and as essential texts for academic programs. Crafted through rigorous peer review and meticulous research, *IFT Press* publications represent the latest, most significant resources available to food scientists and related agriculture professionals worldwide. Founded in 1939, the Institute of Food Technologists is a nonprofit scientific society with 18,000 individual members working in food science, food technology, and related professions in industry, academia, and government. IFT serves as a conduit for multidisciplinary science thought leadership, championing the use of sound science across the food value chain through knowledge sharing, education, and advocacy.

IFT Press Advisory Group

Nicolas Bordenave
YiFang Chu
J. Peter Clark
Christopher J. Doona
Jung Hoon Han
Florence Feeherry
Chris Findlay
David McDade
Thomas J. Montville
Karen Nachay
Martin Okos
David S. Reid
Sam Saguy
Fereidoon Shahidi
Cindy Stewart
Herbert Stone
Kenneth R. Swartzel
Bob Swientek
Hilary Thesmar
Yael Vodovotz
Ron Wrolstad
Improving Import Food Safety

Edited by
Wayne Ellefson
Covance Laboratories, Inc.
Madison, WI, USA

Lorna Zach
Center for Human Performance and Risk Analysis
University of Wisconsin–Madison,
Madison, WI, USA
and
USA and System Solutions for the Food Industry
Mt Horeb, WI, USA

Darryl Sullivan
Covance Laboratories, Inc.
Madison, WI, USA
Titles in the IFT Press series

- Accelerating New Food Product Design and Development (Jacqueline H. Beckley, Elizabeth J. Topp, M. Michele Foley, J.C. Huang, and Witoon Prinyawiwatkul)
- Advances in Dairy Ingredients (Geoffrey W. Smithers and Mary Ann Augustin)
- Bioactive Proteins and Peptides as Functional Foods and Nutraceuticals (Yoshinori Mine, Eunice Li-Chan, and Bo Jiang)
- Biofilms in the Food Environment (Hans P. Blaschek, Hua H. Wang, and Meredith E. Agle)
- Calorimetry in Food Processing: Analysis and Design of Food Systems (Gönül Kaletunc)
- Coffee: Emerging Health Effects and Disease Prevention (YiFang Chu)
- Food Carbohydrate Chemistry (Ronald E. Wrolstad)
- Food Ingredients for the Global Market (Yao-Wen Huang and Claire L. Kruger)
- Food Irradiation Research and Technology (Christopher H. Sommers and Xuetong Fan)
- Foodborne Pathogens in the Food Processing Environment: Sources, Detection and Control (Sadhana Ravishankar, Vijay K. Juneja, and Divya Jaroni)
- High Pressure Processing of Foods (Christopher J. Doona and Florence E. Feeherry)
- Hydrocolloids in Food Processing (Thomas R. Laaman)
- Improving Import Food Safety (Wayne C. Ellefson, Lorna Zach, and Darryl Sullivan)
- Innovative Food Processing Technologies: Advances in Multiphysics Simulation (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- Microbial Safety of Fresh Produce (Xuetong Fan, Brendan A. Niemira, Christopher J. Doona, Florence E. Feeherry, and Robert B. Gravani)
- Microbiology and Technology of Fermented Foods (Robert W. Hutkins)
- Multiphysics Simulation of Emerging Food Processing Technologies (Kai Knoerzer, Pablo Juliano, Peter Roupas, and Cornelis Versteeg)
- Multivariate and Probabilistic Analyses of Sensory Science Problems (Jean-François Meullenet, Rui Xiong, and Christopher J. Findlay)
- Nanoscience and Nanotechnology in Food Systems (Hongda Chen)
- Natural Food Flavors and Colorants (Mathew Attokaran)
- Nondestructive Testing of Food Quality (Joseph Irudayaraj and Christoph Reh)
- Nondigestible Carbohydrates and Digestive Health (Teresa M. Paeschke and William R. Aimutis)
- Nonthermal Processing Technologies for Food (Howard Q. Zhang, Gustavo V. Barbosa-Cánovas, V.M. Balasubramaniam, C. Patrick Dunne, Daniel F. Farkas, and James T.C. Yuan)
- Nutraceuticals, Glycemic Health and Type 2 Diabetes (Vijai K. Pasupuleti and James W. Anderson)
- Organic Meat Production and Processing (Steven C. Ricke, Ellen J. Van Loo, Michael G. Johnson, and Corliss A. O’Bryan)
- Packaging for Nonthermal Processing of Food (Jung H. Han)
- Preharvest and Postharvest Food Safety: Contemporary Issues and Future Directions (Ross C. Beier, Suresh D. Pillai, and Timothy D. Phillips, Editors; Richard L. Ziprin, Associate Editor)
- Processing and Nutrition of Fats and Oils (Ernesto M. Hernandez and Afaf Kamal-Eldin)
- Processing Organic Foods for the Global Market (Gwendolyn V. Wyard, Anne Plotto, Jessica Walden, and Kathryn Schuett)
- Regulation of Functional Foods and Nutraceuticals: A Global Perspective (Clare M. Hasler)
- Resistant Starch: Sources, Applications and Health Benefits (Yong-Cheng Shi and Clodualdo Maningat)
- Sensory and Consumer Research in Food Product Design and Development (Howard R. Moskowitz, Jacqueline H. Beckley, and Amna V.A. Resurreccion)
- Sustainability in the Food Industry (Cheryl J. Baldwin)
- Thermal Processing of Foods: Control and Automation (K.P. Sandeep)
- Trait-Modified Oils in Foods (Frank T. Orthoefer and Gary R. List)
- Water Activity in Foods: Fundamentals and Applications (Gustavo V. Barbosa-Cánovas, Anthony J. Fontana Jr., Shelly J. Schmidt, and Theodore P. Labuza)
- Whey Processing, Functionality and Health Benefits (Charles I. Onwulata and Peter J. Huth)

WILEY-BLACKWELL
A John Wiley & Sons, Inc., Publication
Contents
Contents

The New York Model for a Cooperative Federal–State Approach for Monitoring the Safety of Imported Food 25
Examples of Violative Imported Food Products Found in the Pilot Cooperative Project 35
Discussion 41
Conclusions 42
References 42

Chapter 3 The Impact of the Chinese Development Model on Food Safety 45

Wenran Jiang

Introduction 45
China’s Explosive Economic Growth and its Impact 46
China as a Growing Food Superpower 51
China’s Food Safety Regimes 53
China’s Food Safety Challenges 57
Conclusions 61
Notes 62
References 63

Chapter 4 The Role of Public–Private Partnerships on the Access of Smallholder Producers of Mexican Cantaloupe to Fresh Produce Export Markets 65

Belem Avendano, Clare Narrod, and Marites Tiongco

Foodborne Outbreaks and the Increasing Demand for Food Safety in Fruit and Vegetables 66
Production Trends of the Cantaloupe Industry in Mexico 71
Responses to Food Safety Problems Associated with Cantaloupe Outbreaks 74
Major Barriers to Market Access for Small Mexican Producers in the Cantaloupe Supply Chain 76
The Role of Private–Public Partnerships in Facilitating Smallholders to Overcome Barriers to Export Market Entry 78
Summary and Conclusions 81
Contents

Notes 82
References 83

Part II **Legal and Regulatory Issues/Structures in the United States and Abroad** 87

Chapter 5 Improving US Regulation of Imported Foods 89
Neal Fortin

Introduction 89
The Major Federal Agencies 91
The FDA Import Process 92
Prior Notice of Import 93
USDA’s Import System 98
Other Import Controls 100
Country-of-origin Labeling 103
Challenges Facing Import Regulation 104
International Standards – Codex 106
Conclusions 106
References 108

Chapter 6 EU Food Safety Regulation and Trust-enhancing Principles 111
Ellen Vos

Introduction 111
Food Regulation: Between Market and Safety 112
The EU’s Failings in Ensuring Food Safety 114
The EU’s New Regime on Food Safety Regulation 115
Restoring Trust in EU Decision-making on Foods 118
Concluding Remarks 125
Acknowledgment 126
Notes 126
References 129

Chapter 7 Experience of Food Safety Authorities in Europe and the Rapid Alert System 133
Roger Wood

Introduction 133
The EU Approach to Legislation in the Food Sector 134
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Crises</td>
<td>135</td>
</tr>
<tr>
<td>Risk Assessment and Risk Management and the EFSA</td>
<td>136</td>
</tr>
<tr>
<td>The Rapid Alert System for Food and Feed</td>
<td>141</td>
</tr>
<tr>
<td>Notes</td>
<td>148</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>151</td>
</tr>
<tr>
<td>The Development of and Challenges Facing Food Safety Law in the People’s Republic of China</td>
<td></td>
</tr>
<tr>
<td>Yuanyuan Shen</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>From “Food Hygiene” to “Food Safety”:</td>
<td></td>
</tr>
<tr>
<td>A Brief History of the Development of China’s Food Safeguard System</td>
<td>153</td>
</tr>
<tr>
<td>(1978–2009)</td>
<td></td>
</tr>
<tr>
<td>China’s Food Safeguard System Today</td>
<td>165</td>
</tr>
<tr>
<td>The Challenges China Faces in Food Safeguard Improvement</td>
<td>181</td>
</tr>
<tr>
<td>Conclusions</td>
<td>186</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>187</td>
</tr>
<tr>
<td>Notes</td>
<td>187</td>
</tr>
<tr>
<td>References</td>
<td>192</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>195</td>
</tr>
<tr>
<td>Defining Food Fraud and the Chemistry of the Crime</td>
<td></td>
</tr>
<tr>
<td>John Spink</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>195</td>
</tr>
<tr>
<td>Food Fraud</td>
<td>196</td>
</tr>
<tr>
<td>Diversion, Parallel Trade, and Gray Market</td>
<td>203</td>
</tr>
<tr>
<td>Criminology and the Chemistry of the Crime</td>
<td>204</td>
</tr>
<tr>
<td>Improving Import Food Safety</td>
<td>208</td>
</tr>
<tr>
<td>Conclusions</td>
<td>213</td>
</tr>
<tr>
<td>References</td>
<td>214</td>
</tr>
<tr>
<td>Part III</td>
<td>217</td>
</tr>
<tr>
<td>Potential Strategies to Improve Import Safety</td>
<td></td>
</tr>
<tr>
<td>Chapter 10</td>
<td>219</td>
</tr>
<tr>
<td>Tracking and Managing the Next Crisis</td>
<td></td>
</tr>
<tr>
<td>Henry Chin, Nancy Rachman, and Maia Jack</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>219</td>
</tr>
<tr>
<td>Tracking the Next Crisis</td>
<td>220</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Food Product Tracing</th>
<th>235</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jennifer McEntire</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Current US Recordkeeping Requirements</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>Global Recordkeeping Guidance and Practices</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>Commercial Product Tracing Standards</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>Food Industry Factors Affecting Traceability</td>
<td>241</td>
<td></td>
</tr>
<tr>
<td>Recommendations for Product Tracing</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>Commingling – A Special Case for Product Tracing</td>
<td>246</td>
<td></td>
</tr>
<tr>
<td>Traceability Versus Recall Ability</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>Product Tracing as a Food Safety Tool for Imports</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>248</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 12</th>
<th>Improving the Safety of Imported Foods with Intelligent Systems: The Case of United States–Mexico Fresh Produce Supply Chain</th>
<th>251</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>William Nganje, Na Hu, Timothy Richards and Albert Kagan</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>Assessment of Threat and Vulnerability</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>Data and Procedure</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td>Optimal Control Procedure</td>
<td>263</td>
<td></td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>265</td>
<td></td>
</tr>
<tr>
<td>Notes</td>
<td>269</td>
<td></td>
</tr>
<tr>
<td>Appendix</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>272</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 13</th>
<th>Testing with Confidence in the Pursuit of Global Food Safety</th>
<th>275</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ronald L. Johnson and Robert E. Koeritzer</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>AOAC® International: Official Methods of Analysis℠</td>
<td>279</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Evolution of Method Development and Validation 280
AOAC Research Institute 280
Initial Step in AOAC Harmonization of Rapid Microbiological Test Kits 284
The AOAC Guidelines Under Revision 289
References 291

Chapter 14 Global Food Protection: A New Organization is Needed 293

William H. Sperber

- Introduction 293
- Background 294
- Proposal 298
- Conclusion 301
- Note 302
- References 302

Chapter 15 Summary and Recommendations for the Safety of Imported Foods 303

Lorna Zach, M. Ellin Doyle, Vicki Bier and Chuck Czuprynski

- Introduction 305
- Summary of Current Concerns 306
- Recommendations to Improve the Safety of Imported Foods 316
- Concluding Recommendations 321
- Conclusion 328
- Acknowledgments 328
- Notes 329
- References 329

Index 335
Contributors

Belem Avendano, PhD
Professor
School of Economics and International Relations
Universidad Autonoma de Baja California, México

Vicki Bier, PhD
Professor
Department of Industrial and Systems Engineering
Director Center for Human Performance and Risk Analysis
University of Wisconsin–Madison
Madison, WI, USA

Henry Chin, PhD
The Coca-Cola Company
Atlanta, GA, USA

Joe Corby
Executive Director
Association of Food and Drug Officials
York, PA, USA

Chuck Czuprynski, PhD
Professor
Department of Pathobiological Sciences
Director Food Research Institute
Food Research Institute and Department of Pathobiological Sciences
University of Wisconsin–Madison
Madison, WI, USA
Contributors

M. Ellin Doyle, PhD
Food Research Institute
University of Wisconsin–Madison
Madison, WI, USA

Neal Fortin, JD
Professor and Director
Institute for Food Laws and Regulations
Michigan State University
East Lansing, MI, USA

Na Hu
Graduate Research Assistant
Arizona State University
Phoenix, Arizona

Maia Jack, PhD, GMA
Grocery Manufacturers Association
Washington DC, USA

Wenran Jiang, PhD
Mactaggart Research Chair, China Institute
Department of Political Science
University of Alberta
Edmonton, Canada

Ronald L. Johnson
bioMeriuex Inc.
Durham, NC, USA

Albert Kagan, PhD
Associate Professor
Arizona State University
Phoenix, Arizona

Shaun Kennedy, PhD
Director, National Center for Food Protection and Defense
Assistant Professor
Veterinary Population Medicine
University of Minnesota
St Paul, MN, USA
Robert E. Koeritzer
3 M Food Safety
St Paul, MN, USA

Jennifer McEntire, PhD
Leavitt Partners
Washington, DC, USA

Clare Narrod, PhD
Research Scientist and Risk Analysis Program Manager
University of Maryland
College Park, MD, USA

William Nganje, PhD
Associate Professor
Morrison School of Agribusiness and Resource Management
Arizona State University
Phoenix, Arizona

Nancy Rachman, PhD
Senior Director, Safety Evaluation and Scientific Affairs
Grocery Manufacturers Association
Washington DC, USA

Timothy Richards, PhD
Professor
Marvin and June Morrison Chair of Agribusiness and Resource Management
Morrison School of Agribusiness and Resource Management
Arizona State University
Phoenix, Arizona

Yuanyuan Shen, JD
Professor of Law
Zhejiang University Law School
Hangzhou, China
Adjunct Faculty, Boston College Law School
Chesnutt Hill, MA, USA
and
Associate in Research
Fairbank Center for the East Asian Research
Harvard University
Cambridge, MA, USA
William H. Sperber, PhD
Global Ambassador for Food Protection
Corporate Food Safety and Regulatory Affairs
Cargill, Inc.
Minnetonka, MN, USA

John Spink, PhD
Associate Director and Assistant Professor
Anti-Counterfeiting and Product Protection Program
School of Criminal Justice
Michigan State University
East Lansing, MI, USA

Marites Tiongco, PhD
Research Fellow
Markets, Trade and Institutions Division
International Food Policy Research Institute,
Washington, DC, USA

Ellen Vos, JD, PhD
Professor of European Union Law, Law Faculty,
Co-director of the Maastricht Centre for European Law,
Fellow at the Institute for Globalisation and International Regulation (IGIR),
Maastricht University
Maastricht
The Netherlands

Roger Wood
Retired
Food Standards Agency
Lincolne Sutton and Wood
Norwich, UK

Lorna Zach, PhD
Food System Solutions
Mt Horeb, WI, USA
Center for Human Performance and Risk Analysis
University of Wisconsin–Madison
Madison, WI, USA
Food safety has been a global concern for many years. Industry leaders have invested billions of dollars to try to ensure the safety of their products, while regulators from governments around the world have promulgated laws to try and protect consumers from unsafe food. Over the past 5 to 10 years the ability to detect foodborne outbreaks has become much more sophisticated. Today we can detect food safety problems and correlate them with illnesses and adverse reactions faster than ever before. As these problems are detected, the media has brought these situations to the attention of consumers around the world.

Programs that regulate food safety and quality in countries around the world vary in their scope and effectiveness, with many being under-funded. Rapidly developing countries may not have the expertise, laboratory resources for testing, and established inspection programs to adequately promote safety of foods. Rather, these countries may be more focused on providing enough food for their citizens. Lack of documentation or traceability in the exporting country can further exacerbate the situation. Of course, safety problems in food imported from more developed countries also occurs and we regularly find the source of foodborne disease outbreaks within our own country.

In this book we have gathered information about food safety programs from governments, the food industry, and the testing industry. Chapters have been contributed by authors from the United States, Latin America, Europe, and Asia. You will be able to learn about a variety of regulatory approaches to food safety at the federal and state levels in the United States, as well as in a few selected countries, and within the food industry itself. You may also gain insights into the nature and source of problems, in addition to approaches to food safety around our world.
In the first set of chapters the magnitude of the entire food safety issue is highlighted. The authors bring this forth in dramatic fashion, illustrating the millions of permutations for the origin of ingredients, discussing the difficulty of policing imports, providing a unique perspective on the economic situation in China, and insight into the development of support for small farm producers in Mexico.

Doing business in today’s global economy calls for understanding the environment in which our trading partners work. We must understand their difficulties in production as well as the laws and regulations under which they work. Therefore, we have included a second section of chapters describing the legal and regulatory system in a variety of countries: the European Union, the United States, and China. We have also included a chapter addressing global approaches to fraud, but very much based on the US system. However, we have not delved into the Food Safety Modernization Act of 2011 because as we write this, the rules are being written.

The last section approaches the complex issue of food safety and presents potential strategies to deal with what are ultimately global issues, but on multiple levels. Perspectives are provided by authors from industry, an industry trade association, academia, and a recently semi-retired, global ambassador of food safety. A number of suggestions for improving food safety are discussed, as well ideas for new programs and processes.

The reader will find this book noteworthy because of the diverse topics and perspectives offered on challenges of food safety in a global economy. The authors come from a variety of backgrounds and each of them has provided a unique perspective on this critical topic. The background information that is provided will give the reader a broad perspective and solid understanding of the global nature of food safety issues. The chapters addressing regulatory structures will round out the readers’ understanding of the topic, and the authors’ insights into different ways to improve food safety will leave the reader with a multitude of “thought provoking” ideas.

Lorna Zach
Center for Human Performance and Risk Analysis,
University of Wisconsin–Madison, and USA
and System Solutions for the Food Industry

Wayne Ellefson
Covance Laboratories, Inc.

Darryl Sullivan
Covance Laboratories, Inc.
Acknowledgment

The editors wish to thank the Center for World Affairs and the Global Economy (WAGE) at the University of Wisconsin – Madison for funding the multi-disciplinary collaborative project, “Managing Challenges of Import Safety in a Global Economy”, which provided funding to bring many of the chapter authors for this volume to campus for university seminars and conferences.

The editors thank Covance Laboratories, Inc. for their support of this book.

Lorna Zach acknowledges partial support for her work on this book from the University of Wisconsin-Madison, Center for World Affairs and the Global Economy (WAGE) and the Center for Risk and Economic Analysis of Terrorism Events (CREATE) at the University of Southern California under Grant No. 2007-ST-061-000001 from the Department of Homeland Security, Science and Technology Directorate, Office of University Programs. She also wishes to thank Professor Vicki Bier of the Department of Industrial and Systems Engineering and the Center for Human Performance and Risk Analysis.
Part I

Highlighting Key Issues
Overview

The food system is becoming ever more globally integrated, providing a broader array of foods available all year long than ever before. This adaptive, dynamic system does this very rapidly and at very low cost due to the high efficiency of the food and agriculture supply firms and chains. Globalized, just-in-time and cost-optimized supply chains do
not come without concomitant risks. The lengthening of a supply chain and the inclusion of firms of different scales inherently increases the risks associated with that supply chain. Sourcing from a wide range of countries also places a reliance on the food protection (safety and defense) systems of the source country to protect consumers in the country of consumption. One of the challenges of this reliance is that, in some cases, the actual source of the product or ingredient may be difficult for regulators, or in some cases even food-system firms, to discern due to how data are captured and shared in food supply chains. Dynamic import risks and other emerging risks, demonstrate the need for new mitigation strategies to reduce the risk to public health from our globally interdependent food system.

Supply Chain Complexity

The supply chain for even apparently simple items can be much more complicated than it would appear, especially if it is a multicomponent product where the supply chain of each ingredient or component must be considered as well. Figure 1.1 provides a simplified characterization of the supply chain for a quick service restaurant sandwich. The 11 basic components of this item make their way from primary production to consumption through a simplified supply chain that includes

Figure 1.1. A simplified characterization of the supply chain for a cheeseburger. (Copyright 2010 National Center for Food Protection and Defense. All rights reserved.)
Global Food System Risks

harvest, storage, production, and retail food service to the consumer, with transportation between each step. Considering this simple system, a contamination that could occur at three, unspecified points in the supply chain for the item represents over 45,000 permutations and combinations of potential contamination scenarios. All of the potential scenarios would have the potential to cause harm, either public health or economic, or in some cases both.

Consider, however, that the actual composition of a cheeseburger, for illustration purposes a Big Mac as per McDonald’s nutritional information, contains all of the ingredients shown in Figure 1.2. Considering the same threat, that the supply chain is contaminated in three locations but no indication of where, means that there are over two million permutations and combinations of potential contamination scenarios. This does not take into account how much more complicated it would become with the inclusion of each of the ingredient’s supply chains. This is one reason why multicomponent foods, which are a rising source of foodborne illness outbreaks, pose a significant challenge during foodborne illness outbreak epidemiology and food

Figure 1.2. All of the ingredients in a McDonald’s Big Mac. (Graphic copyright 2010 National Center for Food Protection and Defense. All rights reserved.)
trace-back investigations. While this complexity is obviously important for food safety, it is perhaps more important for food defense as there are many more ingredients that are viable candidates for intentional contamination than are likely to be the vehicle for accidental food safety contamination.

Imports further complicate existing food protection challenges. While only the producer would have the opportunity to know the probable origin of the ingredients in the finished product, looking at where they could come from is enlightening. Choosing just four of the ingredients from Figure 1.2 illustrates this point: imports of beef into the United States in 2010 came from 10 countries (Australia, Canada, Chile, Costa Rica, Honduras, Japan, Mexico, New Zealand, Nicaragua, and Uruguay); imports of tomatoes from 12 countries (Belgium, Canada, China, Costa Rica, Dominican Republic, France, Guatemala, Israel, Mexico, Netherlands, New Zealand, and the United Kingdom); imports of wheat gluten from 17 countries (Australia, Belgium, Canada, China, France, Germany, India, Italy, Kazakhstan, Lithuania, Netherlands, Poland, Sweden, Switzerland, Taiwan, Thailand, and Turkey); and imports of vinegar from 36 countries (Argentina, Australia, Austria, Belgium, Brazil, Cambodia, Canada, Chile, China, Colombia, Dominican Republic, France, Germany, Greece, Honduras, Hong Kong, Israel, Italy, Japan, Jordan, Korea, Lebanon, Mexico, Monaco, Netherlands, Panama, Peru, Philippines, Poland, Portugal, Serbia, South Africa, Spain, Taiwan, Turkey, and the United Kingdom) (US Department of Agriculture Foreign Agricultural Service, 2008). These countries encompass a wide range of food protection system capabilities and challenges.

Increasing Role of Imports

Food and agriculture imports have been rising rapidly, accelerating as early as 2003. In 2003 the total food and agriculture imports to the United States totaled just over $35 billion. In 2010, that increased to nearly $82 billion (US Department of Agriculture, 2010). This rate will likely accelerate in the coming years. This is driven by a number of factors, including: increased food and agriculture industries outside the United States; consumer desire for a wide variety of fresh fruits and vegetables; increased consumption of seafood; and many others. While the United States continues to be a net exporter of food and
agriculture, there are more food manufacturing firms registered to produce food for United States consumption in FDA's Bioterrorism Registration Database outside the United States (150,000) than in the United States (130,000).

Unusual Sources for Imports

The globalization of the food system results in more countries being sources of food products for the United States than ever before. The countries are not always, however, those that you would expect. Table 1.1 is a selective list of source countries and the foods and ingredients imported most from those countries in 2008 (US Department of Agriculture, 2010). These sources may have food safety and defense systems that are different, either better or worse, than those of the United States. In some cases they also may not be a rational source of

<table>
<thead>
<tr>
<th>Country</th>
<th>Import</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albania</td>
<td>Sage</td>
</tr>
<tr>
<td>Azerbaijan</td>
<td>Juices</td>
</tr>
<tr>
<td>Bosnia/Herzegovina</td>
<td>Pastry</td>
</tr>
<tr>
<td>Cambodia</td>
<td>Honey</td>
</tr>
<tr>
<td>Chad</td>
<td>Gums</td>
</tr>
<tr>
<td>Georgia</td>
<td>Fruit juice</td>
</tr>
<tr>
<td>Haiti</td>
<td>Cocoa beans</td>
</tr>
<tr>
<td>Iran</td>
<td>Juices</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>Wheat gluten</td>
</tr>
<tr>
<td>Kyrgyzstan</td>
<td>Walnuts</td>
</tr>
<tr>
<td>Lebanon</td>
<td>Fruit/nut preparation</td>
</tr>
<tr>
<td>Mongolia</td>
<td>Honey</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Rice</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>Tea</td>
</tr>
<tr>
<td>Sudan</td>
<td>Gums</td>
</tr>
<tr>
<td>Syria</td>
<td>Olive oil</td>
</tr>
<tr>
<td>Venezuela</td>
<td>Sesame seeds</td>
</tr>
<tr>
<td>Yemen</td>
<td>Coffee</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>Sugar</td>
</tr>
</tbody>
</table>
the commodity. At a US Governmental level this is a challenge because the only source of data on country of origin is what is captured through import data collections under the tariff system. For tariff purposes, the country of origin is the one that represents > 50% of the economic value of the item at the border.

As an example of tariff rules, consider how Canada can be identified as the single largest source of cocoa and cocoa preparations for the United States (US Department of Agriculture, 2010), even though there is no cocoa grown in Canada. Since cocoa beans are often further processed outside of the growing country, including Canada, it seems reasonable that the economic value of the cocoa butter, chocolate blocks, or other products coming into the United States could represent > 50% Canadian added value. Less obvious, however, is that Canada is the second largest source of citric acid at 40% of total citric acid imports in 2010, even though there are no citric acid production facilities in Canada. The economic value, for tariff purposes includes all costs: transportation, labor, and packaging. Bulk receipt of a product in Canada that is then blended or ground or otherwise handled and then packed off into smaller unit sizes before being shipped to the United States could end up being assessed as > 50% Canadian economic value, as is evidently the case for citric acid. The tariff system was developed to protect the private sector from unfair business practices, as a result its use as a public health tool to validate the source of materials is of variable utility.

There are other cases where the fact that the country is even a source of imported foods, juices from Iran for example, is itself surprising. There are others where the country is a source of a food or ingredient that does not seem logical, such as fish being the largest import from Kazakhstan whose main agriculture industries, as identified in the Central Intelligence Agency World Fact Book, are wheat, cotton, and livestock.

Examining a specific commodity in detail yields other surprises. Table 1.2 lists all the countries that were sources of shrimp into the United States in 2010 (US International Trade Commission, 2010). While most are obvious sources, such as Vietnam and Thailand, there are some that are somewhat surprising. When shrimp products are included, which includes processed foods, another non-obvious source country like Estonia is added to the list. There are also cases where the import data may reflect trans-shipment or further processing