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Preface to the Second Edition

During 2005, while this second edition was being
prepared, I was totally unprepared to receive a tele-
phone call that my co-author on the first edition, John
Hemingway, was seriously ill after suffering a brain-
haemorrhage. Only a few days later, on 5th September,
he passed away. My original, and obvious, intent was
to update the sections allocated to John and myself and
publish this second edition as ‘Gilmore and Hemingway’.
That intent was frustrated by contractual difficulties with
John’s estate. It became necessary for me to rewrite those
sections completely and remove John’s name from the
second edition. I deeply regret that that was necessary. It
has deprived us all of John’s often elegant prose and has
meant that some topics that John had particular interest in
introducing to the new edition have had to be omitted.

Earlier in that year, another reminder of the inexorable
passage of time came with the death of someone whose
name had been familiar to me throughout my career in
gamma spectrometry. On 16th January, Richard Helmer
passed away at the age of 70 years. His co-authored
work, the justly famous Gamma and X-Ray Spectrom-
etry with Semiconductor Detectors, was one of the books
that introduced John and myself to the complexities
of gamma spectrometry and one which we consistently
recommended to others. His influence as an author and in
many other roles, such as an evaluator of nuclear data, has
left all of us in his debt, whether we all realize it or not.

On a lighter note, during the year 2005 the very title
of this book was called into question. The radiochem-
ical mailing list, RADCH-L, agonized, in general terms,
over which is the correct term – ‘spectrometry’ or ‘spec-
troscopy’. Of course, the suffix ‘-metry’ means to measure
and ‘-scopy’ means to visualize – and so the discus-
sion went on, to and fro. Eventually, the 1997 IUPAC
‘Golden Book’, Compendium of Chemical Terminology,
was quoted: ‘SPECTROMETRY is the measurement of
such [electromagnetic] radiations as a means of obtaining
information about the system and their components’.

That seemed to be the ‘clincher’. The prime objective of
our activities is to measure gamma radiation, not just to
create a spectrum, and so spectrometry’ it is, performed
by ‘gamma spectrometrists’!

Before a second edition is approved, the publishers
canvass the opinion of people in the field as to whether a
new edition is justified and ask them for suggestions for
inclusion. I have taken all of the suggestions offered seri-
ously but, in the event, have had to disappoint some of
the reviewers. For example, X-ray spectrometry is such a
wide field with a different emphasis to gamma spectrom-
etry and the space available within this new edition so
limited, that merely exposing a little more of the ‘iceberg’
seemed pointless. In other cases, my ignorance of certain
specific matters was sufficient to preclude inclusion. I can
only offer my apologies to those who may feel let down.

Since the first edition (1995), there have been a number
of significant advances in gamma spectrometry. Indeed,
some of those advances were taking place while I was
writing, meaning re-writes even to the update! In partic-
ular, I have included digital pulse processing and I have
explained the changes in the way that nuclear data are
being kept up to date. On statistics, I have introduced
the matter of uncertainty budgets as being of increasing
importance now that more laboratories seek accredita-
tion. I have had to re-assess the ideas I espoused in the
first edition on peak width and now have a much more
comfortable mathematical justification for fitting peak-
width calibrations.

Throughout, I have tried to keep to the principles John
and I declared in the Preface to the first edition – an
emphasis on the practical application of gamma spectrom-
etry at the expense of, if possible, the mathematics. That
being the case, I have reproduced most of the Preface to
the first edition below. The first edition was very well
received. I can only hope that I have done enough to
ensure that popular opinion is as supportive of this second
edition.

Gordon R. Gilmore





Preface to the First Edition

This book was conceived during one of the Gamma
Spectrometry courses then being run at the Universities’
Research Reactor at Risley. At that time, we had been
‘peddling’ our home-spun wisdom for seven or eight
years, and transforming the lecture notes into something
more substantial for the benefit of course participants
seemed an obvious development.

Our intention is to provide more of a workshop manual
than an academic treatise. In this spirit, each chapter ends
with a ‘Practical Points’ section. This is not a summary
as such but a reminder of the more important practical
features discussed within the chapter. We have attempted,
not always successfully, it must be admitted, to keep the
mathematics to a minimum. In most cases, equations are
presented as faites accomplis and are not derived.

One practical process that can have a major influence on
the reliability of the results obtained by users of gamma-
spectrometric equipment is that of sampling. It was after
much discussion and with some regret that we decided
to omit this topic. This is because it is peripheral to our
main concern of describing the best use of instrumen-
tation, because we suspect that another book would be
necessary to do justice to the subject, and because we
do not know much about it. What is clear is that an
analyst must be aware that uncertainties introduced by
taking disparate samples from an inhomogeneous mass
can far outweigh uncertainties in the individual measure-
ments themselves. This is a particular problem when
sampling such a diverse and complex mass as the natural
environment.

No previous knowledge of nuclear matters or instru-
mentation is assumed, and we hope the text can be used
by complete beginners. There is even a list of names and
symbols of the elements; while chemists may smile at
this, in our experience not every otherwise scientifically
literate person can name Sb and Sn, or distinguish Tb
and Yb.

In a practical book, we think it useful to mention partic-
ular items of commercial equipment to illustrate particular
points. We must make the usual disclaimer that these are
not necessarily the best, nor the worst, and in most cases

are certainly not the only items available. In general, the
manufacturers do a fine job, and choosing one product
rather than another is often an invidious task. We can
only recommend that the user (1) decides at an early stage
what capabilities are required, (2) reads and compares
specifications (this text should explain these), (3) is not
seduced by the latest ‘whizz-bang device’, yet (4) bears
in mind that more recent products are better than older
ones, not just in ‘bald’ specification but also in manufac-
turing technology, and should consequently show greater
reliability.

Readers may notice the absence of certain terms in
common use. The exclusion of some such terms is a
deliberate choice. For example, instead of ‘photopeak’ we
prefer ‘full-energy peak’; we have avoided the statisti-
cians’ use of ‘error’ to mean uncertainty and reserve that
word to indicate bias or error in the sense of ‘mistake’.
‘Branching ratio’ we avoid altogether. This is often used
ambiguously and without definition. In other texts, it may
mean the relative proportions of different decay modes,
or the proportions of different beta-particle transitions, or
the ratio of ‘de-excitation’ routes from a nuclear-energy
level. Furthermore, it sometimes appears as a synonym for
‘gamma-ray emission probability’, where it is not always
clear whether or not internal conversion has been taken
into account.

We hope sensitive readers are not upset by our use
of the word ‘program’. This ‘Americanized’ version is
well on its way to being accepted as meaning specifically
‘computer program’, and enables a nice distinction to be
made with the more general (and more elegant-looking)
‘programme’.

We have raided unashamedly the manufacturers’ liter-
ature for information, and our thanks are due particularly
to Canberra and Ortec (in alphabetical order) for their co-
operation and support in this. The book is not a survey
of the latest research nor a historical study, and there
are very few specific references in the text. Such that
do exist are put at the end of each chapter, where there
will also be found a more general short-list of ‘Further
Reading’.
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We also acknowledge our continuing debt to two books:
Radiation Detection and Measurement, by G.F. Knoll,
John Wiley & Sons, Ltd (1979, 1989) and Gamma-
and X-ray Spectrometry with Semiconductor Detectors,
by K. Debertin and R.G. Helmer, North-Holland (1988).
These can be thoroughly recommended.

So why write another book? Fine as these works are,
we felt that there was a place for a ‘plain-man’s’ guide to
gamma spectrometry, a book that would concentrate on
day-to-day operations. In short, the sort of book that we
wish had been available when we began work with this
splendid technique.

Gordon R. Gilmore and John D. Hemingway



Internet Resources within the Book

Throughout this book, I list sources of information of
value to gamma spectrometrists. The reality of life in
2007 is that, for very many people, the Internet is the
first ‘port-of-call’ for information. Because of this, I have
leaned heavily on Internet sources and quoted links to
them as standard URLs – Uniform Resource Locators,
i.e. Internet addresses, to suitable websites. URLs are
usually not ‘case-sensitive’. However, that depends on the
type of server used to host the website. It is better to
type the URL as given here, i.e. preserving upper/lower-
case characters.

A word of caution is necessary. The Internet can be a
source of the most up-to-date information and can be far
more convenient than waiting for books and articles to be
delivered, or a trip to a distant library. However, I feel duty
bound to remind readers that, as well as holding the up-
to-date information, the Internet is also a vast repository
of ancient, irrelevant, inaccurate and out-of date informa-
tion. It is up to the user to check the pedigree, and date,
of all downloaded material. I believe the links that I have
quoted to be reliable. Because the Internet is essentially an
ephemeral entity, reorganization of a website can result in
URLs becoming inactive. Usually, however, the informa-
tion will still be available on the ‘parent site’ somewhere,
but will need looking for.

As a convenience for readers of this book, I have
created a website, http://www.gammaspectrometry.co.uk,
hosted by Nuclear Training Services Ltd, which holds
links to all of the URLs referred to throughout the book,
organized by chapter. The site also carries a number of
other resources that readers might find useful:

• All the links quoted in Appendix A – Sources of infor-
mation.

• The data reproduced in Appendices B–E.
• Some of the test spectra referred to in Chapter 15 and

a test-spectrum generator.
• Spreadsheet tools to illustrate certain points in the text,

including some used to generate figures within the text.
• A number of useful spectra to illustrate points in the

text.
• Links to relevant organizations and manufacturers.
• A set of ‘taster’ modules from the Online Gamma Spec-

trometry course.

This website will also be used to ‘post-up’ corrections to
the text, should any be needed, before they are able to
appear in future reprints, which I hope will be useful. In
due course, I also intend to create a ‘blog’ to allow reader
feedback and discussion of issues raised.
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Radioactive Decay and the Origin of
Gamma and X-Radiation

1.1 INTRODUCTION

In this chapter I intend to show how a basic understanding
of simple decay schemes, and of the role gamma radiation
plays in these, can help in identifying radioactive nuclides
and in correctly measuring quantities of such nuclides. In
doing so, I need to introduce some elementary concepts
of nuclear stability and radioactive decay. X-radiation can
be detected by using the same or similar equipment and I
will also discuss the origin of X-rays in decay processes
and the light that this knowledge sheds on characterization
procedures.

I will show how the Karlsruhe Chart of the Nuclides
can be of help in predicting or confirming the identity of
radionuclides, being useful both for the modest amount
of nuclear data it contains and for the ease with which
generic information as to the type of nuclide expected can
be seen.

First, I will briefly look at the nucleus and nuclear
stability. I will consider a nucleus simply as an assembly
of uncharged neutrons and positively charged protons;
both of these are called nucleons.

Number of neutrons = N

Number of protons = Z

Z is the atomic number, and defines the element. In the
neutral atom, Z will also be the number of extranuclear
electrons in their atomic orbitals. An element has a fixed
Z, but in general will be a mixture of atoms with different
masses, depending on how many neutrons are present in
each nucleus. The total number of nucleons is called the
mass number.

Mass number = N +Z = A

Practical Gamma-ray Spectrometry – 2nd Edition Gordon R. Gilmore
© 2008 John Wiley & Sons, Ltd

A, N and Z are all integers by definition. In practice, a
neutron has a very similar mass to a proton and so there is
a real physical justification for this usage. In general, an
assembly of nucleons, with its associated electrons, should
be referred to as a nuclide. Conventionally, a nuclide of
atomic number Z, and mass number A is specified as A

ZSy,
where Sy is the chemical symbol of the element. (This
format could be said to allow the physics to be defined
before the symbol and leave room for chemical informa-
tion to follow; for example, Co2+.) Thus, 58

27Co is a nuclide
with 27 protons and 31 neutrons. Because the chemical
symbol uniquely identifies the element, unless there is a
particular reason for including it, the atomic number as
subscript is usually omitted – as in 58Co. As it happens,
this particular nuclide is radioactive and could, in order
to impart that extra item of knowledge, be referred to as
a radionuclide. Unfortunately, in the world outside of
physics and radiochemistry, the word isotope has become
synonymous with radionuclide – something dangerous
and unpleasant. In fact, isotopes are simply atoms of the
same element (i.e. same Z, different N ) – radioactive or
not. Thus 58

27Co, 59
27Co and 60

27Co are isotopes of cobalt.
Here 27 is the atomic number, and 58, 59 and 60 are
mass numbers, equal to the total number of nucleons.
59Co is stable; it is, in fact, the only stable isotope of
cobalt.

Returning to nomenclature, 58Co and 60Co are radioiso-
topes, as they are unstable and undergo radioactive decay.
It would be incorrect to say ‘the radioisotopes 60Co and
239Pu � � � ’ as two different elements are being discussed;
the correct expression would be ‘the radionuclides 60Co
and 239Pu� � � ’.

If all stable nuclides are plotted as a function of Z (y-
axis) and N (x-axis), then Figure 1.1 will result. This is a
Segrè chart.
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Figure 1.1 A Segrè chart. The symbols mark all known stable
nuclides as a function of Z and N . At high Z, the long half-
life Th and U nuclides are shown. The outer envelope encloses
known radioactive species. The star marks the position of the
largest nuclide known to date, 277112, although its existence is
still waiting official acceptance

The Karlsruhe Chart of the Nuclides has this same
basic structure but with the addition of all known radioac-
tive nuclides. The heaviest stable element is bismuth
(Z = 83, N = 126). The figure also shows the location of
some high Z unstable nuclides – the major thorium (Z =
90) and uranium (Z = 92) nuclides. Theory has predicted
that there could be stable nuclides, as yet unknown, called
superheavy nuclides on an island of stability at about
Z = 114, N = 184, well above the current known range.

Radioactive decay is a spontaneous change within the
nucleus of an atom which results in the emission of parti-
cles or electromagnetic radiation. The modes of radioac-
tive decay are principally alpha and beta decay, with
spontaneous fission as one of a small number of rarer
processes. Radioactive decay is driven by mass change –
the mass of the product or products is smaller than the
mass of the original nuclide. Decay is always exoergic;
the small mass change appearing as energy in an amount
determined by the equation introduced by Einstein:

�E = �m× c2

where the energy difference is in joules, the mass in kilo-
grams and the speed of light in m s−1. On the website
relating to this book, there is a spreadsheet to allow the
reader to calculate the mass/energy differences available
for different modes of decay.

The units of energy we use in gamma spectrometry are
electron-volts (eV), where 1 eV = 1�602 177 × 10−19 J.1

Hence, 1 eV ≡ 1�782 663×10−36 kg or 1�073 533×10−9 u
(‘u’ is the unit of atomic mass, defined as 1/12th of the
mass of 12C). Energies in the gamma radiation range are
conveniently in keV.

Gamma-ray emission is not, strictly speaking a decay
process; it is a de-excitation of the nucleus. I will now
explain each of these decay modes and will show, in
particular, how gamma emission frequently appears as a
by-product of alpha or beta decay, being one way in which
residual excitation energy is dissipated

1.2 BETA DECAY

Figure 1.2 shows a three-dimensional version of the low-
mass end of the Segrè chart with energy/mass plotted on
the third axis, shown vertically here. We can think of
the stable nuclides as occupying the bottom of a nuclear-
stability valley that runs from hydrogen to bismuth. The
stability can be explained in terms of particular rela-
tionships between Z and N . Nuclides outside this valley
bottom are unstable and can be imagined as sitting on
the sides of the valley at heights that reflect their relative
nuclear masses or energies.

The dominant form of radioactive decay is movement
down the hillside directly to the valley bottom. This is
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Figure 1.2 The beta stability valley at low Z. Adapted from
a figure published by New Scientist, and reproduced with
permission

1 Values given are rounded from those recommended by the UK
National Physical Laboratory in Fundamental Physical Constants
and Energy Conversion Factors (1991).
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beta decay. It corresponds to transitions along an isobar
or line of constant A. What is happening is that neutrons
are changing to protons (�−decay), or, on the opposite side
of the valley, protons are changing to neutrons (�+ decay
or electron capture). Figure 1.3 is part of the (Karlsruhe)
Nuclide Chart.

N

Z

61Zn 62Zn 63Zn 64Zn 65Zn

61Cu 62Cu 63Cu 64Cu60Cu

61Ni 62Ni 63Ni60Ni59Ni

61Co 62Co60Co59Co58Co

61Fe60Fe59Fe58Fe57Fe

Figure 1.3 Part of the Chart of the Nuclides. Heavy boxes
indicate the stable nuclides
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Figure 1.4 The energy parabola for the isobar A = 61. 61Ni
is stable, while other nuclides are beta-active (EC, electron
capture)

If we consider the isobar A = 61, 61Ni is stable, and beta
decay can take place along a diagonal (in this format) from
either side. 61Ni has the smallest mass in this sequence and
the driving force is the mass difference; this appears as
energy released. These energies are shown in Figure 1.4.
There are theoretical grounds, based on the liquid drop
model of the nucleus, for thinking that these points fall
on a parabola.

1.2.1 �− or negatron decay

The decay of 60Co is an example of �− or negatron
decay (negatron = negatively charged beta particle). All
nuclides unstable to �− decay are on the neutron rich side
of stability. (On the Karlsruhe chart, these are coloured
blue.) The decay process addresses that instability. An
example of �− decay is:

60Co −→ 60Ni+�− + �̄

A beta particle, �−, is an electron; in all respects
it is identical to any other electron. Following on from
Section 1.1, the sum of the masses of the 60Ni plus the
mass of the �−, and �̄, the anti-neutrino, are less than the
mass of 60Co. That mass difference drives the decay and
appears as energy of the decay products. What happens
during the decay process is that a neutron is converted
to a proton within the nucleus. In that way the atomic
number increases by one and the nuclide drops down the
side of the valley to a more stable condition. A fact not
often realized is that the neutron itself is radioactive when
it is not bound within a nucleus. A free neutron has a
half-life of only 10.2 min and decays by beta emission:

n −→ p+ +�− + �̄

That process is essentially the conversion process
happening within the nucleus.

The decay energy is shared between the particles
in inverse ratio to their masses in order to conserve
momentum. The mass of 60Ni is very large compared
to the mass of the beta particle and neutrino and, from
a gamma spectrometry perspective, takes a very small,
insignificant portion of the decay energy. The beta particle
and the anti-neutrino share almost the whole of the
decay energy in variable proportions; each takes from
zero to 100 % in a statistically determined fashion. For
that reason, beta particles are not mono-energetic, as
one might expect from the decay scheme, and their
energy is usually specified as E� max. The term ‘beta
particle’ is reserved for an electron that has been emitted
during a nuclear decay process. This distinguishes it from
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electrons emitted as a result of other processes, which
will usually have defined energies. The anti-neutrino
need not concern us as it is detectable only in elabo-
rate experiments. Anti-neutrinos (and neutrinos from �+

decay) are theoretically crucial in maintaining the univer-
sality of the conservation laws of energy and angular
momentum.

The lowest energy state of each nuclide is called the
ground state, and it would be unusual for a transi-
tion to be made directly from one ground state to the
next – unusual, but unfortunately far from unknown.
There are a number of technologically important pure
beta emitters, which are either widely used as radioac-
tive tracers (3H, 14C, 35S) or have significant yields in
fission (90Sr/90Y, 99Tc, 147Pm). Table 1.1 lists the most
common.

Table 1.1 Some pure beta emittersa

Nuclide Half-lifebc Maximum beta
energy (keV)

3H 12.312 (25) year 19
14C 5700 (30) year 156
32P 14.284 (36) d 1711
35S 87.32 (16) d 167
36Cl 3.01 �2�×105 year 1142
45Ca 162.6 1(9) db 257
63Ni 98.7 (24) year 66
90Sr 28.80 (7) year 546
90Y 2.6684 (13) d 2282
99Tc 2.111 �12�×105 yearb 294
147Pm 2.6234 (2) yearb 225
204Tl 3.788 (15) year 763

a Data taken from DDEP (1986), with the exception of
b-latter taken from Table of Isotopes (1978, 1998).
c Figures in parentheses represent the 1	 uncertainties on the
last digit or digits.

The decay scheme of these will be of the form shown in
Figure 1.5.

The difficulty for gamma spectrometrists is that no
gamma radiation is emitted by these radionuclides and
thus they cannot be measured by the techniques described
in this text. To determine pure beta emitters in a mixture of
radionuclides, a degree of chemical separation is required,
followed by measurement of the beta radiation, perhaps
by liquid scintillation or by using a gas-filled detector.

However, many beta transitions do not go to the ground
state of the daughter nucleus, but to an excited state.
This behaviour can be seen superimposed on the isobaric
energy parabola in Figure 1.6. Excited states are shown

32S

β–

32P (14.28 d)

Figure 1.5 The decay scheme of a pure beta emitter, 32P

for both radioactive (Ag, Cd, In, Sb, Te) and stable
(Sn) isobaric nuclides, and it should be noted that these
states are approached through the preceding or parent
nuclide.
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Figure 1.6 The isobar A = 117 with individual decay schemes
superimposed. 117Sn is stable

The decay scheme for a single beta-emitting radionu-
clide is part of this energy parabola with just the two
components of parent and daughter. Figure 1.7 shows the
simple case of 137Cs. Here, some beta decays (6.5 % of
the total) go directly to the ground state of 137Ba; most
(93.5 %) go to an excited nuclear state of 137Ba.

The gamma radiation is released as that excited state
de-excites and drops to the ground state. Note that the
energy released, 661.7 keV, is actually a property of 137Ba,
but is accessed from 137Cs. It is conventionally regarded
as ‘the 137Cs gamma’, and is listed in data tables as such.
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137Ba

661.7

(93.5 %)

(6.5 %)

0

β1

β2

γ

137Cs (30.17 year)

Figure 1.7 The decay scheme of 137Cs

However, when looking for data about energy levels in
the nucleus, as opposed to gamma-ray energies, it would
be necessary to look under the daughter, 137Ba.

In this particular case, 661.7 keV is the only gamma in
the decay process. More commonly, many gamma tran-
sitions are involved. This is seen in Figure 1.6 and also
in Figure 1.8, where the great majority of beta decays
(those labelled �1) go to the 2505.7 keV level which falls
to the ground state in two steps. Thus, two gamma-rays
appear with their energies being the difference between
the energies of the upper and lower levels:


1 = �2505�7−1332�5� = 1173�2 keV


2 = �1332�5−0� = 1332�5 keV

60Ni

1332.5

2505.7
(0.12 %)

0

β1 (99.88 %)

β2

γ2

γ1

60Co (5.272 year)

Figure 1.8 The decay scheme of 60Co

The two gammas are said to be in cascade, and if they
appear at essentially the same time, that is, if the interme-
diate level (in 60Ni at 1332.5 keV) does not delay emission
of the second gamma, then they are also said to be coin-
cident. This phenomenon of two gamma-rays appearing

from the same atom at the same instant can have a signifi-
cant influence on counting efficiency, as will be discussed
in Chapter 8.

1.2.2 �+ or positron decay

Just as �−active nuclides are neutron rich, nuclides
unstable to �+ decay are neutron deficient. (The red
nuclides on the Karlsruhe chart.) The purpose of positron
decay, again driven by mass difference, is to convert a
proton into a neutron. Again, the effect is to slide down the
energy parabola in Figure 1.4, this time on the neutron-
deficient side, towards stability, resulting in an atom of a
lower atomic number than the parent. An example is:

64
29Cu −→ 64

28Ni+�+ +� �neutrino�

During this decay a positron, a positively charged elec-
tron (anti-electron), is emitted, and conservation issues
are met by the appearance of a neutrino. This process is
analogous to the reverse of beta decay of the neutron.
However, such a reaction would require the presence of an
electron to combine with an excess proton. Electrons are
not found within the nucleus and one must be created by
the process known as pair production, in which some of
the decay energy is used to create an electron / positron
pair – imagine decay energy condensing into two parti-
cles. The electron combines with the proton and the
positron is emitted from the nucleus. Positron emission is
only possible if there is a sufficiently large energy differ-
ence, that is, mass difference, between the consecutive
isobaric nuclides. The critical value is 1022 keV, which
is the combined rest mass of an electron plus positron.
As with negatrons, there is a continuous energy spec-
trum ranging up to a maximum value, and emission of
complementary neutrinos.

The positron has a short life; it is rapidly slowed in
matter until it reaches a very low, close to zero, kinetic
energy. Positrons are anti-particles to electrons, and the
slowed positron will inevitably find itself near an elec-
tron. The couple may exist for a short time as positro-
nium – then the process of annihilation occurs. Both
the positron and electron disappear and two photons are
produced, each with energy equal to the electron mass,
511.00 keV (Figure 1.9). These photons are called anni-
hilation radiation and the annihilation peak is a common
feature in gamma spectra, which is much enhanced when
�+ nuclides are present. To conserve momentum, the
two 511 keV photons will be emitted in exactly oppo-
site directions. I will mention here, and treat the impli-
cations more fully later, that the annihilation peak in
the spectrum will be considerably broader than a peak
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(b)(a)

+e+ e–

Photons

(511+ δ) keV

(511– δ) keV

Atomic electron

Positron

Figure 1.9 The annihilation process, showing how the resul-
tant 511 keV photons could have a small energy shift: (a) possible
momenta before interaction giving (b) differing photon energies
after interaction

produced by a direct nuclear-generated gamma-ray of the
same energy. This can help in distinguishing between the
two. The reason for such broadening is due to a Doppler
effect. At the point where the positron–electron interac-
tion takes place, neither positron nor electron is likely
to be at complete rest; the positron may have a small
fraction of its initial kinetic energy, the electron – if we
regard it as a particle circling the nucleus – because of its
orbital momentum. Thus, there may well be a resultant
net momentum of the particles at the moment of interac-
tion, so that the conservation laws mean that one 511 keV
photon will be slightly larger in energy and the other
slightly smaller. This increases the statistical uncertainty
and widens the peak. Note that the sum of the two will still
be (in a centre of mass system) precisely 1022.00 keV.

1.2.3 Electron capture (EC)

As described above, �+ can only occur if more than
1022 keV of decay energy is available. For neutron
deficient nuclides close to stability where that energy is
not available, an alternative means of decay is available. In
this, the electron needed to convert the proton is captured
by the nucleus from one of the extranuclear electron
shells. The process is known as electron capture decay.
As the K shell is closest to the nucleus (the wave functions
of the nucleus and K shell have a greater degree of overlap
than with more distant shells), then the capture of a K
electron is most likely and indeed sometimes the process
is called K-capture. The probability of capture from the
less strongly bound higher shells (L, M, etc.) increases as
the decay energy decreases.

Loss of an electron from the K shell leaves a vacancy
there (Figure 1.10). This is filled by an electron dropping
in from a higher, less tightly bound, shell. The energy
released in this process often appears as an X-ray, in what
is referred to as fluorescence. One X-ray may well be
followed by others (of lower energy) as electrons cascade
down from shell to shell towards greater stability.

(a)

M M
L LK K

Nucleus Z Nucleus Z – 1

e–

e–

(b) + Kα X-ray

Figure 1.10 (a) Electron capture from the K shell, followed by
(b) electron movement (X-ray emission) from L to K, and then
M to L, resulting in X-radiations

Sometimes, the energy released in rearranging the elec-
tron structure does not appear as an X-ray. Instead, it is
used to free an electron from the atom as a whole. This
is the Auger effect, emitting Auger electrons. The prob-
ability of this alternative varies with Z: at higher Z there
will be more X-rays and fewer Auger electrons; it is said
that the fluorescence yield is greater. Auger electrons
are mono-energetic, and are usually of low energy, being
emitted from an atomic orbital (L or M) where the electron
binding energies are smaller. There is a small probability
of both Auger electrons and X-rays being emitted together
in one decay; this is the radiative Auger effect. Note that
whenever X-rays are emitted, they will be characteristic
of the daughter, rather than the parent, as the rearrange-
ment of the electron shells is occurring after the electron
capture.

For neutron deficient nuclides with a potential decay
energy somewhat above the 1022 keV threshold, both
positron decay and electron capture decay will occur, in a
proportion statistically determined by the different decay
energies of the two processes. Figure 1.11 shows the major
components of the decay scheme of 22Na, where both

22Ne

1274.5

EC
(9.7 %)

0

β+
 (90.2 %)

22Na (2.603 year)

Figure 1.11 The decay scheme of 22Na. Note the representa-
tion of positron emission, where 1022 keV is lost before emission
of the �+
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positron decay and electron capture are involved. We can
deduce from this that the spectrum will show a gamma-ray
at 1274.5 keV, an annihilation peak at 511.0 keV (from the
�+), and probably X-rays due to electron rearrangement
after the EC.

1.2.4 Multiple stable isotopes

In Figures 1.4 and 1.6, I suggested that the ground states
of the nuclides of isobaric chains lay on a parabola, and
the decay involved moving down the sides of the parabola
to the stable point at the bottom. The implication must be
that there is only one stable nuclide per isobaric chain.
Examination of the Karlsruhe chart shows quite clearly
that this is not true – there are many instances of two, or
even three, stable nuclides on some isobars. More careful
examination reveals that what is true is that every odd-
isobar only has one stable nuclide. It is the even numbered
isobars that are the problem. If a parabola can only have
one bottom, the implication is that for even-isobars there
must be more than one stability parabola. Indeed that is
so. In fact, there are two parabolas; one corresponding
to even-Z/even-N (even–even) and the other to odd-Z/
odd-N (odd–odd). Figure 1.12 shows this. The difference
arises because pairing of nucleons give a small increase
in stability – a lowering of energy. In even–even nuclides
there are more paired nucleons than in odd–odd nuclides
and so the even–even parabola is lower in energy. As
shown in Figure 1.12 for the A = 128 isobaric chain,
successive decays make the nucleus jump from odd–odd
to even–even and back. There will be occasions, as here,
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Figure 1.12 The two energy parabolas for the isobar A = 128.
128Te and 128Xe are stable

where a nucleus finds itself above the ultimate lowest
point of the even–even parabola, but below the neigh-
bouring odd–odd points. It will, therefore be stable. (It
is the theoretical possibility that a nuclide such as 128Te
could decay to 128Xe, which fuels the search for double
beta decay, which I will refer to from time to time.) In
all, depending upon the particular energy levels of neigh-
bouring isobaric nuclides, there could be up to three stable
nuclides per even-A isobaric chain.

In the case of A = 128, there are two stable nuclides,
128Te and 128Xe. 128I has a choice of destination, and
93.1 % decays by �− to 128Xe and 6.98 % decays by EC
to 128Te. The dominance of the 128Xe transition reflects
the greater energy release, as indicated in Figure 1.12.
This behaviour is quite common for even mass parabolas
and this choice of decay mode is available for such well-
known nuclides as 40K and 152Eu. Occasionally, if the
decay energy for �+ is sufficient, a nuclide will decay
sometimes by �− and sometimes by EC and �+.

1.3 ALPHA DECAY

An alpha particle is an He-4 nucleus, 4
2He+, and the emis-

sion of this particle is commonly the preferred mode of
decay at high atomic numbers, Z > 83. In losing an alpha
particle, the nucleus loses four units of mass and two units
of charge:

Z −→ Z −2

A −→ A−4

Typical is the decay of the most common isotope of
radium:

226
88 Ra −→ 222

86 Rn + 4
2He +Q

The product in this case is the most common isotope of
radon, 222Rn (usually just called ‘radon’ and which inci-
dentally is responsible for the largest radiation dose from a
single nuclide to the general population). A fixed quantity
of energy, Q, equal to the difference in mass between the
initial nuclide and final products, is released. This energy
must be shared between the Rn and the He in a definite
ratio because of the conservation of momentum. Thus,
the alpha-particle is mono-energetic and alpha spectrom-
etry becomes possible. In contrast to beta decay, there
are no neutrinos to take away a variable fraction of the
energy.

In many cases, especially in the lower Z range of �
decay, the emission of an alpha particle takes the nucleus
directly to the ground state of the daughter, analogous
to the ‘pure-�’ emission described above. However, with
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heavier nuclei, � decay can lead to excited states of the
daughter. Figure 1.13, the decay scheme of 228Th, shows
gamma emission following alpha decay, but even here it
will be seen that most alpha transitions go directly to the
224Ra ground state.
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Figure 1.13 The decay scheme of 228Th

Calculation of the alpha decay energy reveals that even
nuclides, such as 152Eu and the stable 151Eu, are unstable
towards alpha decay. Alpha decay of 151Eu would release
1.96 MeV of energy. The reason that this, and most other
nuclides, do not decay by alpha emission is the presence
of an energy barrier – it takes energy to prise an alpha
particle out of the nucleus. Unless the nucleus is excited
enough or is large enough so that the decay energy is
greater than the energy barrier, it will be stable to alpha
emission. That does not preclude it from being unstable
to beta decay; 151Eu is stable, 152Eu is radioactive.

1.4 SPONTANEOUS FISSION (SF)

Spontaneous fission is a natural decay process in which
a heavy nucleus spontaneously splits into two large frag-
ments. An example is:

252
98 Cf −→ 140

54 Xe + 108
44 Ru +1

0 n +Q

The two product nuclides are only examples of what is
produced; these are fission fragments or (when in their
ground states) fission products. The range of products,
the energies involved (Q) and the number and energies of

neutrons emitted are all similar to those produced in more
familiar neutron-induced fission of fissile or fissionable
nuclides. 252Cf is mentioned here as it is a commercially
available nuclide, which is bought either as a source of
fission fragments or as a source of neutrons.

Once more, the driving force for the process is the
release of energy. Q is of the order of 200 MeV, a
large quantity, indicating that the fission products have
a substantially smaller joint mass than the fissioning
nucleus. This is because the binding energy per nucleon is
significantly greater for nuclides in the middle of the Peri-
odic Table than at the extremes. 108Ru, for example, has
a binding energy of about 8.55 MeV per nucleon, while
the corresponding figure for 252Cf is about 7.45 MeV per
nucleon. Despite the emission of neutrons in this process,
fission products are overwhelmingly likely to find them-
selves on the neutron rich, �−active side of the nuclear
stability line. They will then undergo �− decay along
an isobar, as, for example, along the left-hand side of
Figure 1.12, until a stable nucleus is reached. During this
sequence, gamma emission is almost always involved,
as described earlier. The distribution of fission product
masses will be discussed in Section 1.9.

As with alpha decay, calculation of mass differences
for notional fission outcomes suggest that even mid-range
nuclides, in terms of mass, would be unstable to fission.
Fission is prevented in all but very large nuclei by the
fission barrier – the energy needed to deform the nucleus
from a sphere to a situation where two nearly spherical
fission product nuclei can split off.

1.5 MINOR DECAY MODES

A number of uncommon decay modes exist which are
of little direct relevance to gamma spectrometrists and I
will content myself with just listing them: delayed neutron
emission, delayed proton emission, double beta decay (the
simultaneous emission of two �− particles), two proton
decay and the emission of ‘heavy ions’ or ‘clusters’, such
as 14C and 24Ne. Some detail can be found in the more
recent general texts in the Further Reading section, such
as the one by Ehmann and Vance (1991).

1.6 GAMMA EMISSION

This is not a form of decay like alpha, beta or spontaneous
fission, in that there is no change in the number or type
of nucleons in the nucleus; there is no change in Z, N or
A. The process is solely that of losing surplus excitation
energy, and as I have shown is usually a by-product of
alpha or beta decay. First – what is a gamma-ray?


