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An updated and thorough introduction to undergraduate physics offering a valuable starting point for students

The physical universe has always been of great interest to mankind, and as we continue to develop an understanding
of the world around us, there will always be a single set of rules that have come to be called Laws of Nature, which
explain the behaviour of our physical environment. 

With this in mind, this second edition of Understanding Physics introduces 20th Century topics at an earlier stage than
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are presented. Among the many topics covered are: 

Throughout the text references are given to sources where more detailed discussions of particular topics or applications
may be found, and worked examples and problems are presented at the end of each chapter.  

Understanding Physics is written primarily for students who are taking their first course in physics at university level.
While it is anticipated that many readers will have some previous knowledge of physics or of general science, each topic
is introduced from first principles so that the text is suitable for students without any prior background in physics.  

Additional web material for instructors and students can be found at www.wiley.com/go/mansfield

Reviews of the first edition
“It is well written, well illustrated and has a fresh approach.” 
Professor Malcolm Cooper, University of Warwick, UK.

“In my opinion this is an excellent text. It is well balanced, it is explanatory and it has an interesting 
integrated structure.”
Dr Leif Karlsson, Uppsala University, Sweden
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Preface to Second Edition

Goals and objectives

Understanding Physics is written primarily for students who are taking their first course in physics at university level. While it is

anticipated that many readers will have some previous knowledge of physics or of general science, each topic is introduced from first

principles so that the text is suitable for students without any prior background in physics. The book has been written to support most

standard first-year undergraduate university physics courses (and often beyond the first year) and can serve as an introductory text for both

prospective physicsmajors and other students whowill need to apply the principles and techniques of basic physics in subsequent courses.

A principal aim of this book is to give the reader the foundation required to proceed smoothly to intermediate level courses in physics and

engineering and to courses in the chemical, computer, materials and earth sciences, all of which require a sound knowledge of basic

physics

Students with some previous knowledge of physics will find that they are already familiar with many of the topics covered in the early

sections. These readers should note, however, that the treatment of these topics inUnderstanding Physics often differs from that given in

school textbooks and is designed to lay the foundations for the treatment of new andmore advanced topics. As authors, one of our aims is to

integrate school physics more closely to that studied at university, encouraging students to appreciate the relevance of physics previously

studied and to integrate it with the material encountered at university. For these reasons we hope that students with previous knowledge of

physics will take the opportunity to refresh and deepen their understanding of topics which they may regard as familiar.

Some knowledge of simple algebra, geometry and trigonometry is assumed but differential and integral calculus, vector analysis and

other more advanced mathematical methods are introduced within the text as the need arises and are presented in the context of the

physical problems which they are used to analyse. Historically, many mathematical techniques were developed specifically to address

problems in physics and these can often be grasped more easily when applied to a relevant physical situation than when presented as an

otherwise abstract mathematical concept. These mathematical asides are indicated throughout the text by a grey background and it is

hoped that by studying these short sections, the reader will gain some insight into both the mathematical techniques involved and the

physics to which the techniques are applied.

The mathematical asides, together with Appendix A (Mathematical Rules and Formulas), however, cannot substitute for a formal

course in mathematical methods, rather they could be considered a mathematical ‘survival kit’ for the study of introductory physics. It is

hoped that most readers will either have already taken or be studying an introductory mathematics course. In reality the total amount of

mathematics required is neither large nor particularly demanding.

Approach

It is no longer credible to describe the discoveries and developments made during the early years of the twentieth century as ‘modern

physics’. This is not to deny the radical and revolutionary nature of these developments but rather is a recognition that they have long since

become a part of mainstream physics. Quantummechanics, relativity and our picture ofmatter at the subatomic level will surely form part

of the ‘classical’ tradition of twenty-first century physicists. On the other hand, the discoveries of the seventeenth, eighteen and nineteenth

centuries have lost none of their importance. The majority of everyday experiences of the material world can be understood in a fully

satisfactorymanner in terms of classical physics. Indeed attempts to explain such phenomena in the language of twentieth century physics,

while possible in principle, tend to be unnecessarily complicated and often confusing.

InUnderstanding Physics, ‘modern’ (twentieth century) topics are introduced at an earlier stage than is usually found in introductory

textbooks and are integrated with the more ‘classical’ material from which they have evolved. Although many of the concepts which are

basic to twentieth century physics are relatively easy to represent mathematically, they are not as intuitive as those of classical physics,

particularly for students with an extensive previous acquaintance with ‘classical’ concepts. This book aims to encourage students to

develop an intuition for relativistic and quantum concepts at as early a stage as is practicable.

Understanding Physics has been kept to a compact format in order to emphasise, in a fully rigorous manner, the essential unity of

physics. At each stage new topics are carefully integratedwith previousmaterial. Throughout the text references are given to other sources

where more detailed discussions of particular topics or applications may be found. In order to avoid breaking the flow and unity of the

material within chapters, worked examples and problems are placed at the end of each chapter. Indications are given throughout the text as

towhen a particular worked examplemight be studied or a particular problem attempted. The number of problems has been limited so that

a student might reasonably expect to attempt all problems in a given chapter; other sources of suitable problems are widely available, for

example in other textbooks and on the internet.

The internationally agreed system of units (SI) is now adopted almost universally in science and engineering and is used

uncompromisingly in this text. In addition, we have adhered rigorously to the recommendations of the International Union of Pure

and Applied Physics (IUPAP) on symbols and nomenclature (Cohen and Giacomo, 1987).



The text takes a reflective approach towards the scientific method at all stages – that is, while learning the fundamentals of physics the

student should also become familiar with the scientificmethod. In keepingwith the title of the text, emphasis is placed on understanding of

and insight into thematerial presented. The book therefore seeks not merely to describe the discoveries and themodels of physics but also,

in the process, to familiarise readers with the skills and techniques which been have developed to analyse natural phenomena, skills and

techniques which they can look forward to applying themselves. This book does not seek to reveal and explain all the mysteries of the

physical universe but, instead, lays the foundations on which readers can build and (perhaps more importantly) encourages and equips

readers to explore further.

Structure

Chapter 1 starts with a short overview of the way in which physics today describes the material universe, from the very smallest building

blocks of matter up to large scale bulk materials. It is a remarkable fact that the same basic principles seem to apply over the full range of

distance scales – from subnuclear to intergalactic. The physical principles encountered in subsequent chapters are applied to systems on all

of these scales, as the need arises. The basic ideas of calculus are introduced in Chapter 2 in the context of the description of motion in one

dimension; readers with a good prior knowledge of this material may wish to skip this chapter, although such readers might find it

profitable to use the chapter to refresh their memories.

Chapters 3 to 7 introduce the main themes of classical dynamics. This is followed by an introduction to relative motion (Chapter 8)

which is an essential prerequisite to the study of the special theory of relativity (Chapter 9). Chapters 10 and 11, respectively, deal with the

mechanical and thermal behaviour of matter. A sound knowledge of wavemotion (Chapter 12), a very important part of physics in its own

right, is essential for a proper understanding of quantum mechanics (Chapter 13). The five subsequent chapters (14 to 18) cover the main

aspects of classical electromagnetism and its application to wave and geometrical optics is covered in Chapter 19.

Thefinal three chapters (20, 21 and 22) – on atomic physics, on electrons in solids and onnuclear and particle physics and astrophysics –

are a little more specialised and detailed than the others. Depending on the subjects which the reader plans to pursue subsequently,

significant amounts of all or some of these chapters might well be omitted.

Some chapters have a few sections which contain slightly more demanding analyses or less essential material than found in the rest of

the book. These sections, (for example Section 5.11 on planetary motion, elliptical orbits and Kepler’s laws) indicated by a blue

background, could be considered optional and may be omitted if appropriate.

Note on the second edition

Users of the first edition will notice a number of significant changes in the second edition. These have mostly arisen as a result of

suggestions for improvement made by instructors, students and of our own experiencewith the book. New sections have been included on

dissipative forces, forced oscillations, nonlinear dynamics and on electromagnetic waves at interfaces between media. A completely new

chapter (Chapter 19) on optics has been added, some of the material of which was covered less fully in Chapter 12 of the first edition. The

emphasis on integration of the various topics into a view of physics as a unifiedwhole has been increased; for example, the concept of flux

(and Gauss’ law) has been introduced at an earlier stage to enable it to be applied to gravitation.

Supplementary resources

The understanding physics website

An Understanding Physics website can be accessed on the internet at the following URL http://www.wiley.com/go/mansfield.
Thewebsite includes additional material, further problems and other teaching and learning resources provided on a section by section

basis. In particular, it provides links to suitable interactive exercises in the form of animations, simulations, tutorials, etc. and other

multimedia materials. All such resources have been selected for their suitability by the authors and have been evaluated for quality by

reputable international organisations such as the European Physical Society (EPS), MPTL (Multimedia in Physics Teaching and

Learning) or MERLOT (Multimedia Educational Resource for Learning and Online Teaching).

Students are encouraged to enhance their understanding and insight by using the website in parallel with studying the text.

A message for students

You should not expect to achieve an instant understanding of all topics studied. The learning process starts through an understanding of

concepts and then progresses.

Newmaterial may not be fully absorbed at first reading but only after more careful study. From our own personal experience, however,

we can assure you that persistence will be rewarded and that initially challenging material will be revealed as being both simple and

elegant.

We have deliberately not provided end-of-chapter summaries. We feel that it is an important part of the learning exercise that students

create such summaries for themselves. To assist this process, however, we have adopted a range of specific highlighting styles throughout
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the book (indicating fundamental principles/laws, equations of state, definitions, important relationships, etc.). A key to the more

important examples of the notations used is located inside the front cover.

Readerswho are studying physics for the first time are starting on a great adventure;we hope that this bookwill help you to find the early

stages of the journey both exciting and rewarding.We also hope that it will prove to be a source of continuing support for your subsequent

studies.
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1
Understanding the physical universe

AIMS

& to show how matter can be described in terms of a series of models (mental pictures of the structures and workings of systems) of

increasing scale, starting with only a few basic building blocks

& to describe how, despite the great complexity of the material world, interactions between its building blocks can be reduced to no more

than four distinct interactions

& to describe how natural phenomena can be studied methodically through observation, measurement, analysis, hypothesis and testing

(the scientific method)

1.1 The programme of physics

Humans have always been curious about the environment in which they found themselves and, in particular, have sought explanations for

theway inwhich theworld around them behaves. All civilisations have probably engaged in science in this sense but sadly not all have left

records of their endeavours. It would seem, however, that sophisticated scientific activity was carried out in ancient Babylonian and

Egyptian civilisations and, certainly, many oriental civilisations had expert astronomers – every appearance of Halley’s comet over a time

span of 1000 yearswas recorded byChinese astronomers. Science aswe know it today developed from theRenaissance in Europewhich in

turn owed much to the rediscovery of the work of the great Greek philosopher/scientists such as Aristotle, Pythagoras and Archimedes,

work that had been further developed in the Islamic world between the seventh and sixteenth centuries.

Common to all scientific activity is the general observation that, in most respects, the physical world behaves in a regular and

predictable manner. All other things being equal, an archer knows that if he fires successive arrows with the same strength and in the same

direction they follow the same path to their target. Similar rules seem to govern the trajectories of stones, spears, discuses and other

projectiles. Regularities are also evident in phenomena involving light, heat, sound, electricity andmagnetism (amagnetic compasswould

not be much use if its orientation changed randomly!). The primary objective of physics is to discover whether or not basic ‘rules’ exist

and, if they do, to identify as exactly as possible what these ‘rules’ are. As we shall see, it turns out that most of the everyday behaviour

of the physical universe can be explained satisfactorily in terms of rather few simple ‘rules’. These basic ‘rules’ have come to be called

laws of nature, examples of which include the Galilean/Newtonian laws of motion (Sections 3.2, 3.3, 6.1), Newton’s law of gravitation

(Section 5.1) and the laws of electromagnetism associated with the names of Amp�ere (Section 16.5), Faraday (Section 17.1), Coulomb

(Section 15.5) and Maxwell (Section 18.1). In addition to these basic laws there are also ‘laws’ of a somewhat less fundamental nature

which are used to describe the general behaviour of specific systems. Examples of the latter include Hooke’s law for helical springs

(Section 3.5), Boyle’s (or Mariotte’s) law for the mechanical behaviour of gases (Section 10.10) and Ohm’s law for the conductivity of

metals (Section 14.4).

The objective in studying physics, therefore, is to investigate all aspects of thematerial world in an attempt to discover the fundamental

laws of nature and hence to understand and explain the full range of phenomena observed in the physical universe. This programme

must include a satisfactory explanation of the structure of matter in all its forms (e.g. solids, liquids, gases), which in turn requires an

understanding of the interactions between the basic building blocks from which all matter is constituted. How these interactions are

responsible for the mechanical, thermal, magnetic and electrical properties of matter must also be explained. Such explanations, once

discovered, can be applied to develop descriptions of phenomena ranging from the subatomic to the cosmic and to develop practical

applications for the benefit of, and use by, society.
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In the next three sections we review the language and images currently used by physicists to describe the structure of matter and the

fundamental interactions of nature.

1.2 The building blocks of matter

Fundamental particles

Our present view of the nature of matter is very different from that which prevailed even fifty years ago. All matter is currently viewed as

comprising various combinations of two classes of elementary particles – the basic building blocks – called, respectively, quarks

and leptons. We give below an introductory account of the terminology and models used in the quark/lepton description of matter. The

quark/lepton model will be discussed in more detail in Section 22.12.

Quarks and leptons occur in three distinct generations but only those in the first generation are involved in ordinary stable everyday

matter. The first generation comprises two quarks, the up quark (symbol u) and the down quark (d), and two leptons, the electron (e) and the

electron neutrino (ne). Matter comprising particles of the second and third generations is invariably unstable and is normally only formed

when particles collide at very high speeds, such as those prevailing at the beginning of the Universe or in experiments with particle

accelerators.

Leptons can exist as free isolated particles. Quarks, on the other hand, do not exist in isolation and are only observed grouped together,

usually in threes, to form thewide range of different particleswhich form ordinarymatter or which are produced in high-speed collisions.

In this section we describe how quarks and leptons, the basic building blocks of matter, combine to form larger building blocks which,

in turn, combine to form even larger building blocks etc., as summarised in Table 1.1. Let us consider each stage in more detail, starting

with combinations of quarks.

Nuclei

The simplest combinations of first generation quarks which are observed are three-quark combinations called nucleons. As illustrated in

Figure 1.1 two different types of nucleon are observed, namely the proton (p), which comprises two u quarks and one d quark, and the

neutron (n), which comprises one u quark and two d quarks. The electric charge of the proton is þe (e is called the fundamental electric

charge), while that of the neutron is zero. While a proton is stable, a free neutron is not and decays radioactively to form a proton and two

leptons. Further three quark combinations, involving quarks from other generations, will be considered when we come to discuss

subnuclear particles in Section 22.11.

The next simplest combination, also illustrated in Figure 1.1, comprises six quarks (uuuddd), equivalent to one p and one n. This

combination occurs in the nucleus of the deuterium atom (discussed below) and is called the deuteron. The electric charge of the deuteron,

d

d

u u

d

u u

d

u u

u

d d

u

d

proton neutron deuteron 2H1

p pn n

Figure 1.1. The quark and nucleon compositions of the proton ð11pÞ, neutron ð10nÞ and deuteron ð21HÞ.

Table 1.1. Building blocks of matter

Building block Scale/m

Quarks <10�20

Particles �10�15

Nuclei �10�14

Atoms �10�10

Molecules 10�10 to 10�8

Bulk matter > 10�9
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like that of the proton, is þe. Two combinations of nine quarks, equivalent to pnn and ppn, are known; the first combination (pnn) is

radioactive and the second (ppn) stable. When we consider atoms below we will identify these combinations as nuclei of tritium and

helium atoms, respectively. Hundreds of stable particles (nuclei), comprising various combinations of u and d quarks (or, equivalently,

protons and neutrons), are the basis of ordinarymatter andwill be discussed inChapter 22.Agreatmanyother combinations can be created

artificially, for example in nuclear reactors, and, while these are unstable, their lifetimes are often sufficiently long for them to be studied in

detail and put to practical use (Chapter 22).

Atoms and molecules

All nuclei have an electric charge of þZe, where Z is an integer; Z can be thought of as the number of protons in the nucleus. We will

discover later (Chapter 15) that positive and negative charges are attracted to one another. Under normal conditions (by which is meant an

environment which is not too hot and in which the matter density is not too low) the positively charged nuclei attract electrons to form

electrically neutral systems called atoms. In atoms the electrons do not coalesce with the nuclei but, instead, behave as though they are

moving around them in orbits with radii of the order of 10–10 m. This picture of an atom is something like that illustrated in Figure 1.2 – a

very small nucleus of charge þZe surrounded by Z orbiting electrons, each of charge�e. The overall charge on the atom is thus zero – it is

electrically neutral. The radius of an atom is 10 000 times greater than the radius of the nucleus (which is about 10�14m). The electron is

a very light particle, nearly 2000 times lighter than the proton, so nearly all the matter in an atom is concentrated in the nucleus. The

nucleus and electrons are bound together in an atom by electrostatic attraction, a process which we will examine in detail when we study

the structure of the atom in Chapter 20.

As argued above, the electric neutrality of the atom requires that the nuclear charge þZe is balanced by the negative charge of

Z electrons; Z therefore also gives the number of electrons in a neutral atom and is called the atomic number. The chemical properties of

an atom are determined by the number of electrons it contains. An atom with Z¼ 1, that is with a single proton in its nucleus and hence

containing a single electron, is known as a hydrogen atom (Figure 1.2). The hydrogen nucleus can also contain one or two neutrons. Such

atoms are called deuterium or tritium atoms, respectively, and are known as isotopes of hydrogen because they are chemically identical.

Helium atoms have Z¼ 2 (Figure 1.2); two different stable isotopes exist, 32He (two p and one n) and
4
2He (two p and two n). The chemical

elements, listed in Appendix D (inside back cover), correspond to different values of Z (Z¼ 3 for lithium, Z¼ 4 for boron and so on). Note

that the conventional notation used to specify an atomic nucleus (or nuclide) is A
ZX where X is the chemical symbol for the particular

element, Z is the atomic number (the number of protons in the nucleus) and A (the number of nucleons – that is protons plus neutrons – in

the nucleus) is called the mass number. Isotopes of an element therefore have the same Z but different values of A.

If an atom loses or gains an electron it will end up with a net positive or negative electric charge and is called an ion. The number of

electrons lost or gained is conventionally denoted by a suffix to the notation for the atomic nucleus e.g. AZX
þ (one electron lost), AZX

2þ (two

electrons lost) or A
ZX

� (one electron gained).

When atoms come sufficiently close together that their electron systems begin to overlap, they may form stable groupings of two or

more atoms which are calledmolecules. Representations of some common molecules are illustrated in Figure 1.3. Molecular sizes vary

from atomic dimensions (�10�10m) to dimensions which are many hundreds of times larger in the case of biological molecules such as

proteins and nucleic acids.

+e

−e

+2e

−e−e

H  ( = 1)Z He  ( = 2)Z

Figure 1.2. The electronic structure of the hydrogen and helium atoms.

Cl

hydrogen chloride water ammonia methane

HCl H O2 NH3 CH4

O N C

Figure 1.3. The atomic compositions of some common molecules – the smaller gray spheres represent hydrogen atoms.
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The conventional notation for a molecule places the number of each type of atom in the molecule at the bottom right of the symbol

for that atom. For example, awatermolecule (a grouping of two atoms of hydrogen and one atomof oxygen) is denoted by the symbolH2O

(or 1
1H2

16
8O, if the isotopic species of each atom is also to be shown). We will consider the various processes by which atoms can bind

together to form molecules in Section 21.1.

The description of matter which we have outlined in this section is summarised in Figure 1.4.

1.3 Matter in bulk

When large numbers of atoms or molecules are bound closely together the atoms tend to arrange themselves in regular patterns, some

examples of which are illustrated in Figure 1.5.

These patterns can extend over a very large number of atoms to form crystal lattices. Most solids are aggregates of crystals formed

in this way and, if care is taken in their preparation, a solid may even be grown as one large single crystal.

Gases, on the other hand, comprise large numbers of molecules which are spaced so that the average distance between them is much

greater than the molecular diameters. Molecules in gases move around rapidly and only interact with one another when they collide;

otherwise they move in straight lines between collisions. The molecules in liquids are very close together but remain mobile and do not
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Figure 1.4. Models of the structure of matter – from the quark scale to the bulk matter scale.

Figure 1.5. Some crystal lattice structures.
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form crystal lattices. Thus liquids fall somewhere between gases and solids. Many materials, glass for example, do not fall into these

simple categories and have properties which are somewhere between those of solids and liquids.

Our everyday experience of solids, liquids and gases does not give any hint of their microscopic nature, that is, of their molecular,

atomic or subatomic composition. Indeed,matter in bulk appears continuous –mostmaterials seem to be uniform in their composition and

properties at this level. Thus, if we are interested in answering questions such as ‘where is a stone going to land if I throw it from the top of

a cliff?’ or ‘howmuch will the air in a balloon compress if I squeeze it?’, it hardly seems sensible to consider what happens to the atoms in

the stone or to the quarks in the air! Questions like this are best addressed by employingmacroscopicmodels (large-scale pictures) of the

systems being investigated rather than themicroscopicmodelswhichwe have outlined in Section 1.2. Clearly a range of different models

is available to us and the choice as towhich one is best to use depends on the question being asked. The criterionwhich wemust use here is

that of simplicity – in attempting to explain any phenomenon only those concepts necessary for the explanation should be included in the

theory. This principle, which is central to all scientific endeavour, is known as Occam’s razor after the medieval philosopher William

of Occam (1285–1349), although the formulation in which it is normally stated (entia non sunt multiplicanda praeter necessitatem –

entities are not to be multiplied unnecessarily) is attributed to John Ponce (1603–1661).

In this book we adhere to this principle as far as possible. We generally begin a discussion of a phenomenon from a macroscopic

viewpoint. There will be many cases in which we are also able to discuss a phenomenon starting from a microscopic viewpoint

(e.g. kinetic theory in Section 10.11). An important test of the microscopic approach will be whether its predictions agree with those

of the macroscopic approach.Wewill find that when the two approaches agreewe can bemore confident that the microscopic approach

is correct and, perhaps more importantly, we will gain some rewarding insights into the meaning of macroscopic concepts at a more

basic level.

1.4 The fundamental interactions

Wehave seen that, despite the extraordinary complexity of thematerialworld, allmatter ismade up froma relatively small number of basic

building blocks. Equally remarkably we find that the way in which these building blocks interact with one another can be reduced to no

more than four distinct interactions, namely

1. The strong interaction: This is the force between quarks which keeps them bound together within a particle or an atomic nucleus. It

is responsible for the force between nucleons in a nucleus, as described in Chapter 22. The range over which the strong interaction

operates is very small – it has negligible effect if the distance between particles is much greater than 10�15m.

2. The electromagnetic interaction: This is the forcewhich exists between all particles which have an electric charge, such as the force

which keeps the electrons bound to the nucleus in an atom. The electromagnetic interaction is long range, extending in principle over

infinite distances, but it is over 100 times weaker than the strong interaction within the range over which the strong interaction

operates.

3. The weak interaction: Leptons are not affected by the strong interaction but interact with one another and with other particles via a

much weaker force called the weak interaction, whose strength is only 10�14 times that of the strong interaction. While all particles

interactweakly, the effect is noticeable only in the absence of the strong and electromagnetic interactions. Theweak interaction is very

short range (�10�18m) and only plays a role at the nuclear and subnuclear level.

4. The gravitational interaction: By far the weakest of the fundamental interactions is the gravitational interaction, the interaction

which, for example, gives a body weight at the surface of the Earth. Its strength is 10�38 times that of the strong interaction. All

particles interact gravitationally and, like the electromagnetic interaction, the gravitational interaction operates over an infinite range.

There is a long tradition in physics of attempting to unify theories which were originally distinct. For example, for a long time

magnetism and electricity were considered to be quite different phenomena but during the nineteenth century the two areas were united

in a single theory of electromagnetism (Chapter 16). During the past fifty years the theories covering the fundamental interactions have

been undergoing a similar unification process. In the 1960s, due principally to the work of Weinberg, Salam, Ward and Glashow, the

electromagnetic and weak interactions came to be seen as different aspects of the same phenomenon (known as the electroweak

interaction). Since then considerable progress has been made towards the unification of the electroweak interaction with the strong

interaction (so-called Grand Unification) and this objective is still being pursued. Today, the goal of unifying gravity with the strong-

electroweak interaction has become a ‘Holy Grail’ of physics but, to date, even the possibility of such a single theory of all four

fundamental interactions, a Theory of Everything, remains in the realm of speculation.

1.5 Exploring the physical universe: the scientific method

Our aim in physics is to explore the physical universe, to observe, analyse and (hopefully) eventually understand the natural phenomena

and processes which underlie the workings of the universe. In the process of achieving an understanding of natural phenomena we will

often acquire an ability to predict their future course and hence an ability to apply our knowledge – to use it for practical purposes.

1.5 Exploring the physical universe: the scientific method 5
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How then can we investigate natural phenomena?We outline below an approach known as the scientificmethod. It is a method which

has proved its value over many centuries but it is important to note that there is nothing particularly remarkable about it – it has not been

handed to us on ‘tablets of stone’. As we shall see, it is merely a series of practical steps that anyone who wishes to study a natural

phenomenon methodically might well devise on his or her own initiative. We outline the steps below.

Observation

The first step is simply to observe the phenomenon – towatch it unfold. Careful systematic observation leads us inevitably to take notes on

what we see – to record our observations.With records we can later remind ourselves, or others, of what we have observed. The process of

recording what we see in a thorough and rigorous manner leads us quickly to make measurements. For example, if we are observing the

motion of a moving object we could describe its motion in words by stating that ‘the object is first a long way from us, then not so far, then

nearer and finally very near’. It is clear however that words alone soon become inadequate; they are not sufficiently precise and can be

ambiguous. One person’s idea of ‘very near’ may not be the same as that of the next person. Measurement is therefore the next step in the

scientific method.

Measurement

In making measurements we must decide which (physical) quantities associated with the phenomenon that we are observing can be

measured most conveniently and accurately. Note that the process is already becoming a little arbitrary. One person’s idea of what can be

measured conveniently may not be the same as that of the next person. As experience is built up, a consensus usually emerges on the best

way to make a certain measurement. Sometimes, as we will see, technical developments can force a change in the consensus and hence

even in the way in which physics is formulated. The development of physics has always been rooted strongly in empirical observation

and hence in the process of measurement.

In making a measurement we inevitably have to choose a unit in which to make the measurement. In the case of the moving object we

would naturally tend tomeasure its distance from us inmetres because a unit of distance, themetre, has already been defined for us. Had it

not been definedwewould have had to invent some such unit. In choosing units formeasurement it is also sensible to coordinate our choice

with that of others, i.e. to choose agreedmeasurement standards and systems of units. This enables us to communicate our observations

to colleagues on the other side of the world in such a way that they will know precisely what we mean.

Analysis and hypothesis

Having observed a phenomenon and having collected a set of measurements – our experimental data – the next step in the scientific

method, in our attempt to understand the phenomenon, is to look for relationships between the quantities we have measured. For example

in the case of a moving object we may have a set of measurements which gives the object’s position at certain times. In comparing the

measurements of positionwith those of time canwe see any pattern? Canwe put forward anyhypothesis (inspired guess) which describes

and accounts for the relationship between the quantities? Can we go further and put forward amodel of the situation, an idealised picture

of what is happening, usually based on situations we already understand – i.e. on our experience?

At this stage the scientific method becomes arbitrary and personal. Different people from different backgrounds and with different

experiences may see different patterns and may put forward different models. There is not necessarily any one correct interpretation. In

time it may turn out that one approach is simpler and easier to follow than the others but it does not follow that this is the only correct

approach. It is always wise to keep an openmind in studying natural phenomena –we are less likely to spot new patterns if we have already

decided what we expect to see. We must always be on our guard against introducing prejudices when drawing on our experience.

A number of procedures may help us to identify patterns in our observations. As will be illustrated in Section 2.3 for the case of a

moving object, we can assemble tables of data and can draw graphs of one measured quantity against another. We will see in Section 2.3

how analyses of tables and graphs often enable us to deduce relationships between observed quantities. Very general relationships are

described as laws of physics. One of the things whichmakes physics such a rewarding subject to study is that not only are the fundamental

laws few in number but they are also usually of relatively simple form. Because of the essential simplicity of the laws, the simplest and

most natural way to express them is through the language of mathematics.

When we are successful in identifying relationships between observed quantities we are usually able to express them as mathematical

equations, which, as we will see in Section 2.3, are usually the most concise and unambiguous way of expressing relationships.

The description of relationships between quantities as ‘laws’ of physics is perhaps unfortunate because these laws should not be

regarded as incontrovertible edicts. They aremerelywell-established principles. Sometimes laws are found not to be aswell established as

was first believed. It is important therefore to test hypotheses andmodels regularly. This brings us to the final step in the scientificmethod.

Testing and prediction

It is now necessary to establish the range of applicability of any hypotheses and models which may have been proposed. We use these

hypotheses and models, therefore, to predict results in situations in which measurements have not yet been made. We then make

measurements in the new situations and see howwell these measurements match predictions. Sometimes they do not match, although this
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does not necessarily mean that our prior hypotheses and models were wrong. It means that they are limited in their applicability and that

we have to extend the hypotheses and models to cover the new situations.

As we shall see, developments in physics in the twentieth century have shown that many apparently universal laws of classical physics

do not apply at velocities which approach the speed of light or to particles on the microscopic (atomic and nuclear) scale. It has been

necessary to develop new more comprehensive theories, namely the special theory of relativity (Chapter 9) and quantum mechanics

(Chapter 13), to interpret and understand these situations.

As is apparent from the account of the scientific method given above, there is nothing particularly remarkable about the method. It has

been described quite simply as ‘organised common sense’, a method which a person without a scientific background might well adopt

when faced with the task of trying to understand a physical process. In physics we have the advantage of a wealth of techniques for

observation and analysis that have been developed by the scientific community over a long period of time. This gives us a head start in

seeking to understand new phenomena although we should always be aware of the possible limitations of established thinking.

In this book, therefore,wewill not only describe the discoveries and themodelswhich have been put forward by physicists,wewill also,

in the process, learn the skills and techniqueswhich been have developed to analyse natural phenomena.Wewill then be able to apply these

skills and techniques ourselves as we study the physical universe. The end product will be the ability to describe a whole range of

apparently disconnected and complex phenomena in terms of an underlying simplicity of mathematically expressed structures. On many

occasions we will see how advances in knowledge have led to new theories or models which replace a whole range of different models

which were needed previously. This unifying process is one of the most satisfying aspects of physics. New understanding can actually

simplify a situation, or a number of situations; we then feel instinctively that we are closer to the truth. Themethods whichwewill uncover

are powerful, intellectually satisfying and useful. We will not be able to reveal all the mysteries of the physical universe in this book but

we will take some steps along the way and, perhaps more importantly, we will emerge equipped to explore further ourselves.

1.6 The role of physics: its scope and applications

In Sections 1.2 to 1.4we sawhowphysics describes the basic components ofmatter and theirmutual interactions.We also sawhowphysics

endeavours to describe the physical world on all its scales – from that of the quark to that of the universe. In this sense, physics provides the

basic conceptual and theoretical framework on which other natural sciences are founded and may therefore be regarded as the most

fundamental and comprehensive of the natural sciences.

The techniques which have been developed to analyse the physical world can be used in almost any area of pure and applied research.

Physics provides an excellent testing ground for the scientific method. Moreover, in seeking to unify understanding of the natural world,

physics can play an important simplifying role in science, reducing complex situations tomore understandable forms. In doing so, physics

can also counteract the fragmentation into separate disciplines which tends to accompany the ever-expanding growth in scientific and

technical knowledge.

Physics is at the basis ofmost present technology and is sure to be at the basis of much future technology, tackling problems as pressing

and diverse as the development of new energy sources, ofmore powerful and less intrusivemedical diagnostics and treatments and ofmore

effective electronic devices. The growth of physics has spawned a multitude of technological advances which impact on almost all areas

of science. Engineering practice must be revised regularly to take advantage of opportunities presented by the advance of physics.

In the previous section we noted that new, and more comprehensive, theories, namely the special theory of relativity and quantum

mechanics, were developed in the last century to account for situations in which the laws of classical physics do not apply. The new

theories have stimulated important new technologies, such as quantum engineering (the development of new microelectronic devices),

laser technology and nuclear technology, technologies which could hardly have been dreamt of at the beginning of the twentieth century.

A sound knowledge of physics is needed by scientists and technologists if they are to be able to understand and adjust to the

rapidly changing world in which they find themselves. Moreover this understanding should stimulate them to devise and initiate further

changes themselves.
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2
Using mathematical tools in physics

AIMS

& to demonstrate the scientific method by applying it to the analysis of motion in a straight line

& to introduce the basic calculus methods used in this book and to demonstrate how they may be used in the analysis of physical phenomena

& to derive equations which describe some special cases of one-dimensional motion quantitatively and which can be used to predict their future

courses

2.1 Applying the scientific method

In this chapter we illustrate the scientific method by using it to study certain types of motion. In doing so we introduce some important

mathematical techniques which will enable us to analyse and represent physical processes in a concise and rigorous manner. At

the same time we introduce the physical quantities which are used to describe motion in a straight line and angular motion about a

fixed axis.

While readers, who are familiar with the analysis of linear and of angular motion and who are also familiar with the use of elementary

calculus in physics, may choose proceed to Chapter 3, we recommend that they take the opportunity to refresh their understanding of

these topics.

2.2 The use of variables to represent displacement and time

Webegin our investigation of motion by studying and characterising different types of motion. At this stagewe are not concernedwith the

cause of motion, although the cause of motion is a topic which is of central interest in physics and will be investigated in detail in the next

chapter. First we simply consider the behaviour of a moving object and decide which quantities associated with the motion we can

measure. Wewill then see if there is any discernible pattern in a particular motion—whether we can establish any relationships between

the measured quantities and whether we can establish any model for the motion.

A moving object is an object whose position changes with time. The obvious physical quantities to measure in recording the

behaviour of a moving object are therefore its position and the time at which it is at that position. Let us first consider measurement of

position.

We can specify the position of a point P by measuring its displacementwith respect to some reference point O which we call the

origin. We use the symbol r to represent the value of displacement, a variable quantity. Note, however, that in specifying the

position of P relative to O it is not sufficient simply to state the distance from O to P. If, for example,

we say that a point P is in the plane of this page and is at a distance r fromO, P could be anywhere on a

circle of radius r drawn around O (as illustrated in Figure 2.1). To avoid ambiguity in specifying the

position of P we must also specify the direction of P relative to O. In this case this could be achieved

by stating that P is directly to the right of O.

To specify a displacement r unambiguously, therefore, we must specify both its magnitude (the

distance from O to P) and its direction (the direction of the line OP). Later (Section 4.1) we will use the

term vector to describe a quantity which has both magnitude and direction; wewill also show that vectors

must be handled using well defined methods. For our present purposes however, we can simplify the

treatment of displacement by considering the special case of linear (or one-dimensional)motion, that is,

r
PO

Figure 2.1. The displacement r of the

point P from the origin.
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motion which is confined to a straight line. As illustrated in Figure 2.2, a linear displacement from the origin O along a straight line can be

in one of only two directions so that a point which is a distance 2 cm from O can be at either of the two positions P or P0.

We distinguish between the two possible directions in linear motion by using a sign convention to specify the direction of the

displacement. Displacement, therefore, can be represented by an algebraic quantity, namely a quantity which can be expressed in terms

of its magnitude preceded by a plus or minus sign; thus the displacements of the points P and P0 with respect to O are þ 2 cm and�2 cm,

respectively.

The choice between the þ and� labels for the two directions in Figure 2.2 is of course arbitrary.We could equallywell have chosen the

opposite sign labels. The important point is that, having adopted a convention for signs, we follow this convention consistently

throughout our analysis.

In linear motion, displacements from the origin are usually represented by the variable quantity x. The straight line along which the

motion occurs is then described as the x-axis and the algebraic value of the displacement, x, of a certain position from the origin O is the

coordinate of this position. The position of a point on the straight line is specified unambiguously by stating the algebraic value of x, as

indicated in Figure 2.2, provided a convention for positive x has been adopted.

We can also define the displacement of a second point on the straight line, such as Q in Figure 2.3, relative to P.

If the displacement of P relative to O is þ 2 cm (i.e. the x-coordinate of P is þ 2 cm) and the displacement of Q relative to O is þ 5 cm,

we can easily deduce from an inspection of Figure 2.3 that the displacement of Q relative to P is 5� 2¼ þ 3 cm, a positive displacement.

Similarly, the displacement of P relative to Q, is 2� 5¼�3 cm, a negative displacement. Note how the signs of the algebraic quantities

which represent relative displacements give the directions of the displacements.

The second quantity which we have decided to measure in our study of motion is time, denoted by the symbol t, which can also be

represented by an algebraic quantity. Unlike displacement, t can only increase while we are making our observations – it can change in

only one direction, which we define to be the positive direction. Like displacement, time is measured with reference to an origin, in this

case the starting instant. Note that, although time can change only in the positive direction, it is possible for t to be negative. For example if

we choose 10.00 a.m. as our starting instant the time 9.55 a.m. becomes �5minutes.

2.3 Representation of data

Let us consider the case of an object which is confined to move along a straight line, the x-axis, as illustrated in Figure 2.4. As an

example we consider the motion of a train along a straight section of track. Suppose that we make a series of measurements of the

train’s position together with the corresponding times.We can display thesemeasurements (our data) in a number of ways, the most

obvious of which is the tabular representation, illustrated in Table 2.1 for a particular motion of the train which we call motionM.

O

+ 1000 m– 1000 m

+ x– x

Figure 2.4. The x-axis for a moving train.

O
P

P′
– 2 cm

+ 2 cm

x = 0 cm

x = – 2 cm

x = 2 cm x-axis
+

−

Figure 2.2. The x-coordinate axis, showing the displacements of P and P0 relative to O.

O
P

Q

displacement of Q
relative to P = + 3 cm

x = 0 cm

x = + 5 cm

x = 2 cm

+ directionx

– directionx

Figure 2.3. The displacements of P and Q relative to O, and of Q relative to P.
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