PRODUCTION OF PLASMA PROTEINS
FOR THERAPEUTIC USE
PRODUCTION OF PLASMA PROTEINS FOR THERAPEUTIC USE

Edited by

JOSEPH BERTOLINI, Ph.D.
CSL Biotherapies
Melbourne, Australia

NEIL GOSS, Ph.D.
Further Options Pty. Ltd.
Eaglemont, Australia

JOHN CURLING, B.Sc.
John Curling Consulting AB
Uppsala, Sweden
CONTENTS

PREFACE ix
CONTRIBUTORS xi

SECTION 1 INTRODUCTION TO PLASMA FRACTIONATION

1 The History and Development of the Plasma Protein Fractionation Industry 3
 John Curling, Neil Goss, and Joseph Bertolini

SECTION 2 PLASMA PROTEINS FOR THERAPEUTIC USE

2 Production and Clinical Profile of Human Plasma Coagulation Factor VIII 31
 Sami Chtourou

3 Production and Clinical Profile of Human Plasma-Derived Von Willebrand Factor 41
 Sami Chtourou and Michel Poulle

4 Factor Eight Inhibitor Bypassing Activity 49
 Peter Turecek and Hans Peter Schwarz

5 Prothrombin Complex 65
 Jürgen Römisch and Katharina Pock

6 Factor IX 81
 Salvador Grancha, Steven Herring, Antonio Páez, Pere Ristol, and Juan Ignacio Jorquera

7 Factor XI 93
 Sami Chtourou and Michel Poulle
CONTENTS

8 Factor XIII and Factor X
 Peter Feldman

9 Fibrinogen: Science and Biotechnology
 Gerard Marx

10 Fibrin Glues and Bandages
 Hans Christian Hedrich and Heinz Gulle

11 Production and Clinical Use of Plasma Antithrombin III
 Andrea Morelli

12 Human Serum Albumin: A Multifunctional Plasma Protein
 John More and Mark Bulmer

13 Intravenous Immunoglobulin G from Human Plasma – Purification
 Concepts and Important Quality Criteria
 Andrea Buchacher and Waltraud Kaar

14 Hyperimmune Immunoglobulin G
 Hugh Price, Maurice Genereux, and Christopher Sinclair

15 Rh (D) Immunoglobulin
 Maurice Genereux, Jodi Smith, William Bees, and Christopher Sinclair

16 Alpha1-Proteinase Inhibitor: The Disease, the Protein, and
 Commercial Production
 Wytold Lebing

17 C1-Inhibitor
 Jan Over, Christine Kramer, Anky Koenderman, Diana Wouters, and
 Sacha Zeerleder

18 Acid-Stabilized Plasmin as a Novel Direct-Acting Thrombolytic
 Valery Novokhatny, James Rebbeor, Philip Scuderi, and Stephen Petteway Jr.

19 Reconstituted, Plasma-Derived High-Density Lipoprotein
 Peter Lerch

20 Plant-Derived Manufacturing of Apolipoprotein A1Milano:
 Purification and Functional Characterization
 Cory Nykiéforuk, Yin Shen, Elizabeth Murray, Joseph Boothe, and
 Maurice Moloney

21 Transferrin
 Leni von Bonsdorff, Hennie ter Hart, Ingrid Prins-de Nijs, Anky Koenderman, Jan
 Over, and Jaakko Parkkinen

22 Plasminogen: Its Role in the Therapy of Ligneous Conjunctivitis
 Claudia Nardini
23 Haptoglobin
Joan Dalton and Azubuike Okemefuna
321

24 Ceruloplasmin: Biology, Manufacture, and Clinical Use
Aron Berkovsky and Vladimir Vaschenko
337

25 Solvent/Detergent Plasma
Tor-Einar Svae, Andrea Heger, Lothar Biesert, Andrea Neisser-Svae, and Wolfgang Frenzel
345

SECTION 3 PATHOGEN SAFETY OF PLASMA PRODUCTS

26 Ensuring Virus Safety of Plasma Products
Herbert Dichtelmüller
361

27 Transmissible Spongiform Encephalopathies and Plasma Products
Luisa Gregori, David Asher, and Dorothy Scott
369

SECTION 4 THE PHARMACEUTICAL ENVIRONMENT APPLIED TO PLASMA FRACTIONATION

28 Quality Assurance Requirements in Plasma Product Manufacture
Jens Jesse
383

29 Regulatory Activities Associated with Production and Commercialization of Plasma Protein Therapeutics
Nancy Kirschbaum and Timothy Lee
403

30 The Emerging Role of Global Medical Affairs in the Twenty-First Century
Hartmut Ehrlich, David Perry, David Gelmont, and Ramin Farhood
413

31 Plasma for Fractionation
Joseph Bertolini and Timothy Hayes
423

32 The Pharmaceutical Manufacturing Environment
Ernst Hetzl
437

SECTION 5 THE MARKET FOR PLASMA PRODUCTS AND THE ECONOMICS OF FRACTIONATION

33 The Economics of Plasma Fractionation
Neil Goss and John Curling
451

34 Future Trends in the Plasma Products Market
Paolo Marcucci
461

INDEX
471
The idea for this book was developed over a number of meetings at conferences dedicated to the biotechnology of human blood plasma proteins. We wished to create a book with a clear orientation to the research, development, and manufacturing activities undertaken on human plasma proteins currently used in therapy. The plasma protein fractionation industry is small, compared to the biotechnology and pharmaceutical sectors, but it provides critical, life-saving, therapeutic proteins for the treatment of chronic and acute, hereditary and acquired conditions. Indications for these proteins vary widely—from their historic use in the treatment of hemophilia and other rare protein deficiencies to use in treating immunodeficiency, immunomodulation, and fluid resuscitation.

To date, there has been no comprehensive text or reference work on plasma proteins that brings together a description of the biology of plasma proteins, their production from blood plasma collection to finished product, and a review of their clinical indications. This book is intended as a standard text for people with a scientific, technical, research, clinical, or commercial interest in plasma-derived therapeutic products. It will be an invaluable reference for not only those directly connected with the development of plasma protein therapies but also for those in the multiple vendor and service industries that make possible the manufacture of safe and efficacious plasma products. We believe that the book will also serve as an invaluable resource for anyone entering the industry and those with a general interest in the diverse roles of the proteins that make up the plasma proteome.

Compiling a major book on all aspects of the function, use, and production of plasma proteins would be an impossible task for a single author. Hence, as editors, we have sought a wide perspective by engaging 80 authors with specialized interests from industry, regulatory bodies, and nongovernmental organizations. The contributions of these authors make the book unique, and we thank them for their efforts.

Section 1 describes the history and evolution of plasma protein fractionation—from the response to the necessities of war to the transition to civilian use and peacetime development. It includes descriptions of the establishment of the major collection and processing facilities and the impact of remunerated and nonremunerated plasma collection policies on the development of the industry. It is intended to provide the necessary background to understand the state of the plasma fractionation industry today and the directions it may take in the future.

Section 2 is organized in 24 protein-by-protein chapters. These chapters are grouped into coagulation proteins, the bulk proteins albumin and immunoglobulin, and proteins that have previously been termed “trace” proteins. The section also includes hyperimmune globulins and a chapter on solvent-detergent-treated plasma. Each chapter covers physiology, biochemistry, mechanism of action, manufacturing, viral safety issues, and clinical use, and concludes with a reflection on future trends.

Pathogen safety is a critical issue in plasma protein production and use. Section 3, written by authors associated with the Plasma Protein Therapeutics Association Pathogen Safety Steering Group and the US Food and Drug Administration (FDA), deals specifically with viral safety and transmissible spongiform encephalopathy issues.

The production of plasma proteins for therapeutic use is a complex operational activity involving many functional departments. Therefore, we have included in Section 4 the requirements and operation of quality assurance, regulatory affairs, medical affairs, plasma collection (written by the United States Pharmacopoeia Plasma Panel), and manufacturing, as it relates to plasma fractionation.
Finally, in Section 5, we review the commercial environment and the economics of plasma fractionation. The plasma product industry has undergone dramatic change in the last decade. Consolidation of the major companies has led to a United States, European, and Australian oligopoly in major markets. However, emerging markets, such as those in China and elsewhere in Asia, are of increasing focus. We conclude with a chapter on future trends highlighting the possible geographical areas that will provide future growth and changes in the regulatory and political environment.

We believe that the production of plasma proteins for therapeutic use will continue its strong global development. Despite advances in biotechnology, the plasma fractionation industry will continue to deliver unique therapeutics essential for human health.

JOSEPH BERTOLINI
NEIL GOSS
JOHN CURLING

Melbourne, Australia
Eaglemont, Australia
Uppsala, Sweden
April 2012
CONTRIBUTORS

David Asher, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, MD, USA

William Bees, BZ Biotechnology Consulting Inc., Winnipeg, Manitoba, Canada

Aron Berkovsky, Scientific Center of Hematology, Ministry of Health and Social Development of the Russian Federation, Moscow, Russia

Joseph Bertolini, CSL Biotherapies, Broadmeadows, Victoria, Australia

Lothar Biesert, Octapharma Pharmazeutika Produktions GmbH, Frankfurt am Main, Germany

Joseph Boothe, SemBiosys, Calgary, Alberta, Canada

Andrea Buchacher, Octapharma Pharmazeutika Produktions GmbH, Vienna, Austria

Mark Bulmer, BioProducts Laboratory Ltd., Elstree, Hertfordshire, UK

Sami Chtourou, LFB Biotechnologies, Courtaboeuf, France

John Curling, John Curling Consulting AB, Uppsala, Sweden

Joan Dalton, BioProducts Laboratory Ltd., Elstree, Hertfordshire, UK

Herbert Dichtelmüller, Biotest AG, Dreieich, Germany

Hartmut Ehrlich, Baxter BioScience, Vienna, Austria

Ramin Farhood, Baxter BioScience, Westlake Village, CA, USA

Peter Feldman, BioProducts Laboratory Ltd., Elstree, Hertfordshire, UK

Wolfgang Frenzel, Octapharma AG, Lachen, Switzerland

David Gelmont, Baxter BioScience, Westlake Village, CA, USA

Maurice Genereux, Baxter BioScience, Westlake Village, CA, USA

Neil Goss, Further Options Pty. Ltd., Eaglemont, Victoria, Australia

Salvador Grancha, Instituto Grifols, S.A., Parets del Vallès, Barcelona, Spain

Luisa Gregori, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, MD, USA

Heinz Gulle, Baxter Innovations GmbH, Vienna, Austria

Timothy Hayes, TKH Bioconsult LLC, Darnestown, MD, USA

Hans Christian Hedrich, Baxter Innovations GmbH, Vienna, Austria

Andrea Heger, Octapharma Pharmazeutika Produktions GmbH, Vienna, Austria

Steven Herring, Grifols Biologicals Inc., Los Angeles, CA, USA

Ernst Hetzl, Baxter AG, Vienna, Austria

Jens Jesse, Biotest Pharma GmbH, Dreieich, Germany
Juan Ignacio Jorquera, Instituto Grifols S.A., Pares del Vallès, Barcelona, Spain

Waltraud Kaar, Octapharma Pharmazeutika Produktions GmbH, Vienna, Austria

Nancy Kirschbaum, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, MD, USA

Anky Koenderman, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands

Christine Kramer, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands

Wytold Lebing, Lebing and Associates, Seattle, WA, USA

Timothy Lee, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Rockville, MD, USA

Peter Lerch, CSL Behring AG, Bern, Switzerland

Paolo Marcucci, Kedrion Biopharma, Castelvecchio Pascoli, Lucca, Italy

Gerard Marx, Mx Biotech Ltd., Jerusalem, Israel

Maurice Moloney, Rothamsted Research, Harpenden, Hertfordshire, UK

John More, BioProducts Laboratory Ltd., Elstree, Hertfordshire, UK

Andrea Morelli, Kedrion Biopharma, Castelvecchio Pascoli, Lucca, Italy

Elizabeth Murray, SemBioSys, Calgary, Alberta, Canada

Claudia Nardini, Kedrion Biopharma, Castelvecchio Pascoli, Lucca, Italy

Andrea Neisser-Svae, Octapharma AG, Lachen, Switzerland

Valery Novokhatny, Grifols Inc., Research Triangle Park, NC, USA

Cory Nykiforuk, SemBioSys, Calgary, Alberta, Canada

Azubuike Okemefuna, BioProducts Laboratory Ltd., Elstree, Hertfordshire, UK

Jan Over, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands

Antonio Páez, Instituto Grifols S.A., Pares del Vallès, Barcelona, Spain

Jaakko Parkkinen, University of Helsinki, Helsinki, Finland

David Perry, Baxter BioScience, Vienna, Austria

Stephen Petteway Jr., Formerly at Grifols Inc., Research Triangle Park, NC, USA

Katharina Pock, Octapharma Pharmazeutika Produktions GmbH, Vienna, Austria

Michel Poulle, LFB Biotechnologies, Lille, France

Hugh Price, Cangene Corporation, Winnipeg, Manitoba, Canada

Ingrid Prins-de Nijs, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands

James Rebbeor, Grifols Inc., Raleigh, NC, USA

Pere Ristol, Instituto Grifols S.A., Pares del Vallès, Barcelona, Spain

Jürgen Römisch, Octapharma Pharmazeutika Produktions GmbH, Vienna, Austria

Hans Peter Schwarz, Baxter Innovations GmbH, Vienna, Austria

Dorothy Scott, Office of Blood Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA

Philip Scuderi, Grifols Inc., Research Triangle Park, NC, USA

Yin Shen, SemBioSys, Calgary, Alberta, Canada

Christopher Sinclair, Cangene Corporation, Winnipeg, Manitoba, Canada

Jodi Smith, Formerly at Cangene Corporation, Winnipeg, Manitoba, Canada

Tor-Einar Svae, Octapharma AG, Lachen, Switzerland

Hennie ter Hart, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands

Peter Turecek, Baxter Innovations GmbH, Vienna, Austria

Vladimir Vaschenko, Scientific Research Centre of Military Medical Academy, Saint Petersburg, Russia

Leni von Bonsdorff, Sanquin Oy, Espoo, Finland

Diana Wouters, Sanquin Blood Supply Foundation, Amsterdam, The Netherlands

Sacha Zeerleder, Academic Medical Centre and Sanquin Research, Amsterdam, The Netherlands
SECTION 1

INTRODUCTION TO PLASMA FRACTIONATION
1.1 THE EARLY HISTORY OF BLOOD TRANSFUSION AND BLOOD BANKING

The Latin term *serum*, for whey, was first used to describe “a watery animal fluid” in 1665. The word first entered the medical literature in the mid-nineteenth century to describe “the yellowish fluid of the blood that separates from a blood clot after coagulation” while *plasma*, the raw material for fractionation, was defined as the “liquid part of blood”. The provision of plasma for fractionation and the production of protein derivatives are historically linked to the development of blood transfusion and blood banking.

The modern era in blood transfusion is considered to have started with the work of James Blundell (1790–1877). His interest in transfusion stemmed from the involvement in cases of postpartum hemorrhage that he encountered as an obstetrician [1]. Following an extensive study of transfusion with dogs, he finally performed what is reported to be the first human blood transfusion with human blood on September 26, 1818. Blood was administered with a syringe device to a man with gastric carcinoma [2]. The man died of non-transfusion related causes. Blundell went on to perform a further 10 transfusions that included four successful treatments of postpartum hemorrhage [1]. He was a strong advocate of transfusion and hence served to advise in many other cases in London. One particular case had significant portent for the future. In 1840, a blood transfusion was performed on an 11-year-old boy to correct persistent postoperative bleeding—presumably caused by hemophilia A [3].

As experience with the fledgling technology increased, a review of blood transfusions performed by 1849 showed that 48 procedures had been carried out with mortalities in 18 cases, although the cause of death was not necessarily due to the transfusion. Transmission of air during the procedure was considered a major risk [4]. Clearly at this time many complications from hemolysis resulting from infusion of incompatible blood were not being recognized.

Transfusion remained a dangerous and unpredictable procedure up to the end of the nineteenth century. Attempts to improve transfusion generated further interest in the use of animal blood, until it was unequivocally proven to lead to intravascular hemolysis and hemoglobinuria [5]. Attempts were also made to use milk as a blood substitute, as it was believed that fat particles converted to red blood cells [6]. The impediment of coagulation on the ability to perform blood transfusion led to the use of sodium bicarbonate and sodium phosphate as anticoagulants or defibrinated blood [7,8]. But by 1880 the practice of blood transfusion had been essentially abandoned due to the unacceptable and unpredictable number of adverse reactions. This was advanced by the recognition that many cases of blood loss could be addressed by saline infusion [9].

The discovery of the A, B, O blood groups by Karl Landsteiner in 1901 was the key scientific discovery that would aid the identification and transfusion of compatible blood [10]. In 1902, the fourth blood type, AB, was also discovered by Decastello and Sturli [11]. Studies on cross-matching blood between donors and patients culminated in the first blood transfusion using blood typing and cross-matching by Ottenberg in 1907 [12].

However, as in the nineteenth century, the transfer of blood from donor to recipient remained a major technical hurdle, due largely to the clotting of the blood. The technique of direct transfusion by arteriovenous anastomosis was developed by...
Carrel in 1908 [13]. This procedure or a further modification, in which a bridging metal tube was used, allowed for practical if inconvenient transfer of blood. Eventually the procedure was replaced by a system developed by Unger in 1915 that removed the need for direct vessel anastomosis [14]. This system involved indirect transfer of blood using a double syringe and stop-cock apparatus.

Progress in the development of anticoagulants and the ability to store collected blood, coupled with an increasing appreciation of the need to ensure blood compatibility arising from the blood group discoveries of Landsteiner, were pivotal in making blood transfusion a practical and safe medical procedure [15]. Albert Hustin [16] initially reported the use of citrate as an anticoagulant in 1914 and it was further developed and applied by Agote [17] and Lewisohn [18,19]. Rous and Turner (1916) then developed a solution consisting of salt, isocitrate and glucose, which served as both an anticoagulant and a preservative of the red cells during refrigeration [20]. This timely development of a means of storing blood allowed the introduction of blood transfusion into the battlefield in World War I. The disadvantage of the Rous–Turner solution and its variants was that a high ratio of the solution to blood volume was required, hence diluting the collected blood. In 1943, an acid–citrate–dextrose (ACD) collection solution was developed by Loutit and Mollison, which could be used at a ratio of one part solution to six parts of collected blood [21]. Due to testing requirements the ACD solution was not accepted by the US Army until essentially the end of World War II in April 1945 [22].

The use of reusable rubber components and glass bottles to this point had been a source of inconvenience and provided inherent risks through contamination, clot formation, and air embolism. The development of a disposable plastic bag blood collection system by Walter and Murphy in 1952 addressed these issues [23]. The adaption by Gibson of a closed plastic bag system, not only to collect but also to separate blood components, was an important achievement contributing to the establishment of component therapy, thus enabling plasma collection [24].

The use of blood components rather than whole blood was considered a preferred option early in the history of transfusion medicine. According to observations made during the World War of 1914–1918, 80% of the mortalities on the battlefield were the result of blood loss rather than the direct effect of the projectile. In a letter to the British Medical Journal in March 1918, Gordon R. Ward advocated the use of blood plasma in battle instead of whole blood. Ward noted “A man apparently dying from haemorrhage is not dying from lack of haemoglobin, else severe cases of anaemia would die long before they do, but from draining away of fluid, resulting in devitalisation and low blood pressure” [25]. Its use would also serve to eliminate risks associated with whole-blood transfusion, in particular hemolysis through mismatched transfusion, and simplify the logistics of storing, transport, and administration. However, in preparing for war the British chose a different path, preferring whole-blood transfusions.

In 1914, Abel coined the term “plasmapheresis” to describe a process where blood was removed, the blood components separated and the cellular components returned to the donor. He had shown the feasibility of this procedure in dogs [26]. The first plasmapheresis procedure performed in humans was reported by Tui in 1944 [27]. This was followed by extensive studies by Grifols-Lucas in 1952 who reported findings on 320 procedures which involved removal of red cells by sedimentation or centrifugation from the collected blood and their reinfusion after as long as 1 week after collection [28]. The development of single use sterile plastic blood bags greatly increased the safety and convenience of the plasmapheresis procedure when compared to the previous situation involving reusable equipment [23,24]. However, the procedure remained too slow and labor intensive to serve as viable means of generating large volumes of plasma. The issue was resolved by the development of online blood cell separators.

The first blood cell separator, based on a dairy centrifuge, was developed by E.J. Cohn in 1951. It was further perfected by Tullis and consisted of a rapidly rotating conical vessel that separated cells from plasma [29]. The separated fractions could be harvested into separate bags and then retained or returned to the donor. The introduction of this machine made it feasible to utilize plasmapheresis as a means of collecting plasma for fractionation as well as in therapeutic apheresis [30]. Further development of the intermittent flow centrifugation to collect and separate blood components, was paralleled by the development of a continuous-flow centrifugation system that allowed the concomitant removal of plasma and the return of the remaining components to the donor [31,32]. Continuous-flow centrifugation-based machines continue to be used in plasmapheresis to this day, especially in the collection of plasma for manufacture and for direct transfusion purposes such as the preparation of Fresh Frozen Plasma (FFP).

In parallel with the scientific developments, organizational structures were being established to cater for the provision of blood for medical use. The means to store of blood using the Rous-Turner solution enabled the establishment of the first blood depot in the field by the British under Oswald Robertson in 1916 [33]. In the 1920s Percy Oliver established a system of voluntary donor recruitment and assessment in London that was able to ensure a safe and reliable pool of compatible donors [34]. Following a visit to London, the Russian physician Alexander Bogdanov was motivated to establish a similar national transfusion infrastructure in the Soviet Union [35]. Until this time, collected blood was not being stored—blood donations and transfused soon after collection. In the Soviet Union, in the 1930s however, the procedure of storing blood and even shipping
“canned blood” around the country was established by Yudin. The first facility that can be considered a blood bank was set up in Leningrad in 1932 [36]. In the Soviet Union during this time considerable use was made of cadaver-derived blood. A blood collection and transfusion service was also organized by the Republican Army during the Spanish Civil War (1936–1939), collecting 9000 L of blood [37]. In the United States, the concept of the “blood bank” was proposed and implemented by Bernard Fantus at the Cook County Hospital in Chicago in 1937 following observation of the Soviet experience [38].

With the onset of World War II blood procurement needed to be greatly expanded. The work of Charles Drew was a defining milestone in the establishment of the infrastructure and organization required for an operational blood service. Drew was responsible for the plasma for Britain program and established operational procedures. The work of Charles Drew was also organized by the Republican Army during this time considerable use was made of cadaver-derived blood. A blood collection and transfusion service was also organized by the Republican Army during the Spanish Civil War (1936–1939), collecting 9000 L of blood [37]. In the United States, the concept of the “blood bank” was proposed and implemented by Bernard Fantus at the Cook County Hospital in Chicago in 1937 following observation of the Soviet experience [38].

With the onset of World War II blood procurement needed to be greatly expanded. The work of Charles Drew was a defining milestone in the establishment of the infrastructure and organization required for an operational blood service. Drew was responsible for the plasma for Britain program and established operational procedures to coordinate the activities of the American Red Cross (ARC) and the Blood Betterment Association in New York for the collection, processing, and shipment of blood components [39]. The provision of plasma for resuscitation of wartime casualties of the United States and British Armed Forces followed.

1.2 DEVELOPMENT OF SUBSTITUTES FOR TRANSFUSION

1.2.1 Lyophilized Plasma

After the First World War there was steady progress in fields related to the production and evaluation of plasma in the clinical setting so that by 1940 citrated plasma was the recommended treatment for shock. In 1940, confronted with the eventuality of war, the US Armed Services faced the problem of selecting appropriate blood substitutes and derivatives instead of whole blood. The National Research Council’s (NRC) Subcommittee on Blood Substitutes chose dried plasma because of its “long preservation period, stability at extremes of temperature, its effectiveness as a replacement fluid, and the safety with which it can be administered” [40]. The US Army subsequently requested a supply of dried human plasma to treat combat casualties.

Emanating from an early observation by Paul Ehrlich on the stability of desiccated plasma, efforts had been made in the United States to develop technology for drying plasma and its clinical use had been investigated [41]. In 1940, however, there was still limited expertise in the industry. Robert Cutter, founder of Cutter Laboratories, noted in a later interview, that he had earlier considered investment in the food company—Birdseye, and that freeze-drying was more commonly used in the food industry for the preparation of, for example, dried coffee [42]. At the same time, Victor Grifols Lucas designed a lyophilizer to be used in the preparation of desiccated plasma and in 1943 received a US patent for this device [43].

In 1941, the US Army made an agreement with the American Red Cross for the provision of human plasma that would be processed under contract by the pharmaceutical industry. Plasma was recovered by centrifugation and each donation was subjected to serological, bacteriological, and toxicity testing. The plasma was shell frozen in individual bottles and either stored or dried under vacuum. These products were controlled by the National Institutes of Health. The US Army awarded eight contracts for dried plasma. The first of these contracts for 15,000 250 cc units, was awarded on February 4, 1941 to Sharp & Dohme, because of their previous experience in the field. Subsequent contracts were awarded in 1941 to Eli Lilly and Co., Lederle Laboratories (Division of American Cyanamid Co.), Reichel Laboratories, Inc. (later the Reichel Division of Wyeth, Inc.), and in 1942 to Ben Venue Laboratories, Cutter Laboratories, Hyland Laboratories, and Parke, Davis and Co. [22]. Several of these companies were also involved in penicillin development and manufacture, as well as other products required in the war effort. Many chose to leave the blood processing industry at the end of the war when the supply of raw material was no longer assured.

In England, a small freeze-drying plant available in Cambridge was too small to meet the demand and a second unit was built by the Wellcome Foundation at Beckenham. With capacity to meet demand still inadequate, the Army Blood Transfusion Service built its own plant. During the last 2 years of the war, over 250,000, 400 mL bottles of freeze-dried plasma were produced [44]. Freeze-dried plasma was also made at the Lister Institute (which later became the Blood Products Laboratory (BPL)), for use by the Armed Forces and civilian establishments. A plant was also established in Scotland in 1941 with a government grant to the Scottish National Blood Transfusion Services (SNBTS) [45].

1.2.2 E.J. Cohn and the Development of Plasma Fractionation

The history of plasma fractionation is inextricably linked with the scientific and technological innovations of E.J. Cohn and his many coworkers at the Harvard Medical School. For a detailed description of his life and work the reader is referred to his biographer, Surgenor [46] who began his association with Cohn in 1943 and worked with him until Cohn’s death in 1953. An historical analysis has been provided by Creager [47,48] and Cohn’s work has been put in the context of the “story of blood” by Starr [49]. It must also be noted that Cohn himself wrote a history of fractionation in which he discussed the science and technology of fractionation, the characterization of plasma proteins and their clinical application [50].
Cohn’s early work was dedicated to the introduction of protein chemistry at the Department of Physical Chemistry, which had been established at Harvard in 1920. This led to the association with Edsall [51] and later with Oncley, at the Massachusetts Institute of Technology, who was working on the dielectric properties of protein solutions, and later moved to Harvard. Shortly after the First World War, Cohn, then in his early 30s, traveled in Europe, particularly to Copenhagen and then to Sweden and England, where the foundation for his work on proteins was laid [52]. Cohn summarized the influences these visits had on his work in a much later publication in 1947 [53]. He had visited Theodore Svedberg’s laboratory in Uppsala in 1926 and later acquired an ultracentrifuge for his laboratory. Also critical to his work on protein characterization and purity was the electrophoresis technique developed by Arne Tiselius also at the University of Uppsala. Cohn demonstrated both technologies at an American Chemical Society meeting in Boston in 1939. Early in 1940 Cohn had prepared two papers (first published in December that year), the first describing the separation of equine serum into successive fractions by the addition of ammonium sulfate across membranes and using controlled pH, ionic strength, and temperature [54]. The second paper described the separation of bovine plasma into five fractions [I, II, III, IV, and V] using ethanol–water mixtures added across membranes. Each fraction was obtained as a precipitate and the paper describes a procedure to obtain about 50 g of albumin from 2 L of plasma [55]. Its opening paragraph included the prescient statement “It has recently seemed of importance to standardize a method, capable of being employed for large-scale preparations, for the separation of plasma into as many as possible of its component proteins” [56].

One of the issues discussed at the first meeting of the Committee on Transfusions in May 1940, was the possibility of developing a substitute for human plasma. A report was considered from Dr. Owen H. Wangensteen from the University of Minnesota, on the possibility of administering bovine plasma to patients [57]. The committee decided to establish a program to investigate the use of bovine albumin as a plasma substitute. Cohn was engaged to manufacture and characterize a product for clinical evaluation [58]. A pilot plant, with a 40 L batch capacity for optimization of fractionation procedures, was set up at Harvard in 1941. Armour Laboratories constructed a plant in Chicago to produce crystalline bovine albumin. Initial results were encouraging. Adverse reactions were thought by the investigators, including by Cohn, to reflect product impurity rather than immunological incompatibility. Particular emphasis was placed on producing a highly purified product by employing repeated crystallization. In what Surgenor called the “Norfolk Incident” a clinical trial was initiated using 200 men at the Norfolk Prison Colony. On September 14, 1942, 10 days into the trial, subjects started showing symptoms of serum sickness and the trial was stopped. Tests were developed that it was hoped would identify albumin batches that would not cause adverse reactions. This was not successful and administration of such a screened batch also resulted in a serious reaction. This was the last attempt and the program to develop bovine albumin for clinical use was formally ended on March 23, 1943.

The focus shifted to the production of human albumin that had been in development in parallel [59]. The US Navy spoke for all the Armed Services when it stated that what was required was a “safe, stable, compact blood derivative, immediately available without reconstitution for emergency use, for the treatment of shock and burns” [60].

The first fractionation of human plasma had been carried out by Armstrong at the Harvard laboratory in August 1940 [60] but by the first half of 1941, the human albumin produced was only available on laboratory scale. The first lot of albumin from the pilot plant was released for clinical use as 100 mL bottles of 25% solution on July 9, 1941. By mid-September over 3 kg of albumin had been prepared and Cohn recommended that Armour be contracted to fractionate human plasma in order to fulfill expected needs. Work had continued on the fractionation methods: the precipitation of Fractions II + III had been combined and Fraction IV had been split into two fractions, IV-1 and IV-4 (Method 6) to obtain as many products as possible. Cohn was prohibited from publishing his work until 1943–1944 and by agreement with the Journal of Clinical Investigation published an entire volume of 23 papers from the Harvard group [61]. However, only one paper carried Cohn’s name. It is the 1946 American Chemical Society publication describing Method 6 that is generally cited as the original reference [62].

The first use of Cohn’s human albumin preparation for the treatment of traumatic shock was by Charles Janeway at the Brigham Hospital in April and May 1941. D.B. Kendrick of the US Army reported: “This patient was 20 years of age and was admitted to the hospital 16 h after injury. He had a bilateral compound continued fracture of the tibia and fibula. He had fractures of five ribs with associated pleural damage, pneumothorax and subcutaneous emphysema. At the time of admission, his blood pressure was 76/30. Two bottles of albumin, consisting of approximately 25 g, were injected over 30 min. The blood pressure after injection was 106/70 . . . his blood pressure remained above 130 . . . he has had no evidence of circulatory failure since the albumin was administered . . . this patient appeared quite groggy and irrational when I first saw him, but 12 hours later he was very clear mentally and appeared to be feeling better” [63].

Initial treatment of casualties from the attack on Pearl Harbor on December 7, 1941 was with dried human plasma. Isador Ravdin, Professor of Surgery at the University of Pennsylvania was flown to Hawaii to manage the treatment of casualties taking with him all the available vials of human albumin from the Harvard pilot plant. Ravdin reported 10 days later: “All seven patients were given albumin, and
all showed prompt clinical improvement, including one whose state was so critical that the administration of albumin to him was debatable. There was no question as to his response: He was unconscious in the morning when he was given 250 g of albumin. In the afternoon, he was talking, but was disoriented. The following morning, he was given the same amount of albumin. Twenty-four hours later, the edema had disappeared and he was taking food by mouth.” Human albumin was recommended for official clinical use to the Surgeons General of the Army and Navy by members of the NRC Conference on Albumin on January 5, 1942 [64,65].

Cohn and his Harvard colleagues’ work were by no means restricted to the purification of albumin. Oncley, supported by immunologists J.F. Enders and W.C. Boyd, investigated the purification of immunoglobulin from Fraction II + III and his frequently cited paper presenting Method 9 for the purification of immunoglobulins and other plasma proteins was published in 1949 [66]. In concert with the Harvard effort, H.F. Deutsch at the University of Wisconsin was also investigating subfractionation methods for the recovery of IgG from Fraction II + III. In 1946, he reported a method that increased the recovery of IgG from 50% to 75–80% and later that year, working with pastes from Armour and Cutter, he described a method that enabled a 95% recovery [67,68]. He also investigated pepsin digestion to enhance recovery of immunoglobulins from ethanol-plasma precipitates [69].

The first indication of the importance of antibody concentrates in treating disease occurred during a measles epidemic in Philadelphia in the winter and late spring of 1942–1943. Joseph Stokes found that administration of a solution of Fraction II + III to infants prevented the disease [70]. At this time a paper by Enders and others, characterized the antibodies present in Fraction II + III accounting for its biological properties and showed that the antibodies could be classified as neutralizing, complement fixing, agglutinating, and protective [71].

As result of Stokes’s work, human immune serum globulin was recommended to the Armed Forces on March 22, 1943. In 1944, the American Red Cross, in cooperation with manufacturers, instituted a program to make surplus immune serum globulin for prevention of measles available to the American people at cost. This initiative marked an important departure into providing plasma products for civilian use [72, 73]. By 1945, the production and characterization of immunoglobulin preparations was well established. Janeway noted that immunoglobulin was being made from pools of 2000 to 6000 donors, that the antibody spectrum varied with viral epidemics, such as influenza A, that the purity of preparations had been increased to 98% and that glycine was an important stabilizer [74]. Cohn himself, in addition to continuing to develop the process for the purification of immunoglobulins, undertook studies to characterize the antibody constituents of Fraction II + III specifically describing the “blood-typing globulins”—the anti-A and anti-B isoagglutinins—and the anti-Rh antibodies of Fraction II + III [75].

In addition to the purification, properties and use of albumin and immunoglobulins, Cohn had a considerable interest in the clotting-related proteins. In his own history of fractionation, he has a significant section on clotting factors and describes fibrinogen and the structure of the fibrin clot, prothrombin and thrombin, antithrombin, and plasmin. Surgenor mentions that although Cohn never saw a patient himself, he was always concerned with the clinical use of the products of fractionation. Consequently, Cohn’s own paper contains a summary of work on the use of Fraction I in the treatment of hemophilia, fibrin foam and thrombin in hemostasis (which involved Isador Ravdin, who had administered albumin at Pearl Harbour), fibrinogen and thrombin in skin grafting, fibrinogen and thrombin in burns, and fibrin film as a dural substitute [75].

Cohn, understanding that the previously published methods had been developed under wartime stress, continued to research ethanol-based precipitation methods. He published Method 10 in 1950, 3 years before his death. Cohn notes: “Method 10 of plasma fractionation has been designed to be equally applicable on any scale from a few milliliters to thousands of liters of plasma” [76]. In an extensive review, John T. Edsall, Cohn’s long-time colleague at the Harvard Medical School published the underlying physical chemistry of Cohn’s methods [77]. In the midst of the development of fractionation procedures and despite the war years, Cohn and Edsall had also published their seminal work on protein chemistry [78]. Summing up his work in an article in Science, Cohn concluded with “The control of infectious diseases by passive immunization with γ-globulins may well be the largest need of a civilian population for a blood derivative . . . and . . . We must continue, as we have begun, to make available as many as possible of its diverse cellular, protein and lipid components, separated and concentrated as specific therapeutic agents, of value in different conditions, in the interests of the most effective and economical use by a society of the blood which it contributes” (Figure 1.1) [79].

1.3 THE ESTABLISHMENT AND DEVELOPMENT OF THE PLASMA FRACTIONATION INDUSTRY IN NORTH AMERICA

At the meeting of the NRC in January 1942, Armour Laboratories and Lederle Laboratories were considered capable of producing plasma-derived proteins provided technicians were trained for a month at Cohn’s laboratory. In all, seven contracts were eventually drawn up with Armour, Lederle, Upjohn Co., Eli Lilly Laboratories, E.R. Squibb, Cutter Laboratories, and Sharp and Dohme. These companies became the first commercial fractionators. Some
were also involved in the production of freeze-dried plasma. Most of these companies (except Armour and Cutter Laboratories) were wary of the continuing availability of plasma for fractionation in peacetime and left the business on the expiry of their 1941 contracts. Robert Cutter notes “... when you’d take the military out of it, the demand for these products among civilian medical profession would not be sufficient to maintain the very expensive process of round-the-clock preparation. And getting the commercial blood ... is a very important problem of supply, a very difficult problem” [80].

In fact in the immediate post-war years the ARC, which had collected 13.3 million pints of blood during the war and shipped 300,000 tons of supplies abroad, closed its blood centers. As a result, placental blood was considered an alternative source and Cohn’s methods were adapted to placental extracts by researchers at the Laboratory Division of the Michigan Department of Health. Methods were described to extract and purify albumin [81] and immunoglobulins [82] and adopted by several manufacturers. As in the Soviet Union, the possibility of using cadaver blood was considered as a potential source but was rejected on ethical grounds and the fact that it would not satisfy the volumes of plasma required [83].

With growing demand, however, and the onset of the Cold War, plasma derivatives, together with blood and blood components, were increasingly seen as a necessary strategic resource, in case of war or catastrophe. In response, plasma collection was expanded in the United States in the late 1950s through the use of plasmapheresis and the recruitment of remunerated donors by commercial processors. The involvement of the ARC in blood collection recommenced when it opened its first center in Rochester, NY in January 1948. The American Red Cross continued to increase its capacity to collect large volumes of primarily outdated recovered plasma from volunteer donors.

The American Association of Blood Banks (AABB) was formed in 1947 and represented the independent collection centers outside the ARC [84]. The AABB mission was to “promote common goals among blood banking facilities and the American blood donating public” [85]. The early American fractionators were dependent on paid donors or agreement with the American Red Cross that voluntary donated blood could be used for the commercial production of plasma derivatives.

As mentioned earlier, most companies involved in the processing of plasma during the war left the business on the expiry of their contracts, principally due to concerns about the ongoing availability of plasma and the viability of the industry without a strong military need. However, several companies persisted and made a significant contribution to the development of a sector that has delivered considerable health benefits.

Cutter Laboratories, founded in 1897, had by 1938, started making infusion solutions at their California plant. Cutter began plasma fractionation in 1942, thereby becoming the first commercial producer of albumin. Cutter completed its Clayton, North Carolina facility in 1974 and was acquired by Bayer AG the same year. Soon after, it was merged with Miles Laboratories.

Armour & Company, the largest supplier of albumin to the US military during WWII, constructed a plant in 1943 under a US Navy contract at Fort Worth, Texas, because of proximity to a large donor population [86]. Plasma was obtained from American Red Cross centers processing about 3000 donors per week, equivalent to about 600 L of plasma per week. As an illustration of early plasma supply problems, the plant temporarily stopped operations at the end of the war. Industrial manufacturing issues such as the provision of pyrogen-free water and reagents, heavy metal contamination, ensuring adequate solution mixing, involving a change from dialysis to capillary jet addition into tanks with impellers were identified and resolved. A new fractionation plant was established in Kankakee, Illinois in 1953. Armour was taken over by Revlon in 1977, acquired by Rorer Pharmaceutical in 1986 and merged with Rhône-Poulenc in 1990.

Baxter was founded in 1931 and was the first company to make intravenous solutions for hospital use. In 1939, Baxter...
introduced the first sterile vacuum-type blood collection unit, allowing the storage of blood for up to 21 days and therefore making blood banking practical. Later, in 1941, Baxter introduced a plasma vacuum container enabling the storage of plasma for future use. In 1952, Baxter acquired Hyland Laboratories, which during the war had been involved in the production of freeze-dried plasma and in 1953 built a 177,000 ft² facility in Los Angeles, California, to begin producing hyperimmune globulin, albumin, and a variety of blood bank, coagulation, and biochemical test products.

Courtland Laboratories, founded in 1947, was granted a license to manufacture blood plasma products in 1950. The company had a diverse product line including bovine albumin manufactured for Max Factor cosmetics and rabbit serum for Merck Sharp & Dohme. They also produced freeze-dried and liquid human plasma and later began fractionating plasma [87]. Courtland was acquired by Abbott Scientific Products, a division of Abbott Laboratories in 1967 and was subsequently sold to the Green Cross Corporation in Japan in 1978, being renamed the Alpha Therapeutic Corporation.

In 1969, the New York Blood Center (NYBC), then called the Community Blood Council of Greater New York became the first American blood transfusion service to be licensed to fractionate plasma. The Center produced the first low cost, plasma-derived hepatitis B vaccine in 1978 and completed financing of its Melville Laboratories on Long Island in 1979. The new fractionation facility opened in 1980 with an annual capacity of 300,000 L and an agreement with the ARC to manufacture plasma derivatives [88]. Shortly after A.M. Prince and B. Horowitz started development work on viral inactivation of blood components and plasma derivatives, leading to the introduction of solvent/detergent (S/D) technology [89]. S/D-treated coagulation factor concentrates were first licensed in the United States in 1985. V.I. Technologies (Vitex) was founded in 1995 as a for-profit spinout from the NYBC and the first product, an S/D-treated plasma (PLAS + SD) was licensed in 1998. PLAS + SD was manufactured by Vitex from a maximum of 2500 ABO donor pools at the Melville facility and distributed by the ARC. Following fatal adverse events in 2002, product was withdrawn in the United States.

The Massachusetts Biologic Laboratories (MBL), formerly the Massachusetts Public Health Biologic Laboratories, was the only non-profit, FDA-licensed manufacturer of vaccines and other biological products in the United States. The laboratory was established in 1894 with the first diphtheria antitoxin (antibody) being produced in 1918 in response to a severe epidemic that occurred in the early 1900s [90]. Fractionation of plasma recovered from outdated blood collected by the ARC in Massachusetts was begun in 1946 [91]. MBL had been a part of the University of Massachusetts Medical School since 1997 but the 150,000 L fractionation unit, which focused on hyperimmune products, ceased operation in 2006.

The ARC also moved to establish its own fractionation capability in 1978 by negotiating an agreement with Baxter to construct a US$ 45 million plant with a 1 million L capacity. However, the proposed joint-venture ran into legal, commercial, and jurisdictional issues and the agreement was terminated a year later. Instead, the ARC contracted Baxter to fractionate the ARC plasma into products that were then sold and distributed under the American Red Cross label. This arrangement formalized the reconciliation between pharmaceutical production and voluntary or altruistic blood and plasma donation. The contract manufacturing agreement was terminated in 2005 when the ARC chose to exit the plasma derivatives business and was replaced by a long-term plasma supply agreement with Baxter.

Activities to establish a fractionation facility in Canada were also occurring. Connaught Laboratories, known for pioneering work on insulin production, was founded in 1913 and incorporated by the University of Toronto in 1914 with a remit to provide biological products to the Canadian public at reasonable cost. Entry into the plasma fractionation industry occurred as a consequence of the extensive work conducted by Charles Best on heparin [92]. In 1972, the University sold Connaught to the Canadian Development Corporation and then in 1989, the facility was sold to Institut Mérieux. Plasma fractionation was carried out, primarily with plasma supplied by the Canadian Red Cross, between 1953 and 1987. In the mid-1970s the Ministry of Health proposed that Connaught construct two new plants, one in Winnipeg and one in French Canada at the Institut Armand Frappier in order for Canada to become self-sufficient in the manufacture of plasma products. The Winnipeg facility was built and the Canadian Red Cross was extensively involved between 1975 and 1990, in defining a business model to justify plasma fractionation in Canada. All were refused by the Canadian government and in the end Canada was left without a national fractionator [93].

However, a world class capability for the production of specialist hyperimmune products was developed at the Winnipeg site, by the Rh Institute, established by the University of Manitoba in 1969 as a private, non-profit organization to undertake research into hemolytic disease of the fetus and newborn (HDFN). The focus of the new institute became the isolation of anti-D immune globulin from women naturally immunized with Rh positive red cells for prevention of HDFN. Anion exchange technology for the isolation of immunoglobulins was adopted from H. Hoppe’s laboratory at the Central Institute for Blood Transfusion in Hamburg [94]. An intravenous product was approved for clinical evaluation in 1977 and for use by Health Canada in 1980. The chromatographic manufacturing capability of the facility was developed by 1983 to include albumin and immunoglobulins to a capacity 75,000 L per year and constituted the first, fully automated industrial scale chromatographic plant in North America. The inability of the Canadian Red Cross and the
Canadian government to agree on a funding model for plasma fractionation resulted in the facility never becoming a commercial producer of albumin and immunoglobulin.

The Institute became Rh Pharmaceuticals Inc., a private, for-profit company in 1990, and amalgamated with Cangene in 1995 [95]. Today Cangene is the world’s leading manufacturer of hyperimmune products including biodefense-related hyperimmunes, and operates four plasma collection centers in the United States. In June 2010, the company announced that it was developing an IVIG product, which is currently in the preclinical research phase.

1.4 THE PLASMA FRACTIONATION INDUSTRY IN EUROPE

1.4.1 Establishment and the Pioneers

After the fall of France and the collapse of the “Blood for France” program the American Red Cross turned its effort in supporting eight New York hospitals contributing to the “Plasma for Great Britain Project.” This program was conducted by The New York Blood Transfusion Betterment Association headed by Charles Drew [39]. As has been mentioned Drew was an exceptional individual who made significant contributions, both scientifically and in terms of policy, to the provision of plasma for emergency use and fractionation. Not only had he introduced centrifugation for separating the plasma and cellular components of blood, first used in Britain but, as an African American, had battled the existing segregation of blood from different racial groups to segregated recipients.

On leaving the Plasma for Britain program, Drew was quoted as saying: “The disservice that has been done, has been done not only to the Negro people but to the cause of truth itself. How have we, in this age and in this hour, allowed once again to creep into our hearts the dark myths and wretched superstitions of the past . . . In the laboratory I have found that you and I share a common blood; but will we ever, ever share a common brotherhood? As repugnant as this scientific fact may appear to some, their quarrel is not with me, but with the Giver of Life whose wisdom made it so” [39].

The work of Drew and the American Red Cross to provide blood to Europe, exposed European authorities to policies, practices and technology that would be used to establish or improve the local blood collection capability and would subsequently underpin the development of a local fractionation capacity. However, the path that it took was quite different. Whereas in the United States, plasma fractionation was seen as predominantly a commercial enterprise, in Europe with its diversity of traditions and cultures, fractionation became divided into two sectors commercial and not-for-profit sectors, with the latter frequently under the auspices of the various national Red Cross societies. A brief overview of the major entities involved in establishing the European fractionation industry is presented below.

In Germany and France both commercial and not-for-profit fractionators coexisted. Behringwerke AG in Germany had been founded by Emil von Behring in 1904 to produce sera and vaccines to combat infectious diseases. Behring had earlier in 1901 received the first Nobel Prize in Physiology or Medicine for his work on diphtheria and tetanus immunization. The company had developed freeze-drying technology for other biological products and was in a strong position to commence plasma fractionation. After the Second World War, in May 1945, the company, operating under the control of the United States Authorities, started its first fractionation activities with freeze-dried plasma inventories given to the company by the US Army [96]. Later the company sourced plasma from remunerated donors in Germany, Austria, and elsewhere in Europe. The company introduced a 20% albumin and an intramuscular immunoglobulin product in 1949 setting a course for the continuous development of a full range of plasma-derived products [97].

Biotest AG has a similarly long history, starting in 1860 with the production of photographic (X-ray) plates for Röntgen. The Biotest Serum Institute GmbH was incorporated in 1946, initially focusing on blood group serology. It introduced a gelatin plasma expander in 1957 and a 5%, standardized, stable, virus-inactivated (β-propiolactone/UV irradiated) plasma protein solution containing primarily albumin (3.1%) and immunoglobulin (0.7%), in 1968. An extensive range of plasma products was subsequently developed and marketed.

In Spain F. Duran-Jordà created the first transfusion service in Barcelona 1936 for the Republican Army Health Service. Duran-Jordà produced small 300 cc aliquots of “standardized” filtered blood under sterile conditions. These units were derived from six donations to minimize ABO titers of isoagglutinins [98]. Donors were encouraged by the prospect of receiving food in one of the first voluntary, non-paid but rewarded donor organizations. Concurrently, J.A. Grifols Roig had designed the “Flèbula,” a 500 cc vacuum container containing anticoagulant for collection and infusion. Recognizing the medical and commercial opportunities at the end of the civil war to address developing transfusion requirements, J.A. Grifols Roig and his two sons, all of whom were physicians, opted out of medical practice to incorporate Laboratorios Grifols in November 1940. Building on the work of Duran-Jordá, Grifols introduced single donor, lyophilized plasma in 1943 and opened the first private blood bank in 1945 at the Instituto Central de Análisis. This became the company premises and is now the Grifols Museum. In 1952, J.A. Grifols Lucas described a procedure for the return of red blood cells to the donor leading to the development of plasmapheresis and paving the way for commercial fractionation in Spain [28].
Institut Mérieux was created in France in 1897 to manufacture sera and vaccines and developed a core competence in passive and active immunization. The company introduced a formalin-stabilized human serum in 1942 and started production of human plasma derivatives from placenta in 1952. Mérieux collected placenta from 7500 maternity centers around the world, a contribution equivalent to 1 million L to the plasma supply [99]. The fractionation unit close to Lyon introduced ion exchange chromatographic fractionation technology using dextran-coated, beaded silica for the manufacture of albumin in 1980 [100]. Institut Mérieux became Pasteur Mérieux Serums and Vaccines, a subsidiary of Rhône-Poulenc, and finally stopped albumin manufacture from placenta in 1993 in response to a directive from the French Minister of Health because of vCJD safety concerns. However, the company continued to produce β-glucocerebrosidase, the unmodified enzyme used as the basis for Ceredase®, marketed by Genzyme Corp. [101]. Behringwerke, Berna in Italy, Kabi in Sweden, and Green Cross in Japan also fractionated placental serum and the Serum Institute of India installed a plant to manufacture placental albumin in 1985 [102]. Behringwerke (later Centeon and now part of the CSL Group) produced a Factor XIII concentrate from placenta from the 1970s until 1992 [103].

1.4.2 Red Cross and Government, Not-For-Profit Fractionation in Europe

In Britain, the Lister Institute, founded in 1891, formed a starting point for not-for-profit fractionation. The Institute had moved from London to the country village of Elstree to be able to develop vaccines and antitoxins in animals. The Blood Products Laboratory, BPL, a continuation of the Biophysics Division, was established at this site in 1948. It was dependent on the National Blood Transfusion Service, which had been established at the end of the war, to provide blood plasma for fractionation [104]. A smaller Fractionation Laboratory in Oxford was adsorbed into BPL in 1992. Although now incorporated as Bio Products Laboratory Ltd., BPL remains a government owned institution.

In 1941, the British government considered that the output of freeze-dried plasma from BPL would be inadequate for military requirements and decided to establish a facility in Scotland. The Protein Fractionation Center of the SNBTS was opened in 1950. It ceased operations in 2008, in part due to the necessity to import “commercial” plasma as a consequence of the vCJD outbreak in Britain [105]. The SNBTS is most well known for the development of the continuous small volume mixing (CSVM) process—an early development of continuous biological product processing developed by J.G. Watt and P.R. Foster [106] and also reported from Cutter Laboratories [107].

The French history of not-for-profit fractionation has its roots in the creation of the Transfusion Sanguine d’Urgence (TSU) by Arnault Tzanck and others in Paris in 1928. This service, which later became the Centre National de Transfusion Sanguine (CNTS) in 1949 cooperated with the French government through the Assistance Publique [108]. Voluntary and benevolent blood donation was regulated by French law from 1952 and although modified in subsequent years, the principles of this law still govern transfusion practice in France today. In addition, a law from 1901 prohibited the generation of profit from blood products [109]. As in many countries this generated a conflict when commercial plasma products were made from voluntary donations. The response varied on a case-by-case basis exhibiting responses ranging from slavish observance of regulations to pragmatism.

Plasma fractionation, based on Cohn’s methods, was a logical continuation of the transfusion service. Regional fractionation centers were created in Montpellier, Bordeaux, Lille, Lyon, Strasbourg, and Nancy, each with accompanying research laboratories. At the CNTS in Paris efforts were made to apply the antiseptic Rivanol® (ethacridine lactate) to precipitation of plasma proteins [110].

In other countries of Europe, the Red Cross established voluntary blood donation/transfusion centers and plasma fractionation was established as an extension of the transfusion service. The Finnish Red Cross Blood Transfusion Service was established in 1948 and fractionation of 2000–3000 L of Finnish plasma per year started at the State Serum Institute in 1950 with equipment donated by the American Red Cross. As larger quantities of Finnish plasma became available in the 1960s fractionation was contracted to the Netherlands Red Cross, to the Swiss Red Cross, and to Kabi in Sweden. In 1972, a new 60,000 L plant was commissioned in Helsinki and Finland again became self-sufficient in plasma products [111] but this facility was closed in 2004.

In Sweden, Kabi had its origins in the brewing industry but in 1941 was contracted to make lyophilized plasma. At the end of the war it had a surplus inventory of plasma that was used for fractionation. Once established, Kabi became the national fractionator of plasma from the Swedish regional transfusion services, using plasma collected from remunerated donors [112]. With close links to Pharmacia, the company was an early adopter of chromatographic technology in fractionation. Kabi also made a 5% sterile ceruloplasmin product that was given to a limited number of schizophrenia patients [113].

Red Cross transfusion services were also critical in a number of other countries in establishing collection centers and promoting the establishment of fractionation facilities. In the Netherlands, a blood collection and transfusion service was established in 1930 and the capability to produce lyophilized plasma was available by 1940. Fractionation was established soon after the war at the Central Laboratory of the Netherlands Red Cross [114]. In Switzerland, civilian transfusion services, run by the Red Cross, were established in 1949 and the ZLB (Zentrallaboratorium, Blutspendedienst SRK) was formed later that year. In 1951, the Swiss Federal
government mandated that Switzerland become self-sufficient for the supply of blood. ZLB’s first production plan for plasma products was made in 1954. In that year P. Kistler at ZLB’s pilot plant and H. Nitschmann, Professor of Biochemistry at the University of Bern, published their modifications to Cohn’s Method 10 [115]. Ongoing development of the Kistler–Nitschmann technology resulted in the publication in 1962 of a method with improved yields and purity as well as reduced alcohol requirements [116]. Two German Red Cross (DRK) centers, in Springe and Hagen, also embarked on fractionation. However, the DRK centers lost their tax-exempt status in 1971 because the manufacture and sale of their plasma products was deemed to be profitable [117]. Hagen became known for its alternative methods of fractionation including a heat-ethanol method to isolate albumin with the concomitant denaturation of IgG [118]. The Springe facility continued to operate and was eventually purchased by Octapharma AG in 1999.

In Italy after the First World War, a few Italian hospitals were able to provide blood transfusions from paid donors. As a result of the initiative of the Milanese physician Davide Formentano, voluntary donation was introduced in 1927 and led to the foundation of the Italian Voluntary Blood Association (AVIS). Forty years later Italy enacted the first law placing the blood services under state control. The Italian blood system reform Act 107 of 1990 reaffirmed voluntary donation and placed national policy and self-sufficiency under the Health Ministry. In the wake of the HIV and hepatitis C infections through transfusion in the 1980s it was determined that safety was to be achieved by the fractionation of Italian plasma at only two locations in Italy. This prevented international companies such as Baxter, Immuno, Biotest, and Behring from fractionating Italian plasma and restricted fractionation to Sclavo and Farmabiagini [119]. In 1995, the “Blood Derivatives Production Centers” Act mandated that two fractionation facilities be established, thus laying the legal foundation for the Marcucci (now Kedron) Group’s two fractionation plants in Italy [120]. Act 219 was introduced in 2005, promoting self-sufficiency but allowing European Union-based companies to operate within the market.

In Russia there are approximately 2 million blood donors of whom 91% are voluntary. Thirty percent of plasma for fractionation is collected by plasmapheresis and 96% of blood donations are used as components. In 2009, just over 1 million L of plasma were collected, 1.8% rejected and 51% used for fractionation. Since 1989 the production of both albumin and immunoglobulins has declined significantly in the wake of uncertain political stability [121]. The aggregate fractionation plant capacity of the Blood Transfusion Services is reported to be 300,000 L but only 180,000 L were fractionated in 2008. In addition, there are five small centers with capacities of about 30,000 L each [122].

In 1970, Richard Titmuss, an advisor to the UK Labour government, published his controversial text “The Gift Relationship: from human blood to social policy” [123]. By examining blood collection data and contrasting the approaches used in the United Kingdom and the United States, Titmuss argued that altruistic, voluntary donation leads to a safer supply and less wastage in the blood collection system. This theme was also explored by Hagen in “Blood: gift or merchandise” published a decade later, which documents the state of the plasma processing industry in 1982 and the complex issues surrounding plasma supply on a more global basis [124].

In retrospect, Titmuss’s book can be seen as a critical point in defining the direction taken by the European fractionation industry through the influence on the adopted plasma collection options and the resultant impact on plasma availability and hence the fractionation capacity that could be developed.

Titmuss argued that the frequency of hepatitis B antigen (HBsAg) in blood donor populations, and therefore the challenge this viral infection may have presented to the safety of plasma products, was under scrutiny. In the United States, the rate of hepatitis B infection was estimated to be 0.1–0.5% in voluntary donors and 1–2% in paid donors. Significantly higher differentials were seen elsewhere [125]. A later review summarizes data from the 1970s and notes that the estimated carrier rate for paid donors was 6.3%, while that for volunteer donors was less than 0.6% [126]. However, Domen concluded that not all commercial blood donors were associated with a higher risk of transmission of hepatitis [127]. The multiple contributions to improve safety of the supply were summarized by Tobler and Busch [128] and the status in 2004 has been reviewed by Farrugia [129].

The debate, which continued in the Journal of Medical Ethics into the late 1990s, contributed to a focus in developing voluntary, non-remunerated sources of plasma in Europe [130–132]. The European Directive 89/381 requires the member states of the European Union to take “all necessary measures to promote Community self-sufficiency in human plasma” and to “encourage the voluntary unpaid donation of blood and plasma” [133]. Interpretation of the directive is given by P.J. Hagen in a European “white paper.” Hagen also relates the divergent opinions between the commercial and some not-for-profit protagonists [134]. On a global basis the World Health Assembly in 1975 urged countries to “promote . . . voluntary, non-remunerated blood donation” Furthermore, “all countries should strive for self-reliance at least for the supply of major blood products” [135]. With few exceptions, notably, Germany and Austria, plasma for fractionation in Europe has been derived from voluntary donors of both blood and plasma.

1.4.3 For-Profit Fractionation in Europe

Despite the highly regulated access to plasma in the European environment two commercial plasma fractionation
companies were established without any ties to national blood collection agencies. Immuno AG, formed in 1953, commenced plasma fractionation in Vienna in 1954 and was the first company in Europe to introduce widespreadplasmanapheresis centers in both Austria and Germany, opening the first center in 1960 [136]. The company quickly became one of the leading fractionators in Europe and acquired an old fractionation plant from Parke-Davis in New York State as well as plasma collection centers to assure plasma supply from the United States. Immuno was merged into Baxter Bioscience in 1997.

Another, privately owned company, Octapharma, was established in Vienna in 1983. As the name implies initial focus was on Factor VIII products with the first commercial solvent–detergent treated Factor VIII concentrate approved in 1986. Octapharma acquired its manufacturing facility in Vienna in 1989 and initiated an aggressive expansion plan throughout the following decade [137]. The company has also pursued a contract manufacturing strategy, mostly for non-profit organizations. Clients include services in Germany, Israel, Norway, Slovenia, and Poland [138]. The Norwegian project in particular has been reported to be very successful [139].

1.5 NATIONAL POLICIES AND SELF-SUFFICIENCY

Self-sufficiency policies and national needs together with technical opportunities for both small- and large-scale fractionation led to a proliferation of the industry in the 1970s and 1980s. By 1984, the first year in which the Marketing Research Bureau conducted a worldwide survey, there were 95 plasma fractionators with a total capacity of 15 million L, fractionating some 12 million L. Sixty-six percent of the plants were in Europe and 11% in North America but 43% of the capacity was in Europe and 45% in North America. In 1990, there were 102 facilities, 56 in Europe, and 10 in North America. European plant capacity had grown to almost 11 million L with close to 8 million L capacity in North America. Japan and Asia (mainly Australia) had a capacity of 2.6 million L with the rest of the world accounting for only 1 million L. By 1993 more than 40 plants had a throughput of less than 50,000 L [140]. Many of these plants were located in Eastern European countries, some countries in Asia and one in South Africa. Establishment of small-scale fractionation was enabled, in part, by the introduction of chromatographic technology [141] for instance in Johannesburg, Budapest, and Skopje (Macedonia), although the issue of small-scale pharmaceutical fill-finish was unsolved [142]. The debate on small-scale fractionation continued until the end of the century. J.K. Smith held that “the initial costs are daunting, there may be difficulty in recruiting well-trained nationals to key posts” and argued that high priority be given to the development of the regulatory agency [143]. J.G. Watt’s analysis stressed the necessity of stringency from feasibility to commissioning, the importance of GMP and noted that “The technology of fractionation . . . is quite simple but the application of and the development of good housekeeping practices, about 85% of the task, is very hard to establish” [144]. J. Leikola pointed out that plant size is not always an indicator of feasibility since the Finnish Red Cross was breaking even fractionating 100,000 L whereas as Kabi was making a loss at 250,000 L annual throughput [145]. R. Herrington at CSL asked “why a national government or private investor would want to invest some US$ 200 million to build a national plasma fractionation plant” and considered that the “entry level costs are far too high compared to alternative options.” These options were contract fractionation arrangements in one form or another [146].

An interesting case study of the path to achieve self-sufficiency is provided by the experience of Brazil. Immuno built a plasma fractionation plant in Brazil in the 1970s. This plant was subsequently purchased by Behringwerke, then a subsidiary of the German chemical giant Hoechst. Hoechst announced in 1991 that it was closing the fractionation plant, leaving Brazil without an adequate, national supply of plasma products. In response to this the Ministry of Health announced plans to build fractionation facilities in São Paulo and Rio de Janeiro using largely chromatographic technology from the Centre Régional de Transfusion Sanguine in Lille. By 1996 plasma product imports into Brazil had risen to about US$ 100 million per annum and, due to the closure of the Foundation Santa Catarina plant, these original plans were amended to envisage the construction of three new plants. Further discussions on self-sufficiency in 1998 led to a proposal for a US$ 140–170 million facility and later to the potential private sector involvement with Biobrás. Currently, there is a national self-sufficiency plan with Hemobrás, formed in 2006, and supported by the Brazilian Ministry of Health, to construct a 500,000 L fractionation plant in the state of Pernambuco [147] with technology from LFB SA in France, as LFB currently toll manufactures products from Brazilian plasma [148]. A smaller facility with a capacity of 150,000 L is also under construction at the Instituto Butantan in São Paulo under the auspices of the Secretariat of Health of São Paulo State and Fundação Butantan [149].

Further afield in South Africa, self-sufficiency in plasma products was also being pursued. Blood collection in South Africa commenced in the 1930s and the main center, the South African Blood Transfusion Service (SABTS) was named in 1943. Regional services declined establishment of a national service and the Durban center formed the Natal Blood Transfusion Service (NBTS) in 1959 [150]. The Plasma Fractionation Division of the NBTS was established in
Pinetown in the 1970s. Now known as the National Bioproducts Institute (NBI) to reflect the national mandate, the laboratory fractionates about 150,000 L of recovered plasma annually using Cohn and Kistler–Nitschmann technology. In Johannesburg, the SABTS started small-scale chromatographic fractionation in 1980 but later stopped production [151].

1.6 CONSOLIDATION IN THE NOT-FOR-PROFIT SECTOR

Difficulties in maintaining viable, sustainable, and local fractionation centers in France and Germany led to significant rationalization in these countries. In France, the regional centers were closed and fractionation was consolidated at Les Ulis (Courtaboeuf, Paris) and in Lille in the form of LFB, the “Laboratoire français de fractionnement et des biotechnologies,” in 1994 and became LFB SA in 2005. LFB now toll fractionates for Morocco and Tunisia, as well as for Luxembourg and Brazil. The fractionation center in Strasbourg, once owned by Centeon/Aventis, was acquired by Octapharma in 1999.

In Germany only the unit in Springe/Hannover survived, the fractionation activities of the DRK being consolidated into the Plasmaverarbeitungs GmbH. Octapharma, who had a long-term cooperation with the German Red Cross (DRK) leased the facility in 2008 and later acquired the fractionation plant.

The Central Laboratory of the Netherlands Red Cross (CLB) built new fractionation facilities in Amsterdam in 1975 and a new plant was installed in 1992. Cooperation with the Belgian Red Cross CAF-DCF cvba-scrl (Centrale Afdeling voor Fractionering-Departement Central de Fractionnement) was initiated in 1998, the same year that the Sanquin foundation was created, forming a single organization of the blood banks and the Plasma Products Division in the Netherlands under the Blood Provision Act. The Sanquin–CAF-DCF organization is jointly responsible for the fractionation of Dutch plasma (300,000 L) and Belgian plasma (200,000 L) and has an integrated management team. Sanquin has a two-thirds majority in CAF-DCF [114].

In Finland, the Red Cross fractionation plant toll fractionated Estonian plasma until the plant was closed in 2004. Finnish plasma was then fractionated by Sanquin until 2009, when like Norway, Finland contracted the fractionation to Octapharma [152].

In Denmark, the State Serum Institute, founded in 1902, had produced albumin from 1952 and small pool (four donors) coagulation factor concentrates from 1965 [153]. The Institute formed a small capacity fractionation department in 1972 but stopped fractionation in 2004. The American biotechnology company Hemasure acquired Novo’s plasma products business in 1996 but the venture was a failure. Denmark now has toll manufacturing arrangements with CSL in Bern.

In 1990, there were 69 not-for-profit plasma fractionation facilities processing approximately 5 million L, 29% of the total plasma fractionated. By 2007, the number of fraction facilities had decreased to 31. In particular, the number of plants in Europe dropped from 39 to 12 and in Asia (excluding China) from 17 to 5. Total plasma fractionated by the non-commercial sector was approximately 6 million L or 24% of the total plasma fractionated. By 2010, the volume had dropped to 4.5 million L with recovered plasma representing 44% of the volume.

The capacity development of the major not-for-profit fractionators and the volumes of plasma processed are shown in Table 1.1. In 2010, seven fractionators processed two-thirds of the plasma in the not-for-profit sector. In contrast to the commercial sector these fractionators, with the exception of CAF-DCF, have processed similar plasma volumes over the last two decades. The Japanese Red Cross has developed into an increasingly dominant position in Japan. The development of the smaller fractionators, mostly with a “national” character is shown in Table 1.2.

1.7 THE MULTINATIONAL FRACTIONATION INDUSTRY

Issues with the plasma supply and increasing demand for plasma products in Europe, for domestic use and export, led to European acquisition of American fractionators and plasma collection centers in the 1970s, but these were only a prelude to industry reorganization in 2003–2004, and which continued until the end of the decade [154].

Table 1.1 The Development of Processing Capacity of the Major Not-for-Profit Fractionators

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LFB</td>
<td>1173</td>
<td>950</td>
<td>600</td>
<td>575</td>
<td>650</td>
<td>655</td>
<td>656</td>
</tr>
<tr>
<td>BPL</td>
<td>451</td>
<td>600</td>
<td>500</td>
<td>500</td>
<td>400</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Sanquin</td>
<td>220</td>
<td>220</td>
<td>250</td>
<td>220</td>
<td>220</td>
<td>220</td>
<td>250</td>
</tr>
<tr>
<td>CAF-DCF</td>
<td>200</td>
<td>243</td>
<td>198</td>
<td>473</td>
<td>205</td>
<td>400</td>
<td>699</td>
</tr>
<tr>
<td>Japanese Red Cross</td>
<td>170</td>
<td>450</td>
<td>480</td>
<td>490</td>
<td>525</td>
<td>550</td>
<td>555</td>
</tr>
<tr>
<td>Kaketsukken</td>
<td>185</td>
<td>242</td>
<td>233</td>
<td>249</td>
<td>334</td>
<td>280</td>
<td>250</td>
</tr>
<tr>
<td>Korean Red Cross</td>
<td>—</td>
<td>269</td>
<td>311</td>
<td>340</td>
<td>296</td>
<td>300</td>
<td>230</td>
</tr>
<tr>
<td>Total processed</td>
<td>2399</td>
<td>2974</td>
<td>2572</td>
<td>2847</td>
<td>2630</td>
<td>2855</td>
<td>3090</td>
</tr>
</tbody>
</table>

Figures are shown as aggregates following consolidations. Commonwealth Serum Laboratories and ZLB are included in the consolidation of CSL Ltd. Similarly, DRK numbers are shown in the Octapharma table.
In 1996, the two European entities, Hoechst AG who owned Behringwerke and Rhône-Poulenc Rorer who owned Armour, created a 50/50 joint venture plasma products company, Centeon. The company name was changed to Aventis Behring in 1999 when the parent companies merged to form Aventis. Aventis Behring was finally acquired by CSL in 2003 and the name changed later to CSL Behring. CSL also has fractionation plants in the United States, Switzerland, Germany, and Australia (CSL Biotherapies) and along its expansion path had acquired plasma collection facilities in the United States. CSL’s operation of multiple facilities or “Centres of Excellence” is illustrated in the “Flood Report” [155].

Baxter’s manufacturing strategy is similar to CSL. Baxter had acquired the Austrian fractionator, Immuno AG, in 1997 providing major fractionation facilities in both the United States and Europe and with plasmapheresis centers on both continents. Baxter also operates a facility at Lessines in Belgium, dating back to 1954 when it opened its first European office.

Bayer AG, who had acquired Cutter laboratories in 1974 sold the plasma fractionation assets to Ampersand Ventures in 2005. Ampersand had acquired the former NYBC and the Vitex Melville plant in 2001 and renamed the facility Precision Pharma. Talecris Biotherapeutics was formed from the former Bayer business in N. Carolina to include the Precision facility in New York and therefore remained a uniquely American-based company. Talecris also toll fractionates plasma from Canada. In August 2008, CSL announced intentions to acquire Talecris from Ampersand. Following a negative announcement from the US Federal Trade Commission in May 2009 the merger was abandoned.

Grifols embarked on internationalization of operations in 1960 with a 50% holding of Dade Reagents. The plasma collection centers of SeraCare, now Biomat were acquired in 2002. In 2010, the company had 64 centers in 24 states of the United States. Grifols acquired the assets of Alpha Therapeutic Corporation from The Green Cross Corporation of Japan in 2003 thus providing fractionation facilities in Los Angeles and Barcelona. Following the collapse of the bid by CSL for Talecris, Grifols acquired the company in June 2011 [156].

Octapharma had become established in Vienna in 1989 and in Springe, Germany a decade later. The former CRTS Strasbourg facility in Lingolsheim was acquired in 1999 from Centeon/Aventis. In 2002, the company acquired Biovitrin that had a tortuous history of ownership from Kabi, KabiVitrum, KabiPharmacia, Pharmacia, and finally Pharmacia & Upjohn. A year later, Octapharma acquired the Mexican fractionation company Probifasa SA de CV. The company now has a total fractionation capacity in Europe of 3.2 million L and has announced plans to build a plant in Poland.

The Marcucci Group, which had been a distributor for Immuno AG since the 1960s, adopted the name Kedrion in 1996, after selling the Aima Derivati plant to Immuno and the Sclavo facility to Bayer. Kedrion maintained the fractionation plant of Farma Biagini in Bologna and the Naples facility previously known as ISI, the Istituto Sierovaccinogena Italiano. Kedrion then had a combined fractionation capacity of 1.3 million L. In 2006, Kedrion announced that it had reached a technology transfer agreement to establish a 300,000 L fractionation facility in Kirov, Russia. Kedrion acquired the Hungarian fractionator Human Bioplazma from Teva in December 2007, adding a further 300,000 L capacity and a plasmapheresis center, and as part of the FTC agreement to the purchase of Talecris by Grifols, acquired the Melville facility on Long Island and two collection centers in 2011 [157] thus marking access to the American market.

In the commercial sector, in 1990 there were 33 plasma fractionation facilities processing approximately 12 million L representing 71% of total plasma fractionation. The number of facilities increased to 45 by 1999, mainly through the evolution of previously state owned facilities in China into corporations. Through rationalization of capacity following a number of acquisitions and mergers the total number of commercial plasma fractionation facilities in 2007 was 34 accounting for 76% of the total plasma fractionation activity or approximately 20 million L of processed plasma. In 2010, the commercial fractionators processed over 29 million L of plasma, more than 80% of which was source plasma.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kedrion</td>
<td>650</td>
<td>855</td>
<td>1188</td>
<td>1010</td>
<td>1050</td>
<td>1377</td>
<td>1436</td>
</tr>
<tr>
<td>Biotest</td>
<td>—</td>
<td>150</td>
<td>230</td>
<td>200</td>
<td>220</td>
<td>435</td>
<td>1250</td>
</tr>
<tr>
<td>Benesis</td>
<td>350</td>
<td>165</td>
<td>n/a</td>
<td>240</td>
<td>350</td>
<td>280</td>
<td>252</td>
</tr>
<tr>
<td>Korean Green</td>
<td>214</td>
<td>350</td>
<td>529</td>
<td>500</td>
<td>310</td>
<td>200</td>
<td>368</td>
</tr>
<tr>
<td>Cross</td>
<td>—</td>
<td>180</td>
<td>200</td>
<td>250</td>
<td>300</td>
<td>200</td>
<td>368</td>
</tr>
<tr>
<td>Nihon Pharma</td>
<td>—</td>
<td>300</td>
<td>n/a</td>
<td>300</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Kamada</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SK Chemicals (Korea)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>300</td>
</tr>
<tr>
<td>Purissmus (Argentina)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total processed</td>
<td>1514</td>
<td>1700</td>
<td>2447</td>
<td>2200</td>
<td>2530</td>
<td>3062</td>
<td>3776</td>
</tr>
</tbody>
</table>

Figures are shown as aggregates following acquisitions. n/a: not available.

*Kedrion includes 201,000 L fractionated by Human Bioplazma in Hungary.
*Nihon Pharma processed less than 200,000 L from 2007 onward.
*Purissmus processed less than 200,000 L in 2010.
Tables 1.3–1.7 show the remarkable developments of the five leading, commercial fractionators: CSL Ltd., Baxter Bioscience, Talecris Biotherapeutics, Grifols, and Octapharma. By 2007 these fractionators processed over 14 million L of plasma, accounting for 70% of the commercial sector and 55% of the 26 million L of plasma fractionated with plant utilization ratios between 52% and 94%. In 2010, the plasma volume fractionated by the top five companies had increased to 22 million L or 75% of the total commercial sector.

1.8 PLASMA FRACTIONATION IN AUSTRALIA: SELF-SUFFICIENCY AND SUSTAINABILITY

The fractionation of plasma in Australia began in the early 1950s when the Australian government determined that there was a need to have plasma products available and manufactured from nationally supplied blood. Arrangements were made for the blood collected from voluntary, nonpaid donors by the Australian Red Cross to be fractionated at the Commonwealth Serum Laboratories in Parkville, Melbourne, with funding for both the collection and fractionation of the plasma provided by the Federal government. The resulting products were to be distributed free of charge to Australian citizens.

The CSL was the logical facility to house a plasma fractionation plant. It had been established in 1916 to ensure that Australia had sufficient supplies of therapeutic sera, including tetanus and diphtheria antitoxin, as well as vaccines and organ extracts, and therefore had the existing infrastructure to establish plasma fractionation on a large scale. The Cohn process was selected and F.J. Dempster, a CSL staff scientist, sent to Cohn’s Laboratory at Harvard for 6 months to learn the process. On his return, a manufacturing facility capable of processing 15,000 L per annum was constructed and the first batches of immune serum globulin were issued in December 1953. Batches of normal serum

TABLE 1.3 The Growth of CSL Ltd. Through Acquisitions

<table>
<thead>
<tr>
<th>Company</th>
<th>Plasma Processed (×10³ L/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armour Pharmaceutical</td>
<td>1175</td>
</tr>
<tr>
<td>Behringwerke</td>
<td>500</td>
</tr>
<tr>
<td>Centeon</td>
<td>—</td>
</tr>
<tr>
<td>Aventis Behring</td>
<td>—</td>
</tr>
<tr>
<td>ZLB</td>
<td>350</td>
</tr>
<tr>
<td>CSL Ltd.</td>
<td>184</td>
</tr>
<tr>
<td>Total processed</td>
<td>2209</td>
</tr>
</tbody>
</table>

CSL Ltd. acquired ZLB in 2000. Armour and Behringwerke were merged to form Centeon in 1999. Centeon became Aventis Behring and was acquired by CSL in 2004. CSL Ltd. figures include CSL Bioplasma.

TABLE 1.4 The Growth of Baxter Bioscience

<table>
<thead>
<tr>
<th>Company</th>
<th>Plasma Processed (×10³ L/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyland Therapeutics</td>
<td>2600</td>
</tr>
<tr>
<td>Immuno</td>
<td>1225</td>
</tr>
<tr>
<td>Baxter Hyland</td>
<td>—</td>
</tr>
<tr>
<td>Baxter Bioscience</td>
<td>—</td>
</tr>
<tr>
<td>Total processed</td>
<td>3825</td>
</tr>
</tbody>
</table>

Baxter acquired Immuno AG in 1997.

TABLE 1.5 The Growth of Grifols

<table>
<thead>
<tr>
<th>Company</th>
<th>Plasma Processed (×10³ L/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Therapeutics</td>
<td>2600</td>
</tr>
<tr>
<td>Instituto Grifols</td>
<td>241</td>
</tr>
<tr>
<td>Grifols</td>
<td>1080</td>
</tr>
<tr>
<td>Total processed</td>
<td>2841</td>
</tr>
</tbody>
</table>

Grifols acquired Alpha Therapeutics in 2003 and Talecris Biotherapeutics (shown separately in Table 1.6 in 2011).

TABLE 1.6 The Growth of Talecris Biotherapeutics

<table>
<thead>
<tr>
<th>Company</th>
<th>Plasma Processed (×10³ L/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melville Biologics</td>
<td>355</td>
</tr>
<tr>
<td>V.I. Technologies</td>
<td>400</td>
</tr>
<tr>
<td>Precision Pharma</td>
<td>—</td>
</tr>
<tr>
<td>Cutter Biologicals</td>
<td>1625</td>
</tr>
<tr>
<td>Bayer</td>
<td>2100</td>
</tr>
<tr>
<td>Talecris</td>
<td>—</td>
</tr>
<tr>
<td>Biotherapeutics</td>
<td>—</td>
</tr>
<tr>
<td>Total processed</td>
<td>1980</td>
</tr>
</tbody>
</table>

Melville Biologics, later V.I. Technologies (Vitex) and then Precision Pharma were independent until 2001.

TABLE 1.7 The Growth of Octapharma

<table>
<thead>
<tr>
<th>Company</th>
<th>Plasma Processed (×10³ L/Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRK</td>
<td>655</td>
</tr>
<tr>
<td>Blutspendendienst</td>
<td>—</td>
</tr>
<tr>
<td>DRK Plasmaverarbeitung</td>
<td>—</td>
</tr>
<tr>
<td>Kabi Pharmacia</td>
<td>160</td>
</tr>
<tr>
<td>Octapharma</td>
<td>—</td>
</tr>
<tr>
<td>Total processed</td>
<td>815</td>
</tr>
</tbody>
</table>

Octapharma acquired the DRK facility in Springe and the Aventis plant in Strasbourg in 1999. The former Kabi facility was acquired in 2002.

Tables 1.3–1.7 show the remarkable developments of the five leading, commercial fractionators: CSL Ltd., Baxter Bioscience, Talecris Biotherapeutics, Grifols, and Octapharma. By 2007 these fractionators processed over 14 million L of plasma, accounting for 70% of the commercial sector and 55% of the 26 million L of plasma fractionated with plant utilization ratios between 52% and 94%. In 2010, the plasma volume fractionated by the top five companies had increased to 22 million L or 75% of the total commercial sector.