EFFECTIVE INTERPERSONAL AND TEAM COMMUNICATION SKILLS FOR ENGINEERS
EFFECTIVE INTERPERSONAL AND TEAM COMMUNICATION SKILLS FOR ENGINEERS

CLIFFORD A. WHITCOMB

LESLIE E. WHITCOMB
For Our Children
CONTENTS

PREFACE xiii
ACKNOWLEDGMENTS xxı

SECTION I LEARNING THE BASICS 1

1 LEARNING TO DRIVE YOUR COMMUNICATIONS 3

Communication Microskills Model / 4
Why are Microskills Important as a Basis for Communication in Engineering? / 4
How Do Microskills Work? / 6
How will I Learn the Microskills? / 7
What’s in it for Me? / 7
Why this Works / 7
The Importance of a Practice-Based Model / 8

2 WHAT DOES IT MEAN TO BE AN EFFECTIVE ENGINEERING COMMUNICATOR? 11

Shared Basis of Engineering Communication Exchanges Defined / 13
Space, Face, and Place Spectrum Defined / 15
3 YOUR NATURAL STYLE OF COMMUNICATION
 What are the Strengths of Your Natural Style? / 17
 Natural Style of Communication Defined / 18
 Contextual Integration of Your Natural Style / 20

4 HOW SELF-UNDERSTANDING LEADS TO DEVELOPMENT OF EMOTIONAL INTELLIGENCE
 Self-Understanding Microskills Defined / 25
 Self-Awareness / 25
 Self-Regulation / 25
 Self-Motivation / 25
 Empathy / 26
 Social Attention and Focus / 26
 Contextual Integration of Self-Understanding / 26

5 DEVELOPING EMOTIONAL INTELLIGENCE
 Emotional Intelligence Defined / 31
 Check In / 33
 Contextual Integration of Emotional Intelligence / 34

6 AFFECT CHANGES YOUR COMMUNICATION
 Affect Defined / 38
 Affect Defined in Everyday Language / 39
 Check In / 39
 Contextual Integration of Affect / 40

7 AFFECT PROCESSING: THE HIDDEN KEY TO CLEAR COMMUNICATION
 Internal Affect Processing Defined / 42
 External Affect Processing Defined / 42
 Balanced Affect Processing Defined / 43
 Affect Processing in Overdriven, Disconnected, and Clear Ranges / 44
 Overdriven Affect Response / 44
 Overdriven Affect Processing Defined / 44
 Overdriven Affect Processing Analogy / 44
Overdriven Affect Processing Impacts on Engineering Communication / 45
Disconnected Affect Response / 45
Disconnected Affect Response Defined / 46
Disconnected Affect Processing Analogy / 46
Disconnected Affect Processing Impacts on Engineering Communications / 46
Clear Affective Response / 47
Clear Affective Response Defined / 47
Clear Affective Response Analogy / 47
Clear Affective Response Impacts on Engineering Communication / 48
Contextual Integration of Affect Processing / 49

SECTION II TAKING IT TO WORK 51

8 I, YOU, AND THE TEAM 53

“I” Statements Defined / 54
Check In / 55
Contextual Integration of “I” Statements / 55
Opaque “I” Statements: An Example / 56
Opaque “I” Statements Defined / 56
Contextual Integration of Opaque “I” Statements / 56
Misplaced “You” Statements: Examples / 57
Misplaced “You” Statements Defined / 57
Contextual Integration of Misplaced “you” Statements / 57
Misplaced Team Statements / 58
Misplaced “Team” Statements Defined / 58
Contextual Integration of Misplaced “Team” Statements / 58
You and We Complete the Exchange / 59
Appropriate “You” Statements Defined / 59
Good Communication: “We” Statements—Examples / 60
Appropriate “We” Statements Defined / 60
Check In / 61
9 PAYING ATTENTION WITH ATTENDING BEHAVIORS

Verbal Communication Defined / 65
Nonverbal Communication Defined / 66
Nonverbal Attending Behavior for the Speaker: Soler / 67
Nonverbal Attending Behavior for the Listener: Recap / 68
Check In / 69
Contextual Integration of Attending Behaviors / 71
Check In / 72

10 SHAPE YOUR COMMUNICATIONS USING OPEN AND CLOSED QUESTIONS

Open and Closed Questions Defined / 74
Check In / 75
Contextual Integration of Open and Closed Questions / 76
Check In / 77

11 MOVE INTO MULTIPLE DIMENSIONS WITH MULTIMODAL ATTENDING

Multimodal Attending Defined / 81
Sensory Processing Defined / 82
Affective Processing Defined / 82
Cognitive Processing Defined / 82
Check In / 83
Contextual Integration of Multimodal Attending / 84

SECTION III MAKING IT REAL

12 DEVELOP FLUENCY WITH ENCOURAGING, PARAPHRASING, AND SUMMARIZING

Encouraging Defined / 90
Paraphrasing Defined / 90
Summarizing Defined / 91
Encouragers to Use / 93
 Nonverbal / 93
 Verbal / 93
Paraphrasing Skills to Use / 93
13 CLOSE THE LOOP WITH REFLECTION OF FEELING

- Reflection of Feeling in the Dialog between Lisa and Nestor / 98
- What Happens when Feelings are not Reflected / 98
- Tracking Reflection of Feeling / 99
- Benefits of Tracking Reflection of Feeling / 99
- Feedback Loops that Balance Feeling and Thinking: Accurate Reflection of Feeling / 100

14 THE SIX-STEP CYCLE

- Six-Step Cycle for Interpersonal and Technical Communications / 107
- Engineering Project Scenario Revisited / 109
 - Step One: Identify Context / 109
 - Step Two: Define the Problem / 109
 - Step Three: Define the Goals / 109
 - Step Four: Generate Alternates / 110
 - Step Five: Take Action / 111
 - Step Six: Iterate / 111
- Check In / 112

SECTION IV TAKING THE LEAD

15 WORKING WITH CONFRONTATION AND CONFLICT NEGOTIATION

- Confrontation / 115
- How to Clear Obstacles Using Conflict Negotiation / 121
- Conflict Negotiation Rules / 124

16 BECOMING AN INTENTIONAL ENGINEER

BIBLIOGRAPHY

INDEX
PREFACE

This book is about learning effective interpersonal and team communication skills that are useful for engineers in the practice of their profession. Examples and exercises help you learn how to put together the basic units of effective engineering communication. Learning these basic units called microskills of communication, to use in your practice of engineering gives you options for handling issues that arise. Classic examples of these issues include moments when you are stuck with a project task that presents seemingly unresolvable technical issues or when you are stuck with a teammate who simply will not perform, or whose performance disrupts your own. In the process of learning how to handle these situations you will become an effective engineering communicator and you will be a better engineer. You will learn how to engage others. You will learn how to listen to others. You will learn how to manage conflict and influence others in highly constructive, repeatable communication exchanges.

The engineering field you have chosen as a profession holds as a primary purpose the benefit of society. The professional societies and tenets that will guide and bound your practice hold ethics, societal benefit, and the improvement of engineering effectiveness as their foundation. Our book guides you in the development of a significant new benefit to both your own profession and society. We give you this potential through our invitation to you to participate in a cutting edge engineering innovation—a skill set for effective interpersonal and team communication.

Throughout its history engineering has been nurtured by inventors and innovators who could see beyond the current limits of their field in order to...
create opportunities for social benefit. The steam engine was seen as a gadget that would never compete with the power of a horse. The computer was viewed as a sideline in relation to the real work that could be done by mechanical machines. Engineers saw beyond initial limitations and pulled together seemingly irrelevant and potentially disastrous elements to transform these nascent opportunities into full functioning contributions. They engineered these elements effectively and created technologies that contributed profoundly to benefit society for generation after generation.

Technical and nontechnical interpersonal communication is currently perceived as an almost irrelevant and minor component of the engineering process and engineering education—given short shrift even though it is continually required by professional societies and accrediting bodies, such as the Accreditation Board for Engineering and Technology (ABET). The ABET EAC 2010 Criterion 3 Student Outcomes lists several aspects for successful engineering education:

(a) An ability to apply knowledge of mathematics, science, and engineering.
(b) An ability to design and conduct experiments, as well as to analyze and interpret data.
(c) An ability to design a system, component, or process to meet desired needs within realistic constraints, such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
(d) An ability to function on multidisciplinary teams.
(e) An ability to identify, formulate, and solve engineering problems.
(f) An understanding of professional and ethical responsibility.
(g) An ability to communicate effectively.
(h) The broad education necessary to understand the impact of engineering solutions in a global, economic, societal, and environmental context.
(i) A recognition of the need for, and an ability to engage in, life-long learning.
(j) A knowledge of contemporary issues.
(k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Outcomes (d), (f), and (g) include aspects that require a learner’s curriculum to address development of an understanding of professional responsibility, working on teams, and communications. These “soft skills”, now sometimes referred to as professional skills, are given minimal space in
already crowded engineering education curricula because they are often the
hardest to teach, to learn, and to assess. The skills related to these elements
are not necessarily best learned through classroom lecture, but through
practice in authentic engineering contexts, such as capstone design projects.
They are crucial none-the-less. Their foundational quality is also highlighted
by the United Nations Educational, Scientific, and Cultural Organization
(UNESCO) which has defined four pillars of education.

- Learning to know
- Learning to do
- Learning to live together
- Learning to be

The skills related to interpersonal communications primarily fit the intent
of the Learning to be—which includes all aspects of human development—they also directly support Learning to live together.

Taking this global perspective and translating it into high quality engineer-
ing educational deliveries, the International Conceive, Design, Implement,
and Operate (CDIO) initiative has sought to bring a more holistic view for the
education and development of engineers.

There is a growing recognition that young engineers must possess a wide array of personal, interpersonal, and system building knowledge and skills that will allow them to function in real engineering teams and to produce real products and systems, meeting enterprise and societal needs.

(Crawley et al., 2011)

The CDIO initiative defines a syllabus for engineering education that
addresses a broad span of competencies, technical and non-technical, for
engineers, that should address

Specific, detailed learning outcomes for personal and interpersonal skills, and product, process, and system building skills, as well as disciplinary knowledge, consistent with program goals and validated by program stakeholders.

(Crawley et al., 2007)

In addition to being important for global competencies, communication is
often cited as one of the most highly desired and important traits of a
successful engineer in the US defense workforce. Figure 1 shows the results