Drug Delivery Strategies for Poorly Water-Soluble Drugs

Editors
Dennis Douroumis and Alfred Fahr
Drug Delivery Strategies for Poorly Water-Soluble Drugs
Advances in Pharmaceutical Technology
A Wiley Book Series

Series Editors:
Dennis Douroumis, University of Greenwich, UK
Alfred Fahr, Friedrich-Schiller University of Jena, Germany
Jürgen Siepmann, University of Lille, France
Martin Snowden, University of Greenwich, UK

Titles in the Series

Hot-Melt Extrusion: Pharmaceutical Applications
Edited by Dionysios Douroumis

Drug Delivery Strategies for Poorly Water-Soluble Drugs
Edited by Dionysios Douroumis and Alfred Fahr

Forthcoming Title(s):

In Vitro Drug Release Testing of Special Dosage Forms
Edited by Nikoletta Fotaki and Sandra Klein
Drug Delivery Strategies for Poorly Water-Soluble Drugs

Edited by

DENNIS DOUROUMIS
School of Science, University of Greenwich, UK

and

ALFRED FAHR
Friedrich-Schiller University of Jena, Germany
Excellence is an art won by training and habituation. We do not act rightly because we have virtue or excellence, but we rather have those because we have acted rightly. We are what we repeatedly do. Excellence, then, is not an act but a habit. (Aristotle, 384–322 BC)

This book is dedicated to my beloved mother Eugenia for her continuous support and unconditional love. It is also dedicated to my brother Bill and sister Angela for their support and patience. Thank you all.

Doubt grows with knowledge.
Johann Wolfgang von Goethe (1749–1832)

I thank my wife for her understanding for spending weekends in my home office for setting and polishing this book. I apologize to my children Fabian and Sophie that their dad was not ready on many weekends for playing and talking. I do hope, they will understand it in the near future somehow.
Contents

List of Contributors xvi
Series Preface xxi
Preface xxiii

1 Self-Assembled Delivery Vehicles for Poorly Water-Soluble Drugs: Basic Theoretical Considerations and Modeling Concepts 1
Sylvio May and Alfred Fahr

1.1 Introduction 1
1.2 Brief Reminder of Equilibrium Thermodynamics 3
1.3 Principles of Self-Assembly in Dilute Solutions 7
 1.3.1 Linear Growth 9
 1.3.2 Cooperative Assembly 10
1.4 Solubility and Partitioning of Drugs 11
 1.4.1 Simple Partitioning Equilibria 11
 1.4.2 Partitioning and Micellization 13
 1.4.3 Hydrophobicity and Ordering of Water 15
1.5 Ways to Model Interactions in Colloidal Systems 16
 1.5.1 Electrostatic Interactions: The Poisson–Boltzmann Model 17
 1.5.2 Chain Packing Model 21
1.6 Kinetics of Drug Transfer from Mobile Nanocarriers 23
 1.6.1 Collision Mechanism 25
 1.6.2 Diffusion Mechanism 26
 1.6.3 Internal Kinetics 26
1.7 Conclusion 29

Acknowledgments 31
References 31

2 Liposomes as Intravenous Solubilizers for Poorly Water-Soluble Drugs 37
Peter van Hoogeveest, Mathew Leigh and Alfred Fahr

2.1 Introduction 37
2.2 Intravenous Administration of Poorly Water-Soluble Compounds (PWSC) 40
 2.2.1 Solubilizing Vehicles with Precipitation Risk upon Dilution 41
 2.2.2 Solubilizing Vehicles Maintaining Solubilization Capacity upon Dilution 43
3 Drug Solubilization and Stabilization by Cyclodextrin Drug Carriers 67
Thorsteinn Loftsson and Marcus E. Brewster

3.1 Introduction 67
3.2 Structure and Physiochemical Properties 68
3.3 Cyclodextrin Complexes and Phase Solubility Diagrams 72
3.4 Cyclodextrin Complexes
 3.4.1 Self-Assembly of Cyclodextrins and their Complexes 76
 3.4.2 Thermodynamic and Driving Forces for Complexation 76
3.5 Effects on Drug Stability 77
3.6 Cyclodextrins and Drug Permeation through Biological Membranes 80
3.7 Drug Solubilization in Pharmaceutical Formulations 82
 3.7.1 Oral Drug Delivery 84
 3.7.2 Sublingual, Buccal, Nasal, Pulmonary, Rectal and Vaginal Drug Delivery 86
 3.7.3 Ophthalmic Drug Delivery 87
 3.7.4 Dermal and Transdermal Drug Delivery 87
 3.7.5 Injectable Formulations 87
3.8 Toxicology and Pharmacokinetics 89
3.9 Regulatory Issues 90
3.10 Conclusion 91
References 91

4 Solid Lipid Nanoparticles for Drug Delivery 103
Sonja Joseph and Heike Bunjes

4.1 Introduction 103
4.2 Preparation Procedures for Solid Lipid Nanoparticles 104
 4.2.1 Melt Dispersion Processes 104
 4.2.2 Other Top-Down Processes 109
 4.2.3 Precipitation from Homogeneous Systems 111
 4.2.4 Comparison of the Formulation Procedures and Scale-Up Feasibility 113
 4.2.5 Further Processing of Solid Lipid Nanoparticle Suspensions 115
4.3 Structural Parameters and Their Influence on Product Quality and Pharmaceutical Performance 116
 4.3.1 Particle Size and Size Distribution 116
 4.3.2 Surface Properties 117
 4.3.3 Solid State Properties of Solid Lipid Nanoparticles 117
 4.3.4 Particle Morphology and Overall Structure of the Dispersions 121
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4</td>
<td>Incorporation of Poorly Soluble Drugs and In Vitro Release</td>
<td>123</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Drug Incorporation</td>
<td>123</td>
</tr>
<tr>
<td>4.4.2</td>
<td>In Vitro Drug Release</td>
<td>126</td>
</tr>
<tr>
<td>4.5</td>
<td>Safety Aspects, Toxicity and Pharmacokinetic Profiles</td>
<td>129</td>
</tr>
<tr>
<td>4.5.1</td>
<td>In Vitro Behavior and Toxicity Studies</td>
<td>129</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Bioavailability and Pharmacokinetics</td>
<td>131</td>
</tr>
<tr>
<td>4.6</td>
<td>Conclusion</td>
<td>133</td>
</tr>
<tr>
<td>5</td>
<td>Polymeric Drug Delivery Systems for Encapsulating Hydrophobic Drugs</td>
<td>151</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>151</td>
</tr>
<tr>
<td>5.2</td>
<td>Safety and Biocompatibility of Polymers</td>
<td>152</td>
</tr>
<tr>
<td>5.3</td>
<td>Encapsulation Techniques of Hydrophobic Drugs</td>
<td>156</td>
</tr>
<tr>
<td>5.3.1</td>
<td>The Nanoprecipitation Method</td>
<td>156</td>
</tr>
<tr>
<td>5.3.2</td>
<td>The Emulsification Methods</td>
<td>158</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Polymersome Preparation</td>
<td>164</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Supercritical Fluid Technology</td>
<td>166</td>
</tr>
<tr>
<td>5.3.5</td>
<td>The Polymer-Coating Method</td>
<td>167</td>
</tr>
<tr>
<td>5.3.6</td>
<td>The Layer-by-Layer Method</td>
<td>171</td>
</tr>
<tr>
<td>5.4</td>
<td>Behavior of Nanoparticles as Drug Delivery Systems</td>
<td>173</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Mean Size</td>
<td>173</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Zeta Potential</td>
<td>173</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Encapsulation Efficiency</td>
<td>174</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Drug Release Properties</td>
<td>176</td>
</tr>
<tr>
<td>5.4.5</td>
<td>General Performance of the Nanoparticles</td>
<td>176</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>177</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>6</td>
<td>Polymeric Drug Delivery Systems for Encapsulating Hydrophobic Drugs</td>
<td>199</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>6.2</td>
<td>Drug Encapsulation by Monomer Polymerization</td>
<td>200</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Emulsion Polymerization</td>
<td>201</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Interfacial Polymerization</td>
<td>206</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Interfacial Polycondensation</td>
<td>207</td>
</tr>
<tr>
<td>6.3</td>
<td>Polymeric Nanospheres and Nanocapsules Produced by Polymerization</td>
<td>209</td>
</tr>
<tr>
<td>6.4</td>
<td>Formulation Components</td>
<td>210</td>
</tr>
<tr>
<td>6.5</td>
<td>Control of Particle Morphology</td>
<td>212</td>
</tr>
<tr>
<td>6.6</td>
<td>Toxicity and In Vivo Performance</td>
<td>213</td>
</tr>
</tbody>
</table>
9.3 Creating Supersaturation and Stable Nanosuspensions 269
9.4 Antisolvent Precipitation Via Mixer Processing 272
9.5 Antisolvent Precipitation by Using Ultrasonication 277
9.6 Nanoprecipitation Using Microfluidic Reactors 278
9.7 Particle Engineering by Spray: Freezing into Liquid 279
9.8 Precipitation by Rapid Expansion from Supercritical to Aqueous Solution 280
9.9 Conclusion 282
References 282

10 Microemulsions for Drug Solubilization and Delivery 287
X.Q. Wang and Q. Zhang
10.1 Introduction 287
10.2 Microemulsion Formation and Phase Behavior 289
 10.2.1 Theories of Microemulsion Formation 289
 10.2.2 Structure of Microemulsions 289
 10.2.3 Phase Behavior 292
10.3 HLB, PIT and Microemulsion Stability 293
10.4 Microemulsion Physico-Chemical Characterization 293
10.5 Components of Microemulsion Formulations 295
 10.5.1 Oils 296
 10.5.2 Surfactants 298
 10.5.3 Cosurfactants 300
 10.5.4 Drugs 302
10.6 Preparation Methods 303
10.7 In Vitro and In Vivo Biological Studies 303
 10.7.1 Microemulsions Used as an Oral Delivery System for Poorly Water-Soluble Compounds 303
 10.7.2 Microemulsions Used as a Parenteral Delivery System for Poorly Water-Soluble Compounds 311
10.8 Recent Developments and Future Directions 314
 10.8.1 Develop Cremophor-Free Microemulsions 314
 10.8.2 Dried O/W Emulsions for Oral Delivery of Poorly Soluble Drugs 315
 10.8.3 Self-Microemulsifying Drug Delivery System (SMEDDS) 318
References 319

11 Hot Melt Extrusion: A Process Overview and Use in Manufacturing Solid Dispersions of Poorly Water-Soluble Drugs 325
Shu Li, David S. Jones and Gavin P. Andrews
11.1 Introduction: Present Challenges to Oral Drug Delivery 325
11.2 Solid Drug Dispersions for Enhanced Drug Solubility 327
11.3 Hot Melt Extrusion (HME) as a Drug Delivery Technology 329
 11.3.1 Historical Review of HME 329
 11.3.2 Equipment 329
11.3.3 Screw Geometry 331
11.3.4 HME Processing 332
11.3.5 Product Characteristics 335
11.3.6 Materials Commonly Used in HME for Solubility Enhancement 337

11.4 Solubility Enhancement Using HME 340
11.4.1 Product Structure 340
11.4.2 HME Matrix Carriers 341
11.4.3 HME for the Manufacture of Pharmaceutical Co-Crystals 343

11.5 Representative Case Studies with Enhanced Solubility 344
11.5.1 Increased Dissolution Rate Due to Size Reduction or De-Aggregation 344
11.5.2 Increased Dissolution Rate Due to Drug Morphology Change 345
11.5.3 Controlled or Prolonged Release with Enhanced Release Extent 346
11.5.4 Complexation to Enhance Dissolution Performance 346
11.5.5 Co-Crystal Formation 347

11.6 Conclusion 347
References 348

12 Penetration Enhancers, Solvents and the Skin 359
Jonathan Hadgraft and Majella E. Lane

12.1 Introduction 359
12.2 Interactions of Solvents and Enhancers with the Skin 360
12.2.1 Small Solvents 361
12.2.2 Solvents with Longer Carbon Chains 361
12.3 Skin Permeation Enhancement of Ibuprofen 363
12.3.1 Infinite Dose Conditions 364
12.3.2 Finite Dose Conditions 368
12.4 Conclusion 369
References 369

13 Dendrimers for Enhanced Drug Solubilization 373
Narendra K. Jain and Rakesh K. Tekade

13.1 Introduction 373
13.2 Current Solubilization Strategies 374
13.3 Origin of Dendrimers 374
13.4 What Are Dendrimers? 375
13.5 Synthesis of Dendritic Architecture 375
13.6 Structure and Intrinsic Properties of Dendrimeric Compartments 377
13.7 Dendrimers in Solubilization 378
13.8 Factors Affecting Dendrimer-Mediated Solubilization and Drug Delivery 381
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.8.1</td>
<td>Nature of the Dendritic Core</td>
<td>381</td>
</tr>
<tr>
<td>13.8.2</td>
<td>Dendrimer Generation</td>
<td>382</td>
</tr>
<tr>
<td>13.8.3</td>
<td>Nature of the Dendrimer Surface</td>
<td>382</td>
</tr>
<tr>
<td>13.8.4</td>
<td>Dendrimer Concentration</td>
<td>382</td>
</tr>
<tr>
<td>13.8.5</td>
<td>pH of Solution</td>
<td>383</td>
</tr>
<tr>
<td>13.8.6</td>
<td>Temperature</td>
<td>384</td>
</tr>
<tr>
<td>13.8.7</td>
<td>Solvents</td>
<td>384</td>
</tr>
<tr>
<td>13.9</td>
<td>Drug–Dendrimer Conjugation Approaches</td>
<td>386</td>
</tr>
<tr>
<td>13.9.1</td>
<td>Physical Loading: Complexation of Water-Insoluble Drugs</td>
<td>386</td>
</tr>
<tr>
<td>13.9.2</td>
<td>Covalent Loading: Synthesis of Drug–Dendrimer Conjugate</td>
<td>389</td>
</tr>
<tr>
<td>13.10</td>
<td>Dendrimers’ Biocompatibility and Toxicity</td>
<td>393</td>
</tr>
<tr>
<td>13.10.1</td>
<td>PEGylation Technology: A Way to Enhance Dendrimer Solubility and Biocompatibility</td>
<td>393</td>
</tr>
<tr>
<td>13.11</td>
<td>Classification of PEGylated Dendrimers</td>
<td>394</td>
</tr>
<tr>
<td>13.11.1</td>
<td>PEGylated Dendrimer</td>
<td>394</td>
</tr>
<tr>
<td>13.11.2</td>
<td>Drug-Conjugated PEGylated Dendrimer</td>
<td>397</td>
</tr>
<tr>
<td>13.11.3</td>
<td>PEG Cored Dendrimer</td>
<td>397</td>
</tr>
<tr>
<td>13.11.4</td>
<td>PEG Branched Dendrimer</td>
<td>398</td>
</tr>
<tr>
<td>13.11.5</td>
<td>PEG-Conjugated Targeted Dendrimer</td>
<td>398</td>
</tr>
<tr>
<td>13.12</td>
<td>Conclusion</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>400</td>
</tr>
</tbody>
</table>

14 Polymeric Micelles for the Delivery of Poorly Soluble Drugs

Swati Biswas, Onkar S. Vaze, Sara Movassaghian and Vladimir P. Torchilin

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1</td>
<td>Micelles and Micellization</td>
<td>411</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Factors Affecting Micellization</td>
<td>413</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Thermodynamics of Micellization</td>
<td>414</td>
</tr>
<tr>
<td>14.2</td>
<td>Chemical Nature and Formation Mechanism of Polymeric Micelles</td>
<td>416</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Core and Corona of the Polymeric Micelles</td>
<td>417</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Block Co-Polymers as Building Block of Polymeric Micelles</td>
<td>418</td>
</tr>
<tr>
<td>14.3</td>
<td>Polymeric Micelles: Unique Nanomedicine Platforms</td>
<td>419</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Polymeric Micelles for the Delivery of Poorly Soluble Drugs</td>
<td>421</td>
</tr>
<tr>
<td>14.4</td>
<td>Determination of Physico-Chemical Characteristics of Polymeric Micelles</td>
<td>430</td>
</tr>
<tr>
<td>14.4.1</td>
<td>Critical Micelle Concentrations (CMC)</td>
<td>430</td>
</tr>
<tr>
<td>14.4.2</td>
<td>Particle Size and Stability</td>
<td>432</td>
</tr>
<tr>
<td>14.5</td>
<td>Drug Loading</td>
<td>435</td>
</tr>
<tr>
<td>14.5.1</td>
<td>Drug-Loading Procedures</td>
<td>437</td>
</tr>
<tr>
<td>14.6</td>
<td>Biodistribution and Toxicity</td>
<td>439</td>
</tr>
<tr>
<td>14.7</td>
<td>Targeting Micellar Nanocarriers: Example:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drug Delivery to Tumors</td>
<td>443</td>
</tr>
<tr>
<td>14.7.1</td>
<td>Passive Targeting</td>
<td>443</td>
</tr>
<tr>
<td>14.7.2</td>
<td>Active Targeting: Functionalized Polymeric Micelles</td>
<td>445</td>
</tr>
</tbody>
</table>
14.8 Site-Specific Micellar-Drug Release Strategies 449
14.9 Intracellular Delivery of Micelles 452
14.10 Multifunctional Micellar Nanocarriers 453
14.11 Conclusion 455
References 455

15 Nanostructured Silicon-Based Materials as a Drug Delivery System for Water-Insoluble Drugs 477
Vesa-Pekka Lehto, Jarno Salonen, Hélder A. Santos and Joakim Riikonen

15.1 Introduction 477
15.2 Control of Particle Size and Pore Morphology 478
15.3 Surface Functionalization 482
 15.3.1 Stabilization 482
 15.3.2 Biofunctionalization 483
15.4 Biocompatibility and Cytotoxicity 485
 15.4.1 In Vitro Studies 486
 15.4.2 In Vivo and Ex Vivo Studies 490
15.5 Nanostructured Silicon Materials as DDS 492
 15.5.1 Drug-Loading Procedures 492
 15.5.2 Enhanced Drug Release 495
 15.5.3 Intracellular Uptake 500
15.6 Conclusion 502
References 502

16 Micro- and Nanosizing of Poorly Soluble Drugs by Grinding Techniques 509
Stefan Scheler

16.1 Introduction 509
16.2 Kinetics of Drug Dissolution 510
16.3 Micronization and Nanosizing of Drugs 510
 16.3.1 Dissolution Enhancement by Micronization and Nanonization 510
 16.3.2 Dry and Wet Milling Technologies 511
 16.3.3 NanoCrystal® Technology 512
16.4 Theory of Grinding Operations 512
 16.4.1 Fraction under Compressive Stress 512
 16.4.2 Brittle-Ductile Transition and Grinding Limit 514
 16.4.3 Milling Beyond the Brittle-Ductile Transition Limit 516
 16.4.4 Fatigue Fracture 517
 16.4.5 Agglomeration 517
 16.4.6 Amorphization 519
16.5 Influence of the Stabilizer 520
 16.5.1 Effects of Stabilization 520
 16.5.2 Steric and Electrostatic Stabilization 521
 16.5.3 Surfactants 523
 16.5.4 Polymers 527
16.6 Milling Equipment and Technology
 16.6.1 Grinding Beads
 16.6.2 Types of Media Mills
 16.6.3 Process Parameters
16.7 Process Development from Laboratory to Commercial Scale
 16.7.1 Early Development
 16.7.2 Toxicological Studies
 16.7.3 Clinical Studies
 16.7.4 Drying
 16.7.5 Further Processing of Drug Nanoparticles
16.8 Application and Biopharmaceutical Properties
 16.8.1 Oral Drug Delivery
 16.8.2 Parenteral Drug Delivery
 16.8.3 Extracorporal Therapy
16.9 Conclusion
References

17 Enhanced Solubility of Poorly Soluble Drugs Via Spray Drying
Cordin Arpagaus, David Rüti and Marco Meuri

17.1 Introduction
17.2 Advantages of Spray Drying
17.3 Principles and Instrumentation of Spray Drying Processes
 17.3.1 Principal Function of a Spray Dryer
 17.3.2 Traditional Spray Dryers
 17.3.3 Recent Developments in Spray Drying
17.4 Optimizing Spray Drying Process Parameters
 17.4.1 Drying Gas Flow Rate (Aspirator Rate)
 17.4.2 Drying Gas Humidity
 17.4.3 Inlet Temperature
 17.4.4 Spray Gas Flow
 17.4.5 Feed Concentration
 17.4.6 Feed Rate
 17.4.7 Organic Solvent Instead of Water
17.5 Spray Drying of Water-Insoluble Drugs: Case Studies
 17.5.1 Nanosuspensions
 17.5.2 Solid Lipid Nanoparticles
 17.5.3 Silica-Lipid Hybrid Microcapsules
 17.5.4 Milled Nanoparticles
 17.5.5 Inhalation Dosage Forms
 17.5.6 Porous Products
 17.5.7 Microemulsions
 17.5.8 Application Examples: Summary
17.6 Conclusion
References

Index
List of Contributors

Dr. Naveed Ahmed, University Lyon 1, Villeurbanne, CNRS, UMR-5007, Laboratoire d’Automatique et de Génie des Procédés, France.

Dr. Gavin P. Andrews, The Drug Delivery and Biomaterials Research Group, The School of Pharmacy, Queen’s University of Belfast, Northern Ireland.

Dr. Cordin Arpagaus, BÜCHI Labortechnik AG, Flawil, Switzerland.

Dr. Swati Biswas, Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.

Dr. Marcus E. Brewster, Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium.

Professor Heike Bunjes, Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Braunschweig, Germany.

Dr. Dennis Douroumis, School of Science, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK.

Professor Abdelhamid Elaissari, University Lyon 1, Villeurbanne, CNRS, UMR-5007, Laboratoire d’Automatique et de Génie des Procédés, France.

Professor Dr. Alfred Fahr, Department of Pharmaceutical Technology, Institute for Pharmacy, Friedrich-Schiller-University, Jena, Germany.

Dr. Dimitrios G. Fatouros, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Greece.

Professor Hatem Fessi, University Lyon 1, Villeurbanne, CNRS, UMR-5007, Laboratoire d’Automatique et de Génie des Procédés, France.

Professor Dagmar Fischer, Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany.
Professor Jonathan Hadgraft, Department of Pharmaceutics, School of Pharmacy, University of London, UK.

Dr. Chiraz Jaafar-Maalej, University Lyon 1, Villeurbanne, CNRS, UMR-5007, Laboratoire d’Automatique et de Génie des Procédés, France.

Professor Narendra K. Jain, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Gour Central University, Sagar, India.

Dr. David S. Jones, The Drug Delivery and Biomaterials Research Group, The School of Pharmacy, Queen’s University of Belfast, Northern Ireland

Dr. Sonja Joseph, Technische Universität Braunschweig, Institut für Pharmazeutische Technologie, Braunschweig, Germany.

Professor Cornelia M. Keck, Department of Applied Logistics and Polymer Sciences, Applied Pharmacy Division, University of Applied Sciences Kaiserslautern, Pirmasens, Germany; Institute of Biosciences (IBS), University Putra Malaysia (UPM), Serdang-Kuala Lumpur, Malaysia; and Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, Berlin, Germany.

Dr. Szymon Kobierski, Department of Pharmaceutics, Biopharmaceutics & NutriCosmetics, Freie Universität Berlin, Berlin, Germany.

Dr. Majella E. Lane, Department of Pharmaceutics, School of Pharmacy, University of London, UK.

Professor Vesa-Pekka Lehto, Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.

Dr. Mathew Leigh, Phares AG, Muttenz, Switzerland.

Dr. Shu Li, The Drug Delivery and Biomaterials Research Group, The School of Pharmacy, Queen’s University of Belfast, Northern Ireland.

Professor Thorsteinn Loftsson, Faculty of Pharmacy, University of Iceland, Reykjavik, Iceland.

Dr. Rachmat Mauludin, Department of Pharmaceutics, Universitas Pendidikan, Bandung, Indonesia.

Marco Meuri, BÜCHI Labortechnik AG, Flawil, Switzerland.

Dr. C.E. Mora-Heurtas, University Lyon 1, Villeurbanne, CNRS, UMR-5007, Laboratoire d’Automatique et de Génie des Procédés, France.
Dr. Sara Movassaghian, Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA; and Department of Pharmaceutics, School of Pharmacy, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.

Professor Rainer H. Müller, Department of Pharmaceutics, Biopharmaceutics & Nutri-Cosmetics, Freie Universität Berlin, Berlin, Germany.

Professor Anette Müllertz, Bioneer: FARMA, Department of Pharmaceutics and Analytical Chemistry, The Faculty of Pharmaceutical Science, University of Copenhagen, Copenhagen, Denmark.

Dr. Joakim Riikonen, Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.

Dr. David Rütti, BÜCHI Labortechnik AG, Flawil, Switzerland.

Assistant Professor Jarno Salonen, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.

Dr. Helder Santos, Division of Pharmaceutical Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.

Dr. Stefan Scheler, Sandoz GmbH, Kundl, Austria.

Dr. Hari Singh, Gour Central University, Sagar, India.

Dr. Rakesh K. Tekade, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Gour Central University, Sagar, India.

Professor Vladimir P. Torchilin, Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.

Dr. Peter van Hoogevest, Phares AG, Muttenz, Switzerland; and Department of Pharmaceutical Sciences, Institute of Pharmaceutical Technology, University of Basel, Switzerland.

Dr. Onkar S. Vaze, Center for Pharmaceutical Biotechnology and Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts, USA.

Assistant Professor Xue-Qing Wang, School of Pharmaceutical Sciences, Peking University, Beijing, China.

Professor Qiang Zhang, School of Pharmaceutical Sciences, Peking University, Beijing, China.
The series *Advances in Pharmaceutical Technology* covers the principles, methods and technologies that the pharmaceutical industry use to turn a candidate molecule or new chemical entity into a final drug form and hence a new medicine. The series will explore means of optimizing the therapeutic performance of a drug molecule by designing and manufacturing the best and most innovative of new formulations. The processes associated with the testing of new drugs, the key steps involved in the clinical trials process and the most recent approaches utilized in the manufacture of new medicinal products will all be reported. The focus of the series will very much be on new and emerging technologies and the latest methods used in the drug development process.

The topics covered by the series include:

Formulation: the manufacture of tablets in all forms (caplets, dispersible, fast-melting) will be described, as will capsules, suppositories, solutions, suspensions and emulsions, aerosols and sprays, injections, powders, ointments and creams, sustained release and the latest transdermal products. The developments in engineering associated with fluid, powder and solids handling, solubility enhancement, colloidal systems including the stability of emulsions and suspensions will also be reported within the series. The influence of formulation design on the bioavailability of a drug will be discussed and the importance of formulation with respect to the development of an optimal final new medicinal product will be clearly illustrated.

Drug Delivery: The use of various excipients and their role in drug delivery will be reviewed. Among the topics to be reported and discussed will be a critical appraisal of the current range of modified-release dosage forms currently in use and also those under development. The design and mechanism(s) of controlled release systems including; macromolecular drug delivery, microparticulate controlled drug delivery, the delivery of biopharmaceuticals, delivery vehicles created for gastro-intestinal tract targeted delivery, transdermal delivery and systems designed specifically for drug delivery to the lung will all be reviewed and critically appraised. Further site-specific systems used for the delivery of drugs across the blood–brain barrier including dendrimers, hydrogels and new innovative biomaterials will be reported.

Manufacturing: The key elements of the manufacturing steps involved in the production of new medicines will be explored in this series. The importance of crystallization; batch and continuous processing, seeding; mixing including a description of the key engineering principles relevant to the manufacture of new medicines will all be reviewed and reported. The fundamental processes of quality control including good laboratory practice (GLP), good manufacturing practice (GMP), Quality by Design (QbD), the
Deming Cycle; Regulatory requirements and the design of appropriate robust statistical sampling procedures for the control of raw materials will all be an integral part of this book series.

An evaluation of the current analytical methods used to determine drug stability, the quantitative identification of impurities, contaminants and adulterants in pharmaceutical materials will be described as will the production of therapeutic bio-macromolecules, bacteria, viruses, yeasts, moulds, prions and toxins through chemical synthesis and emerging synthetic/molecular biology techniques. The importance of packaging including the compatibility of materials in contact with drug products and their barrier properties will also be explored.

Advances in Pharmaceutical Technology is intended as a comprehensive one-stop shop for those interested in the development and manufacture of new medicines. The series will appeal to those working in the pharmaceutical and related industries, both large and small, and will also be valuable to those who are studying and learning about the drug development process and the translation of those drugs into new life-saving and life-enriching medicines.

Dennis Douroumis
Alfred Fahr
Jürgen Siepmann
Martin Snowden
Preface

In former times, formulation specialists were not yet exposed to the many problems and subtleties that we face today in producing applicable drugs. In those ‘good old days’ the best drugs were simply generated using polar media, either by extraction from plants or by synthetic methods. Later, towards the end of the last century, an ever growing number of lipophilic drugs started to appear for oral as well as parenteral administration. Natural substances, like cyclosporine or modifications of aromatic structures that render selected drugs even more lipophilic, began to enter the vanguard of the blockbuster class. Stories about the difficulties of absorption in the gut or the bad pharmacokinetic profiles of these drugs have entered the body of canonical knowledge in many pharmaceutical companies. Desperate attempts to formulate these insoluble drugs – such as ‘encapsulating’ them in Swiss chocolate to get an oral delivery – are well remembered in the corresponding pharmacists’ clubs.

This situation has changed with the advent of the new millennium in two ways:

1. The percentage of new drug molecules that are insoluble in water has risen to about 40% in total; in various therapeutic areas this percentage has even reached 80–90%. Why is this so? Perhaps the best explanation is the invention of the so-called High ThroughPut Screening (HTPS) method. Here, a variety of substances are tested (for cases of more than 100,000 per day, the method is re-named ‘ultra-HTPS’) for their activity with regard to certain biochemical targets (alternatively a cell, organ, or organism). This often favors the selection of drugs with higher lipophilicity, as most target sites – for example, the active center of an enzyme or a membrane protein – tend to be more accessible to lipophilic drugs, which runs in parallel to non-solubility. Adding to the difficulties for a formulation specialist, oral bioavailability is not among the primary aims of the HTPS procedure.

2. Pharmaceutical scientists have responded to this challenge in the past few decades by developing a variety of formulation principles for these poorly water-soluble drugs. Insoluble drugs should be made dissolvable by physico-chemical or biological means (e.g. transfer to gut cell membranes (p.o.) or lipoproteins (i.v.)) in order to arrive at the pharmacological target in appreciable amounts.

Even though some advertisements of excipient producers do suggest this, there is no ultimate single solution for insoluble drugs (as evidenced by the variety of methods presented in this book). On the other hand, there is the old saying that if there is more than one solution for a problem, there is likely no solution at all.
Therefore, a pharmacist who has to design and develop a formulation for an insoluble drug has to be aware of all the characteristics of the drug, s/he also has to have a profound knowledge of the available and feasible formulation options. To this end, s/he is likely to end up studying the literature in depth, as there are few other resources available that provide comprehensive surveys written by the experts in the field. The present book tries to fill this gap.

The book begins with some theoretical considerations, thereby introducing and discussing basic concepts such as solubility and hydrophobicity, and also provides a modeling framework for nanocarriers and their interactions with drug and the environment (Chapter 1).

Several chapters (2, 3–6, 13, 14) show how cyclodextrins, dendrimers, micelles, liposomes, solid lipid nanoparticles, and polymeric systems can overcome the solubility problem for insoluble drugs by using carrier systems mostly intended for the parenteral route. The carrier systems may be composed of either complex single molecules as hosts (e.g. dendrimers) or an assembly of rather simple molecules (e.g. micelles), or a combination of both. The complex interplay between host and drug often plays a crucial role in the success of such formulations and is extensively discussed in the respective chapters, along with detailed production procedures.

Microemulsion technology serves both the parenteral and the oral administration route for insoluble drugs, as is demonstrated in Chapter 10. Upon the addition of water, anhydrous (micro)emulsions may spontaneously emulsify. This process is used to produce self-emulsifying drug delivery systems (SEDDS) that are mainly used for oral delivery; see the discussion in Chapter 7.

Another feasible approach to improving the solubility of orally administered drugs is the size reduction of solid-state particles, yielding a large specific surface area. In Chapters 8, 9, 16 and 17, the production of nano-sized particles is described, using several different approaches (milling techniques, nanocrystals, nanosuspensions, and spray drying). The amorphous state of, for example, spray-dried particles and nanosuspensions may increase the solubility further and this is discussed thoroughly in the respective chapters.

Hot melt extrusion (solid dispersion technology) is, like the other methods described here, already on the market and attracting ever more attention as a method to enhance the bioavailability of problematic drugs. This is thoroughly described in Chapter 11.

Mesoporous silica nanoparticles (Chapter 15) are an interesting experimental formulation for increasing the solubility of insoluble drugs – they hold promising potential for the future.

Finally, Chapter 12 demonstrates that skin delivery of highly insoluble drugs is equally as challenging as other administration routes.

The different methods described in this book share the underlying goal of improving the solubility and the dissolution rate of poorly water-soluble drugs. We wish to point out that, especially for colloidal systems, these methods can be combined with targeting approaches. Targeting constitutes a fast-growing research field in its own right; its inclusion was outside the scope of the present book.

The interested reader may notice that the chapters integrate with each other. This indeed is the intention of the book as it likely facilitates the decision on which method might be worth trying for a given formulation problem. We emphasize that despite the efforts of all authors – including their careful descriptions, practical tips, and even theoretical considerations – finding the right formulation may in the end still be a matter of educated
trial and error. Yet, even in this case, we are confident that this book will speed up the process.

The editors thank all the contributors for their time and effort in composing this compendium, for presenting the current state of the art in formulating insoluble drugs for oral, parenteral and topical administration, and for providing the reader with practical guidelines on how to start a formulation task.
1

Self-Assembled Delivery Vehicles for Poorly Water-Soluble Drugs: Basic Theoretical Considerations and Modeling Concepts

Sylvio May and Alfred Fahr

1.1 Introduction

Poor solubility is a well-recognized property of many drug molecules [1]. Unprotected administration of poorly water-soluble drugs is problematic. Aggregation, precipitation, uncontrolled binding, and direct exposure to a harsh biological environment render this process inefficient. The putative ‘solution’ of using higher drug concentrations narrows the window between a therapeutic success and unwanted side effects such as locally toxic drug levels. It comes as no surprise that the administration of poorly water-soluble drugs can benefit dramatically from using delivery vehicles. Such vehicles can, in principle, be designed not only to encapsulate a drug and protect it from biological defense mechanisms, but also to release the drug in a controlled manner at the target site and then to be recycled through biodegradation. Different types of delivery vehicles are currently being investigated, including microemulsions [2,3], gels [4], micelles [5,6], liposomes [7], polymersomes [8], dendrimers [9], and nanoparticles [10], or lipid nanoparticles [11]. Notably, most of these are self-assembled structures. Self-assembly is an ubiquitous process in cellular systems, most strikingly perhaps in the cell membrane where a matrix (lipids) contains highly specialized functional units (poorly water-soluble proteins). Functionalization is an advantage that is also increasingly integrated into drug delivery vehicles. As an example
we mention liposomes, which were originally designed as long-circulating transport vehicles for drug molecules [12]. Extending the circulation time by decorating the liposome surface with PEG-chains (stealth liposomes [13]) can be viewed as the first step toward functionalization. Currently designed liposomes raise the concept of functionalization to a new height: they contain targeting ligands and carry out stimuli-sensitive triggering of the drug release [14–16].

Optimizing drug delivery vehicles is promising but also challenging. Self-assembled nanostructures are soft and responsive materials, where entropy becomes an important factor for structure and stability. It is virtually impossible to manipulate one property without affecting others (and sometimes this has drastic implications as one of the authors vividly recalls the disintegration of an entire colloidal formulation upon the replacement of a single -H group by an -OH group in a 1 kDalton drug molecule). Nanocarrier properties are affected by a range of interactions that are well known from colloidal science, including solvation energies, electrostatic and van der Waals interactions, depletion and packing effects, etc. [17, 18]. Appreciation and understanding of these interactions are likely to reflect upon nanocarrier design and optimization. For example, one of the challenges that drug encapsulation in nanocarriers faces is related to the retention of the drug in the carrier. A lipophilic drug does not necessarily remain in a rigid lipophilic matrix [19] but is rapidly squeezed out, whereas soft structures (like liposomal membranes) tend to increase the residence time in the membrane. What physical mechanisms underlie the ability of soft rather than rigid self-assembled structures to accommodate small lipophilic drugs? And what physical properties determine the release? The latter question relates to the fact that a carrier keeping the drug completely in the interior will ultimately prevent a therapeutic effect. The authors’ experience with a liposomal formulation of a peptide showed an increase of lifetime from 3 mins to 24 hours in blood, but there was no pharmacological activity, as the liposomes with the drug inside were eliminated without releasing the drug to blood components or organs. Other practical hurdles are discussed, for example, by van Hoogevest et al. [20].

The present chapter presents a conceptual framework for physics-based modeling approaches of self-assembled nanoscaled carrier systems that are associated with lipophilic drugs. Our focus is clearly on the basic physics and underlying concepts [21]. We start with an account of basic thermodynamic relations (Section 1.2) which we subsequently exploit to discuss principles of self-assembly (Section 1.3) and the partitioning of drug molecules into self-assembled carrier systems (Section 1.4). The energetics of individual delivery vehicles depends on a multitude of inter-molecular interactions; of these we discuss electrostatics and the packing of chain-like molecules (Section 1.5). We finally consider kinetic properties of drug transfer from mobile nano-carriers to a target system (Section 1.6). Note that none of the sections aims to give a comprehensive account of the available theoretical concepts (for more comprehensive accounts and discussions of specific applications, see [21–24]). However, for those subjects that we discuss, it is our goal not only to state the final results but also provide some guidance through the physical and mathematical basis of their derivation. We shall focus on simple and generic models, namely those that highlight the underlying physical principles, thereby excluding more advanced theoretical concepts and atomistic simulations. In summary, the present chapter approaches the pharmaceutical scientist who is interested in the process of developing theoretical models for self-assembled delivery vehicles of drug molecules from first principles.