Spacecraft Dynamics and Control
An Introduction

ANTON H.J. DE RUITER, Ryerson University, Toronto, Canada
CHRISTOPHER J. DAMAREN, University of Toronto, Toronto, Canada
JAMES R. FORBES, McGill University, Montreal, Canada

“This unique volume is unmatched in breadth and depth, providing detailed coverage of topics ranging from orbital dynamics to formation flight to attitude dynamics to control and navigation. The authors bring a fresh, unified perspective to the field with a groundbreaking textbook that is destined to become the favorite of students at all levels.”
Dennis S. Bernstein, Aerospace Engineering Department, The University of Michigan, USA

This textbook presents a rigorous, yet practical and accessible introduction to the fundamentals of spacecraft dynamics and control. Written for engineering students and practicing engineers with a basic background in mathematics and mechanics, it is suitable for both upper-year undergraduate courses and first graduate courses, as well as self-study. The material covered is comprehensive; all the pertinent aspects of a spacecraft mission including orbital dynamics, attitude dynamics, and control are discussed. Additionally, advanced topics such as low-thrust trajectory analysis, nonlinear spacecraft attitude control, and navigation techniques are introduced. A unique feature of this textbook is the presentation of classical control systems design techniques using spacecraft attitude control as the motivating control design objective.

Key features:
- A comprehensive reference on the fundamentals of orbital dynamics, attitude dynamics, and control
- Classical control systems design is explained and motivated by the control of a spacecraft’s attitude
- Practical aspects of spacecraft dynamics and control are discussed, including sensor and actuator operation, digital implementation of controllers, and the effects of unmodelled dynamics
- Numerous illustrations accompany the text, helping the reader to better understand the material

Front cover: RADARSAT-2 image courtesy of Canadian Space Agency (CSA) and MacDonald, Dettwiler and Associates Ltd (MDA)
SPACECRAFT DYNAMICS AND CONTROL
SPACECRAFT DYNAMICS AND CONTROL
AN INTRODUCTION

Anton H.J. de Ruiter
Ryerson University, Canada

Christopher J. Damaren
University of Toronto, Canada

James R. Forbes
McGill University, Canada

WILEY
A John Wiley & Sons, Ltd., Publication
To Janice, Thomas, Benjamin, Therese and Marie

A.dR

To Yvonne, Gwen, and Georgia

C.J.D

For Allison

J.R.F
Contents

Preface

vii

1 **Kinematics**

1.1 Physical Vectors

1.1.1 **Scalar Product**

1.1.2 **Vector Cross Product**

1.1.3 **Other Useful Vector Identities**

1.2 Reference Frames and Physical Vector Coordinates

1.2.1 **Vector Addition and Scalar Multiplication**

1.2.2 **Scalar Product**

1.2.3 **Vector Cross Product**

1.2.4 **Column Matrix Identities**

1.3 Rotation Matrices

1.3.1 **Principal Rotations**

1.3.2 **General Rotations**

1.3.3 **Euler Angles**

1.3.4 **Quaternions**

1.4 Derivatives of Vectors

1.4.1 **Angular Velocity**

1.4.2 **Angular Velocity in Terms of Euler Angle Rates**

1.4.3 **Angular Velocity in Terms of Quaternion Rates**

1.5 Velocity and Acceleration

1.6 More Rigorous Definition of Angular Velocity

Notes

44

References

45

2 **Rigid Body Dynamics**

2.1 Dynamics of a Single Particle

2.2 Dynamics of a System of Particles

2.3 Rigid Body Dynamics

2.3.1 **Translational Dynamics**

2.3.2 **Rotational Dynamics**

47

49

52

53

54
Contents

5.4 Combined Maneuvers 125
5.5 Rendezvous 127
Notes 128
Reference 128

6 Interplanetary Trajectories 129
6.1 Sphere of Influence 129
6.2 Interplanetary Hohmann Transfers 133
6.3 Patched Conics 137
 6.3.1 Departure Hyperbola 139
 6.3.2 Arrival Hyperbola 141
6.4 Planetary Flyby 143
6.5 Planetary Capture 145
Notes 146
References 147

7 Orbital Perturbations 149
7.1 Special Perturbations 150
 7.1.1 Cowell’s Method 151
 7.1.2 Encke’s Method 151
7.2 General Perturbations 154
7.3 Gravitational Perturbations due to a Non-Spherical Primary Body 156
 7.3.1 The Perturbative Force Per Unit Mass Due to J_2 163
7.4 Effect of J_2 on the Orbital Elements 164
7.5 Special Types of Orbits 168
 7.5.1 Sun-Synchronous Orbits 168
 7.5.2 Molniya Orbits 169
7.6 Small Impulse Form of the Gauss Variational Equations 169
7.7 Derivation of the Remaining Gauss Variational Equations 171
Notes 180
References 181

8 Low Thrust Trajectory Analysis and Design 183
8.1 Problem Formulation 183
8.2 Coplanar Circle to Circle Transfers 184
8.3 Plane Change Maneuver 186
Notes 188
References 188

9 Spacecraft Formation Flying 189
9.1 Mathematical Description 190
9.2 Relative Motion Solutions 194
 9.2.1 Out-of-Plane Motion 195
 9.2.2 In-Plane Motion 195
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.3</td>
<td>Alternative Description for In-Plane Relative Motion</td>
<td>198</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Further Examination of In-Plane Motion</td>
<td>200</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Out-of-Plane Motion - Revisited</td>
<td>202</td>
</tr>
<tr>
<td>9.3</td>
<td>Special Types of Relative Orbits</td>
<td>203</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Along-Track Orbits</td>
<td>203</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Projected Elliptical Orbits</td>
<td>204</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Projected Circular Orbits</td>
<td>207</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td>207</td>
</tr>
<tr>
<td>10</td>
<td>The Restricted Three-Body Problem</td>
<td>209</td>
</tr>
<tr>
<td>10.1</td>
<td>Formulation</td>
<td>209</td>
</tr>
<tr>
<td>10.1.1</td>
<td>Equations of Motion</td>
<td>211</td>
</tr>
<tr>
<td>10.2</td>
<td>The Lagrangian Points</td>
<td>212</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Case (i)</td>
<td>212</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Case (ii)</td>
<td>213</td>
</tr>
<tr>
<td>10.3</td>
<td>Stability of the Lagrangian Points</td>
<td>214</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Comments</td>
<td>215</td>
</tr>
<tr>
<td>10.4</td>
<td>Jacobi’s Integral</td>
<td>215</td>
</tr>
<tr>
<td>10.4.1</td>
<td>Hill’s Curves</td>
<td>216</td>
</tr>
<tr>
<td>10.4.2</td>
<td>Comments on Figure 10.5</td>
<td>218</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td>218</td>
</tr>
<tr>
<td>11</td>
<td>Introduction to Spacecraft Attitude Stabilization</td>
<td>219</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction to Control Systems</td>
<td>220</td>
</tr>
<tr>
<td>11.1.1</td>
<td>Open-loop versus Closed-loop</td>
<td>220</td>
</tr>
<tr>
<td>11.1.2</td>
<td>Typical Feedback Control Structure</td>
<td>221</td>
</tr>
<tr>
<td>11.2</td>
<td>Overview of Attitude Representation and Kinematics</td>
<td>222</td>
</tr>
<tr>
<td>11.3</td>
<td>Overview of Spacecraft Attitude Dynamics</td>
<td>223</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Properties of the Inertia Matrix - A Summary</td>
<td>224</td>
</tr>
<tr>
<td>12</td>
<td>Disturbance Torques on a Spacecraft</td>
<td>227</td>
</tr>
<tr>
<td>12.1</td>
<td>Magnetic Torque</td>
<td>227</td>
</tr>
<tr>
<td>12.2</td>
<td>Solar Radiation Pressure Torque</td>
<td>228</td>
</tr>
<tr>
<td>12.3</td>
<td>Aerodynamic Torque</td>
<td>230</td>
</tr>
<tr>
<td>12.4</td>
<td>Gravity-Gradient Torque</td>
<td>231</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>Reference</td>
<td></td>
<td>234</td>
</tr>
<tr>
<td>13</td>
<td>Torque-Free Attitude Motion</td>
<td>235</td>
</tr>
<tr>
<td>13.1</td>
<td>Solution for an Axisymmetric Body</td>
<td>235</td>
</tr>
<tr>
<td>13.2</td>
<td>Physical Interpretation of the Motion</td>
<td>242</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td>245</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>245</td>
</tr>
</tbody>
</table>
Contents

14 Spin Stabilization

14.1 Stability 247
14.2 Spin Stability of Torque-Free Motion 249
14.3 Effect of Internal Energy Dissipation

14.3.1 Energy Sink Hypothesis 252
14.3.2 Major Axis Rule 253

Notes 253
References 253

15 Dual-Spin Stabilization

15.1 Equations of Motion 255
15.2 Stability of Dual-Spin Torque-Free Motion 257
15.3 Effect of Internal Energy Dissipation 259

Notes 266
References 266

16 Gravity-Gradient Stabilization

16.1 Equations of Motion 267
16.2 Stability Analysis

16.2.1 Pitch Motion 272
16.2.2 Roll-Yaw Motion 273
16.2.3 Combined Pitch and Roll/Yaw 277

Notes 277
References 277

17 Active Spacecraft Attitude Control

17.1 Attitude Control for a Nominally Inertially Fixed Spacecraft 279
17.2 Transfer Function Representation of a System 281
17.3 System Response to an Impulsive Input 282
17.4 Block Diagrams 284
17.5 The Feedback Control Problem 286
17.6 Typical Control Laws

17.6.1 Proportional “P” Control 289
17.6.2 Proportional Derivative “PD” Control 290
17.6.3 Proportional Integral Derivative “PID” Control 291

17.7 Time-Domain Specifications 292

17.7.1 Transient Specifications 293

17.8 Factors that Modify the Transient Behavior

17.8.1 Effect of Zeros 308
17.8.2 Effect of Additional Poles 309

17.9 Steady-State Specifications and System Type

17.9.1 System Type 311
17.9.2 Step Input \(R(s) = \frac{1}{s} \) \(r(t) = 1 \). 313
17.9.3 Ramp Input \(R(s) = \frac{1}{s^2} \) \(r(t) = t \). 314

Notes 311
References 311
17.10 Effect of Disturbances 316
17.11 Actuator Limitations 319
Notes 320
References 320

18 Routh's Stability Criterion 321
18.1 Proportional-Derivative Control with Actuator Dynamics 322
18.2 Active Dual-Spin Stabilization 325
Notes 330
References 330

19 The Root Locus 331
19.1 Rules for Constructing the Root Locus 332
19.1.1 Rules for constructing the root locus 335
19.1.2 Important Points 339
19.2 PD Attitude Control with Actuator Dynamics - Revisited 341
19.2.1 Interpretation of the root locus 344
19.3 Derivation of the Rules for Constructing the Root Locus 345
19.3.1 Rule 1 345
19.3.2 Rule 2 346
19.3.3 Rule 3 347
19.3.4 Rule 4 349
19.3.5 Rule 5 350
Notes 353
References 353

20 Control Design by the Root Locus Method 355
20.1 Typical Types of Controllers 357
20.1.1 Lead 358
20.1.2 Lag 358
20.1.3 Proportional-Derivative (PD) 360
20.1.4 Proportional-Integral (PI) 361
20.2 PID Design for Spacecraft Attitude Control 361
20.2.1 PI Design 363
20.2.2 PD Design 363
20.2.3 Computation of the Gain K 365
Notes 369
References 369

21 Frequency Response 371
21.1 Frequency Response and Bode Plots 372
21.1.1 Plotting the Frequency Response as a Function of ω (Bode Plots) 374
21.2 Low-Pass Filter Design 383
Notes 385
References 385
Contents

22 Relative Stability 387

22.1 Polar Plots 387
 - 22.1.1 Type 0 Systems ($N = 0$) 388
 - 22.1.2 Type 1 Systems ($N = 1$) 389

22.2 Nyquist Stability Criterion 390
 - 22.2.1 Argument Principle 391
 - 22.2.2 Stability Analysis of the Closed-Loop System 392

22.3 Stability Margins 399
 - 22.3.1 Stability Margin Definitions 401

Notes 410
References 410

23 Control Design in the Frequency Domain 411

23.1 Feedback Control Problem - Revisited 416
 - 23.1.1 Closed-Loop Tracking Error 417
 - 23.1.2 Closed-Loop Control Effort 419
 - 23.1.3 Modified Control Implementation 420

23.2 Control Design 422
 - 23.2.1 Frequency Responses for Common Controllers 425

23.3 Example - PID Design for Spacecraft Attitude Control 430
Notes 435
References 435

24 Nonlinear Spacecraft Attitude Control 437

24.1 State-Space Representation of the Spacecraft Attitude Equations 437

24.2 Stability Definitions
 - 24.2.1 Equilibrium Points 440
 - 24.2.2 Stability of Equilibria 441

24.3 Stability Analysis
 - 24.3.1 Detumbling of a Rigid Spacecraft 442
 - 24.3.2 Lyapunov Stability Theorems 447

24.4 LaSalle’s Theorem 448

24.5 Spacecraft Attitude Control with Quaternion and Angular Rate Feedback 451
 - 24.5.1 Controller Gain Selection 454

Notes 456
References 457

25 Spacecraft Navigation 459

25.1 Review of Probability Theory 459
 - 25.1.1 Continuous Random Variables and Probability Density Functions 459
 - 25.1.2 Mean and Covariance 462
 - 25.1.3 Gaussian Probability Density Functions 464
 - 25.1.4 Discrete-Time White Noise 466
 - 25.1.5 Simulating Noise 466

References 457
Contents

25.2 Batch Approaches for Spacecraft Attitude Estimation 467
25.2.1 Wahba’s Problem 468
25.2.2 Davenport’s q-Method 468
25.2.3 The QUEST Algorithm 471
25.2.4 The TRIAD Algorithm 474
25.2.5 Example 475

25.3 The Kalman Filter 477
25.3.1 The Discrete-Time Kalman Filter 477
25.3.2 The Norm-Constrained Kalman Filter 481
25.3.3 Spacecraft Attitude Estimation Using the Norm-Constrained Extended Kalman Filter 488

Notes 496
References 497

26 Practical Spacecraft Attitude Control Design Issues 499

26.1 Attitude Sensors 499
26.1.1 Sun-Sensors 499
26.1.2 Three-Axis Magnetometers 501
26.1.3 Earth Sensors 502
26.1.4 Star Trackers 504
26.1.5 Rate Sensors 505

26.2 Attitude Actuators 506
26.2.1 Thrusters 506
26.2.2 Magnetic Torquers 508
26.2.3 Reaction Wheels 509
26.2.4 Momentum Wheels 510
26.2.5 Control Moment Gyroscopes 510

26.3 Control Law Implementation 511
26.3.1 Time-Domain Representation of a Transfer Function 511
26.3.2 Control Law Digitization 514
26.3.3 Closed-Loop Stability Analysis 517
26.3.4 Sampling Considerations 519

26.4 Unmodeled Dynamics 523
26.4.1 Effects of Spacecraft Flexibility 524
26.4.2 Effects of Propellant Sloshing 538

Notes 539
References 539

Appendix A: Review of Complex Variables 541
A.1 Functions of a Complex Variable 544
A.2 Complex Valued Functions of a Real Variable 544
A.3 The Laplace Transform 546
A.4 Partial Fraction Expansions 550
A.5 Common Laplace Transforms 553
A.6 Example of Using Laplace Transforms to Solve a Linear Differential Equation 553
Appendix B: Numerical Simulation of Spacecraft Motion
B.1 First Order Ordinary Differential Equations
B.2 Formulation of Coupled Spacecraft Orbital and Attitude Motion Equations
Notes
Reference
Index
Preface

This book presents a fundamental introduction to spacecraft orbital and attitude dynamics as well as its control. There are several excellent books related to these subjects. It is not our intention to compete with these well-established texts. However, many of them assume relatively significant backgrounds on behalf of the reader, which can make them difficult to follow for the beginner. It is our hope that this book will fill that void, and that by studying this book, more advanced texts on the subject will become more accessible to the reader. This book is suitable for first courses in spacecraft dynamics and control at the upper undergraduate level or at the beginning graduate level. The book is naturally split between orbital mechanics, and spacecraft attitude dynamics and control. It could therefore be used for two one semester courses, one on each subject. It could also be used for self-study.

The primary objective of this book is to educate, and the structure of the book reflects this. This book could also be used by the professional looking to refresh some of the fundamentals. We have made this book as self-contained as possible. In each chapter we develop a subject at a fundamental level (perhaps drawing on results from previous chapters). As a result, the reader should not only understand what the key mathematical results are, but also how they were obtained and what their limitations are (if applicable). At the end of each chapter we provide a few recommended references should the reader have interest in exploring the subject further.

The assumed reader background is minimal. Junior undergraduate level mathematics and mechanics taught in standard engineering programs should be sufficient. While a background in classical control theory would help, it is not necessary to have it in order to be able to follow the treatment of spacecraft attitude control. The presentation in this book on spacecraft attitude control is completely self-contained, and it could in fact be used as a substitute for a complete first (undergraduate level) course in classical control. The reader without a control background will learn classical control theory motivated by a real system to be controlled, namely, a spacecraft (as opposed to some abstract transfer functions). The reader with a prior control background may gain new appreciation of the theory by seeing it presented in the context of an application.

In Chapters 1 and 2, we present the vector kinematics and rigid body dynamics required to be able to describe spacecraft motion. Chapters 3 to 10 contain the orbital mechanics component of this book. Topics include the two-body problem, preliminary orbit determination, orbital and interplanetary maneuvers, orbital perturbations, low-thrust trajectory design, spacecraft formation flying, and the restricted three-body problem. Chapter 11 presents a high level overview of both passive and active means of spacecraft attitude stabilization, and provides
Preface

an introduction to control systems. Chapters 12 to 16 present aspects of spacecraft attitude dynamics (disturbance torques and a solution for torque-free motion), and more detailed treatments of passive means of spacecraft attitude stabilization. Chapters 17 to 23 present active means of spacecraft attitude control using classical control techniques. Chapters 24 and 25 present introductions to some more advanced topics, namely nonlinear spacecraft attitude control and spacecraft attitude determination. These chapters also provide a brief introduction to nonlinear control theory and state estimation. Chapter 26 presents an overview of practical issues that must be dealt with in designing a spacecraft attitude control system, namely different spacecraft attitude sensor and actuator types, digital control implementation issues and effects of unmodeled dynamics on spacecraft attitude control systems. Finally, Appendices A and B contain some background reference material.

After finishing this book, the reader should have a strong understanding of the fundamentals of spacecraft orbital and attitude dynamics and control, and should be aware of important practical issues that need to be accounted for in spacecraft attitude control design. The reader will be well-prepared for further study in the subject.

The first author would like to express his deep gratitude to the Department of Mechanical and Aerospace Engineering at Carleton University in Ottawa, Canada, for the opportunity to develop and teach courses in orbital mechanics and spacecraft dynamics and control. The notes developed for these courses were the starting point for much of this book.

The reader will notice that this book contains no exercises. This was a decision made in order to keep the page count down. However, the reader will find a full set of exercises accompanying the book, as well as other supplementary material on the book’s companion website: http://arrow.utias.utoronto.ca/damaren/book/.

Anton H.J. de Ruiter
Christopher J. Damaren
James R. Forbes
1

Kinematics

Spacecraft are free bodies, possessing both translational and rotational motion. The translational component is the subject of *orbital dynamics*, the rotational component is the subject of *attitude dynamics*. It will be seen that the two classes of motion are essentially uncoupled, and can be treated separately.

To be able to study the motion of a spacecraft mathematically, we need a framework for describing it. For this purpose, we need to have a solid understanding of vectors and reference frames, and the associated calculus.

1.1 Physical Vectors

A *physical vector* is a three-dimensional quantity that possesses a *magnitude* and a *direction*. A physical vector will be denoted as \(\mathbf{r} \), for example. It can be represented graphically by an arrow. Vector addition is defined head-to-tail as shown in Figure 1.1. Multiplication of a vector \(\mathbf{r} \) by a scalar \(a \) scales the magnitude by \(|a|\). If \(a \) is positive, the direction is unchanged, and if \(a \) is negative, the direction is reversed. It is also useful to define a zero-vector denoted by \(\mathbf{0} \), which has magnitude 0, but no specified direction.

Under these definitions, physical vectors satisfy the following rules for addition:

\[
(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c}),
\]
\[
\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a},
\]
\[
\mathbf{a} + \mathbf{0} = \mathbf{a},
\]
\[
\mathbf{a} + (-\mathbf{a}) = \mathbf{0}.
\]
Figure 1.1 Physical vector addition

and the following rules for scalar multiplication:

\[a(b \vec{c}) = (ab)\vec{c}, \]
\[(a + b)\vec{c} = a\vec{c} + b\vec{c}, \]
\[a(\vec{b} + \vec{c}) = a\vec{b} + a\vec{c}, \]
\[1\vec{a} = \vec{a}, \]
\[0\vec{a} = \vec{0}. \]

It is very important to note that the concept of a physical vector is independent of a coordinate system.

1.1.1 Scalar Product

Given vectors \(\vec{a} \) and \(\vec{b} \), the scalar (or dot) product between the two vectors is defined as

\[\vec{a} \cdot \vec{b} \triangleq |\vec{a}| |\vec{b}| \cos \theta, \]

where \(0 \leq \theta \leq 180^\circ \) is the small angle between the two vectors, as shown in Figure 1.2. By this definition, the scalar product is commutative, that is

\[\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}. \]

As demonstrated in Figure 1.2, the scalar product \(\vec{a} \cdot \vec{b} \) is just the projection of \(\vec{a} \) onto \(\vec{b} \) multiplied by \(|\vec{b}| \). Projections are additive, as shown in Figure 1.3, therefore, the scalar product is also distributive, that is

\[(\vec{a} + \vec{b}) \cdot \vec{c} = \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}. \]

(1.1)

Figure 1.2 Scalar product geometry
The following properties are also readily verified from the definition

\[\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \geq 0, \quad (1.2) \]
\[\mathbf{a} \cdot \mathbf{0} = 0 \Leftrightarrow \mathbf{a} = \mathbf{0}. \quad (1.3) \]
\[\mathbf{a} \cdot (c\mathbf{b}) = c\mathbf{a} \cdot \mathbf{b}, \quad (1.4) \]
\[\mathbf{a} \cdot \mathbf{b} = 0 \Leftrightarrow \mathbf{a} \perp \mathbf{b} \text{ or } \mathbf{a} = \mathbf{0} \text{ or } \mathbf{b} = \mathbf{0}. \quad (1.5) \]

1.1.2 Vector Cross Product

Given vectors \(\mathbf{a} \) and \(\mathbf{b} \), the cross-product is defined as a vector \(\mathbf{c} \), denoted by \(\mathbf{c} = \mathbf{a} \times \mathbf{b} \) with magnitude

\[|\mathbf{c}| = |\mathbf{a}| |\mathbf{b}| \sin \theta, \]

with a direction perpendicular to both \(\mathbf{a} \) and \(\mathbf{b} \), chosen according to the right-hand rule, as shown in Figure 1.4. Note that \(0 \leq \theta \leq 180^\circ \) is again the small angle between the two vectors.

From the definition of the cross-product, it is clear that changing the order simply reverses the direction of the cross-product, that is

\[\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}. \]

\[\mathbf{a} \times \mathbf{b} \]

\[\mathbf{a} \]

\[\theta \]

\[\mathbf{b} \]

Figure 1.4 Vector cross product
Now, as shown in Figure 1.5, the vector \vec{a} can be decomposed into two mutually perpendicular vectors $\vec{a} = \vec{a}_{\perp b} + \vec{a}_{\parallel b}$, where $\vec{a}_{\perp b}$ is perpendicular to \vec{b}, and $\vec{a}_{\parallel b}$ is parallel to \vec{b}. These components are given by

$$\vec{a}_{\parallel b} = \frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|^2} \vec{b},$$

which is the projection of \vec{a} onto the direction of \vec{b}, and

$$\vec{a}_{\perp b} = \vec{a} - \vec{a}_{\parallel b} = \vec{a} - \frac{(\vec{a} \cdot \vec{b})}{|\vec{b}|^2} \vec{b}.$$

Since $|\vec{a}_{\perp b}| = |\vec{a}| \sin \theta$ (see Figure 1.5), and $\vec{a}_{\perp b}$ is perpendicular to \vec{b}, $|\vec{a}_{\perp b} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta$. Since $\vec{a}_{\perp b}$ lies in the plane defined by \vec{a} and \vec{b}, and points to the same side of \vec{b} as \vec{a}, $\vec{a}_{\perp b} \times \vec{b}$ has the same direction as $\vec{a} \times \vec{b}$. Therefore,

$$\vec{a}_{\perp b} \times \vec{b} = \vec{a} \times \vec{b}. \quad (1.6)$$

Now, we are in a position to show a distributive property of the cross-product. Consider three vectors \vec{a}, \vec{b} and \vec{c}. First of all, note that

$$(\vec{a} + \vec{b})_{\perp c} = (\vec{a} + \vec{b}) - \frac{(\vec{a} + \vec{b}) \cdot \vec{c}}{|\vec{c}|^2} \vec{c}$$

$$= (\vec{a} + \vec{b}) - \frac{(\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c})}{|\vec{c}|^2} \vec{c}$$

$$= \left(\vec{a} - \frac{(\vec{a} \cdot \vec{c})}{|\vec{c}|^2} \vec{c} \right) + \left(\vec{b} - \frac{(\vec{b} \cdot \vec{c})}{|\vec{c}|^2} \vec{c} \right)$$

$$= \vec{a}_{\perp c} + \vec{b}_{\perp c}$$

Therefore, we have

$$(\vec{a} + \vec{b}) \times \vec{c} = (\vec{a} + \vec{b})_{\perp c} \times \vec{c}$$

$$= (\vec{a}_{\perp c} + \vec{b}_{\perp c}) \times \vec{c}.$$
Kinematics

Figure 1.6 Distributivity of vector cross product

Now, the vectors \(\vec{a} \perp \vec{c} \), \(\vec{b} \perp \vec{c} \) and \(\vec{a} \perp \vec{c} + \vec{b} \perp \vec{c} \) all are perpendicular to \(\vec{c} \). Therefore,

\[
|\vec{a} \perp \vec{c}| = |\vec{a}_{\perp c}| |\vec{c}|, \\
|\vec{b} \perp \vec{c}| = |\vec{b}_{\perp c}| |\vec{c}|, \\
|\vec{a}_{\perp c} \times \vec{c} + \vec{b}_{\perp c} \times \vec{c}| = |\vec{a}_{\perp c} \perp \vec{c} + \vec{b}_{\perp c} \perp \vec{c}| |\vec{c}|.
\]

Since the vectors \(\vec{a}_{\perp c}, \vec{b}_{\perp c} \) and \(\vec{a}_{\perp c} + \vec{b}_{\perp c} \) are all perpendicular to \(\vec{c} \), the cross-products \(\vec{a}_{\perp c} \times \vec{c} \), \(\vec{b}_{\perp c} \times \vec{c} \) and \((\vec{a}_{\perp c} + \vec{b}_{\perp c}) \times \vec{c} \) are all simply the vectors \(\vec{a}_{\perp c}, \vec{b}_{\perp c} \) and \(\vec{a}_{\perp c} + \vec{b}_{\perp c} \) rotated by 90° about the vector \(\vec{c} \), and then scaled by the factor \(|\vec{c}| \), as shown in Figure 1.6. What this shows is that

\[
(\vec{a}_{\perp c} + \vec{b}_{\perp c}) \times \vec{c} = \vec{a}_{\perp c} \times \vec{c} + \vec{b}_{\perp c} \times \vec{c},
\]

and therefore by (1.6),

\[
(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}, \quad (1.7)
\]

which is the distributive property we wanted to show. Finally, the following results are also readily derived from the definition:

\[
\vec{a} \times \vec{a} = \vec{0}, \quad (1.8)
\]

\[
(a\vec{b}) \times \vec{c} = a(\vec{b} \times \vec{c}). \quad (1.9)
\]
1.1.3 Other Useful Vector Identities

Some other useful vector identities are:
\[
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c},
\]
\[
\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}),
\]
\[
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b}) = \mathbf{0},
\]
\[
(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}).
\]

Note that the definitions of scalar- and cross-product and all of the associated properties and identities above are independent of a coordinate system.

1.2 Reference Frames and Physical Vector Coordinates

Up to this point, we have only considered physical vectors, without any mention of a frame of reference. For computational purposes we need to introduce the concept of a reference frame. Reference frames are also needed to describe the orientation of an object, and are needed for the formulation of kinematics and dynamics.

To define a reference frame, say reference frame “1” (which we will label \(\mathcal{F}_1 \)), it is customary to identify three mutually perpendicular unit length (length of one) physical vectors, labeled as \(\mathbf{x}_1, \mathbf{y}_1 \) and \(\mathbf{z}_1 \) respectively. The notation used here corresponds to the usual \(x-y-z \) axes defined for a Cartesian three-dimensional coordinate system. These three vectors then define the reference frame. The unit vectors are chosen according to the right-handed rule, as shown in Figure 1.7. Under the right-handed rule, the unit vectors satisfy
\[
\mathbf{x}_1 \times \mathbf{y}_1 = \mathbf{z}_1,
\]
\[
\mathbf{y}_1 \times \mathbf{z}_1 = \mathbf{x}_1,
\]
\[
\mathbf{z}_1 \times \mathbf{x}_1 = \mathbf{y}_1.
\]
Since they are perpendicular, they also satisfy
\[
\mathbf{x}_1 \cdot \mathbf{x}_1 = \mathbf{y}_1 \cdot \mathbf{y}_1 = \mathbf{z}_1 \cdot \mathbf{z}_1 = 1,
\]
\[
\mathbf{x}_1 \cdot \mathbf{y}_1 = \mathbf{x}_1 \cdot \mathbf{z}_1 = \mathbf{y}_1 \cdot \mathbf{z}_1 = 0.
\]

Note that the definitions of scalar- and cross-product and all of the associated properties and identities above are independent of a coordinate system.
Kinematics

Now, since the three unit vectors form a basis for physical three-dimensional space, any physical vector \vec{r} can be written as a linear combination of the unit vectors, that is

$$\vec{r} = r_{x,1} \vec{x}_1 + r_{y,1} \vec{y}_1 + r_{z,1} \vec{z}_1$$

$$= \begin{bmatrix} \vec{x}_1 & \vec{y}_1 & \vec{z}_1 \end{bmatrix} \begin{bmatrix} r_{x,1} \\ r_{y,1} \\ r_{z,1} \end{bmatrix}$$

$$= \vec{F}_1^T \vec{r}_1.$$ \hspace{1cm} \text{(1.11)}

where

$$\vec{r}_1 = \begin{bmatrix} r_{x,1} \\ r_{y,1} \\ r_{z,1} \end{bmatrix}$$ \hspace{1cm} \text{(1.12)}

is a column matrix containing the coordinates of the physical vector \vec{r} in reference frame F_1, and

$$\vec{F}_1 = \begin{bmatrix} \vec{x}_1 \\ \vec{y}_1 \\ \vec{z}_1 \end{bmatrix}$$ \hspace{1cm} \text{(1.13)}

is a column matrix containing the unit physical vectors defining reference frame F_1. We shall refer to \vec{F}_1 as a vectrix (that is, a matrix of physical vectors).

To determine the coordinates of the vector \vec{r} in frame F_1, we can simply take the dot product of the physical vector (1.11) with each of the unit vectors. For example,

$$\vec{r} \cdot \vec{x}_1 = (r_{x,1} \vec{x}_1 + r_{y,1} \vec{y}_1 + r_{z,1} \vec{z}_1) \cdot \vec{x}_1,$$

$$= r_{x,1} \vec{x}_1 \cdot \vec{x}_1 + r_{y,1} \vec{y}_1 \cdot \vec{x}_1 + r_{z,1} \vec{z}_1 \cdot \vec{x}_1,$$

$$= r_{x,1}.$$

Here, we have made use of properties (1.1) and (1.4) of the dot product of physical vectors. In fact, these properties allow us to treat the dot product of physical vectors in the same manner as scalar multiplication. Using the vectrix notation, we can take advantage of this fact to
concisely determine \(\mathbf{r}_1 \) by taking the dot product of the vector (1.11) with the vectrix (1.13) as follows

\[
\begin{align*}
\vec{F}_1 \cdot \vec{r} &= \vec{F}_1 \cdot \left(\vec{F}_1^T \mathbf{r}_1 \right) \\
&= \begin{bmatrix}
\vec{x}_1 \\
\vec{y}_1 \\
\vec{z}_1
\end{bmatrix} \cdot \begin{bmatrix}
\vec{x}_1 & \vec{y}_1 & \vec{z}_1
\end{bmatrix} \\
&= \begin{bmatrix}
\vec{x}_1 \cdot \vec{x}_1 & \vec{x}_1 \cdot \vec{y}_1 & \vec{x}_1 \cdot \vec{z}_1 \\
\vec{y}_1 \cdot \vec{x}_1 & \vec{y}_1 \cdot \vec{y}_1 & \vec{y}_1 \cdot \vec{z}_1 \\
\vec{z}_1 \cdot \vec{x}_1 & \vec{z}_1 \cdot \vec{y}_1 & \vec{z}_1 \cdot \vec{z}_1
\end{bmatrix} \mathbf{r}_1 \\
&= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \mathbf{r}_1
\end{align*}
\]

Note that properties (1.1) and (1.4) allowed us to treat the dot product in the same manner as scalar multiplication, and apply the associativity rule for matrix multiplication as we did above. Finally, we have

\[
\begin{align*}
\mathbf{r}_{x,1} &= \vec{r} \cdot \vec{x}_1, \\
\mathbf{r}_{y,1} &= \vec{r} \cdot \vec{y}_1, \\
\mathbf{r}_{z,1} &= \vec{r} \cdot \vec{z}_1.
\end{align*}
\]

1.2.1 Vector Addition and Scalar Multiplication

We can now determine how to perform vector addition and scalar multiplication operations in terms of the coordinates of a vector in a given reference frame. To this end, let us consider two physical vectors \(\vec{a} \) and \(\vec{b} \) expressed in the same reference frame \(\mathcal{F}_1 \), and a scalar, \(c \):

\[
\begin{align*}
\vec{a} &= \begin{bmatrix}
\vec{x}_1 \\
\vec{y}_1 \\
\vec{z}_1
\end{bmatrix} \begin{bmatrix}
a_{x,1} \\
a_{y,1} \\
a_{z,1}
\end{bmatrix} = \vec{F}_1^T \mathbf{a}, \\
\vec{b} &= \begin{bmatrix}
\vec{x}_1 \\
\vec{y}_1 \\
\vec{z}_1
\end{bmatrix} \begin{bmatrix}
b_{x,1} \\
b_{y,1} \\
b_{z,1}
\end{bmatrix} = \vec{F}_1^T \mathbf{b}.
\end{align*}
\]

It is obvious from the rules for physical vector addition and scalar multiplication that

\[
\begin{align*}
\vec{a} + \vec{b} &= \begin{bmatrix}
\vec{x}_1 \\
\vec{y}_1 \\
\vec{z}_1
\end{bmatrix} \begin{bmatrix}
a_{x,1} + b_{x,1} \\
a_{y,1} + b_{y,1} \\
a_{z,1} + b_{z,1}
\end{bmatrix} = \vec{F}_1^T (\mathbf{a} + \mathbf{b}).
\end{align*}
\]
and

\[
c\bar{a} = [\bar{x}_1 \ y_1 \ z_1]^T \begin{bmatrix} c\ a_{x,1} \\ c\ a_{y,1} \\ c\ a_{z,1} \end{bmatrix} = \bar{F}_1^T (c\ a).
\]

That is, vector addition and scalar multiplication operations can be directly applied to the coordinates of the vectors.

1.2.2 Scalar Product

Let us now examine how to compute the scalar (or dot) product in terms of the coordinates of the vectors in a given reference frame. To this end, let us consider two physical vectors \(\bar{a}\) and \(\bar{b}\) expressed in the same reference frame \(F_1\):

\[
\bar{a} = [\bar{x}_1 \ y_1 \ z_1]^T, \quad \bar{b} = [\bar{x}_1 \ y_1 \ z_1]^T
\]

The dot product is now given by

\[
\bar{a} \cdot \bar{b} = \begin{bmatrix} a_{x,1} & a_{y,1} & a_{z,1} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \\ \bar{y}_1 \\ \bar{z}_1 \end{bmatrix} \begin{bmatrix} b_{x,1} \\ b_{y,1} \\ b_{z,1} \end{bmatrix}
\]

\[
= \begin{bmatrix} a_{x,1} & a_{y,1} & a_{z,1} \end{bmatrix} \begin{bmatrix} \bar{x}_1 \cdot \bar{x}_1 & \bar{x}_1 \cdot \bar{y}_1 & \bar{x}_1 \cdot \bar{z}_1 \\ \bar{y}_1 \cdot \bar{x}_1 & \bar{y}_1 \cdot \bar{y}_1 & \bar{y}_1 \cdot \bar{z}_1 \\ \bar{z}_1 \cdot \bar{x}_1 & \bar{z}_1 \cdot \bar{y}_1 & \bar{z}_1 \cdot \bar{z}_1 \end{bmatrix} \begin{bmatrix} b_{x,1} \\ b_{y,1} \\ b_{z,1} \end{bmatrix}
\]

\[
= \begin{bmatrix} a_{x,1} & a_{y,1} & a_{z,1} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} b_{x,1} \\ b_{y,1} \\ b_{z,1} \end{bmatrix}
\]

\[
= \bar{a}_1^T \bar{b}_1
\]

Again, properties (1.1) and (1.4) allowed us to treat the dot product in the same manner as scalar multiplication, and apply the associativity rule for matrix multiplication as we did above. Making use of identity (1.2), we can relate the length of the physical vector to the length of its coordinate representation, that is:

\[
||\bar{a}_1|| = \sqrt{\bar{a}_1^T \bar{a}_1} = ||\bar{a}||,
\]

where \(||\bar{a}_1||\) is the standard Euclidean length of a column matrix.
1.2.3 Vector Cross Product

We can also determine the cross-product of two vectors in terms of the coordinates with respect to a given reference frame. Consider again the same two vectors as in Section 1.2.2. Since the vector cross product satisfies the same distributive and scalar multiplication properties (1.7) and (1.9) as the vector dot product (compare to (1.1) and (1.4)), we can concisely determine the vector cross-product in terms of the coordinates in the same manner as we determined the dot product in Section 1.2.2 (provided we respect the order in which each individual vector cross-product is taken). We have

\[\vec{a} \times \vec{b} = \begin{bmatrix} a_{x,1} & a_{y,1} & a_{z,1} \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{y}_1 \\ \hat{z}_1 \end{bmatrix} \times \begin{bmatrix} b_{x,1} \\ b_{y,1} \\ b_{z,1} \end{bmatrix} \]

where the 3 \times 3 matrix

\[a^\times_{1} = \begin{bmatrix} 0 & -a_{z,1} & a_{y,1} \\ a_{z,1} & 0 & -a_{x,1} \\ -a_{y,1} & a_{x,1} & 0 \end{bmatrix} \]

is the cross-product operator matrix corresponding to the vector \(\vec{a} \) in reference frame \(F_1 \) coordinates.

1.2.4 Column Matrix Identities

The vector identities presented in Sections 1.1.2 and 1.1.3 can all be rewritten in terms of column matrices. To this end, let us consider four physical vectors \(\vec{a}, \vec{b}, \vec{c} \) and \(\vec{d} \) expressed in the same reference frame \(F \), with corresponding coordinates \(\vec{a}, \vec{b}, \vec{c} \) and \(\vec{d} \) respectively.