Handbook of Paper and Paperboard Packaging Technology

SECOND EDITION
Edited by Mark J. Kirwan

The definitive industry reference on the paper and paperboard packaging sector.

Now in a fully revised and updated second edition, this book discusses all the main types of packaging based on paper and paperboard. It considers the raw materials, the manufacture of paper and paperboard, and the basic properties and features on which packaging made from these materials depends for its appearance and performance. The manufacture of twelve types of paper- and paperboard-based packaging is described, together with their end-use applications and the packaging machinery involved. The importance of pack design is stressed, as well as how these materials offer packaging designers opportunities for imaginative and innovative design solutions. Environmental factors, including resource sustainability, societal and waste management issues are addressed in a dedicated chapter.

The book is directed at readers based in companies which manufacture packaging grades of paper and paperboard, companies involved in the design, printing and production of packaging, and companies which manufacture inks, coatings, adhesives and packaging machinery. It will be essential reading for students of packaging technology and technologists working in food manufacturing who are users of paper and paperboard packaging products.

Praise for the First Edition

‘This book is a valuable addition to the library of any forward-looking company by providing in-depth coverage of all aspects of packaging which involve the most ecologically acceptable material, namely paper and paperboard.’

International Journal of Dairy Technology

‘...a welcome contribution to a field where coverage was previously limited to subject-specific books... or to single chapters in textbooks on broader aspects of packaging technology.’

Packaging Technology and Science

About the Editor

Mark J. Kirwan is a Packaging and Paper Specialist with extensive experience in the paper and packaging industries. He is a Fellow of the Packaging Society, and is based in London, UK.

Also Available

Food and Beverage Packaging Technology, Second Edition
Edited by R. Coles and M.J. Kirwan
ISBN 978-1-4051-8910-1

Food and Package Engineering
S.A. Morris

Handbook of Food Process Design
Edited by J. Ahmed and M.S. Rahman
ISBN 978-1-4443-3011-3

www.wiley.com/go/food
Handbook of Paper and Paperboard Packaging Technology
2 Environmental and resource management issues
Daven Chamberlain and Mark J. Kirwan

2.1 Introduction
2.2 Sustainable development
2.3 Forestry
2.4 Environmental impact of manufacture and use of paper and paperboard
 2.4.1 Issues giving rise to environmental concern
 2.4.2 Energy
 2.4.3 Water
 2.4.4 Chemicals
 2.4.5 Transport
 2.4.6 Manufacturing emissions to air, water and solid waste
2.5 Used packaging in the environment
 2.5.1 Introduction
 2.5.2 Waste minimisation
 2.5.3 Waste management options
2.6 Life cycle assessment
2.7 Carbon footprint
 2.7.1 Carbon sequestration in forests
 2.7.2 Carbon stored in forest products
 2.7.3 Greenhouse gas emissions from forest product manufacturing facilities
 2.7.4 Greenhouse gas emissions associated with producing fibre
 2.7.5 Greenhouse gas emissions associated with producing other raw materials/fuels
 2.7.6 Greenhouse gas emissions associated with purchased electricity, steam and heat, and hot and cold water
 2.7.7 Transport-related greenhouse gas emissions
 2.7.8 Emissions associated with product use
 2.7.9 Emissions associated with product end of life
 2.7.10 Avoided emissions and offsets
2.8 Conclusion
References

3 Paper-based flexible packaging
Jonathan Fowle and Mark J. Kirwan

3.1 Introduction
3.2 Packaging needs which are met by paper-based flexible packaging
 3.2.1 Printing
 3.2.2 Provision of a sealing system
 3.2.3 Provision of barrier properties
3.3 Manufacture of paper-based flexible packaging
 3.3.1 Printing and varnishing
 3.3.2 Coating
 3.3.3 Lamination
3.4 Medical packaging
3.4.1 Introduction to paper-based medical flexible packaging 109
3.4.2 Sealing systems 112
3.4.3 Typical paper-based medical packaging structures 113
3.5 Packaging machinery used with paper-based flexible packaging 114
3.6 Paper-based cap liners (wads) and diaphragms 118
3.6.1 Pulpboard disc 119
3.6.2 Induction-sealed disc 119
3.7 Tea and coffee packaging 119
3.8 Sealing tapes 121
3.9 Paper cushioning 121
References 123
Websites 123

4 Paper labels 125
Michael Fairley
4.1 Introduction 125
4.2 Types of labels 128
4.2.1 Glue-applied paper labels 128
4.2.2 Pressure-sensitive labels 130
4.2.3 In-mould labels 133
4.2.4 Plastic shrink-sleeve labels 134
4.2.5 Stretch-sleeve labels 135
4.2.6 Wrap-around film labels 135
4.2.7 Other labelling techniques 136
4.3 Label adhesives 136
4.3.1 Adhesive types 137
4.3.2 Label adhesive performance 138
4.4 Factors in the selection of labels 139
4.5 Nature and function of labels 140
4.5.1 Primary labels 140
4.5.2 Secondary labels 141
4.5.3 Logistics labels 141
4.5.4 Special application or purpose labels 142
4.5.5 Smart, smart-active and smart-intelligent labels 142
4.5.6 Functional labels 144
4.5.7 Recent developments 144
4.6 Label printing and production 145
4.6.1 Letterpress printing 146
4.6.2 Flexography 148
4.6.3 Lithography 149
4.6.4 Gravure 150
4.6.5 Screen process 151
4.6.6 Hot-foil blocking/stamping process 152
4.6.7 Variable information printing (VIP), electronically originated 153
4.6.8 Digital printing 155
4.7 Print finishing techniques 156
 4.7.1 Lacquering 156
 4.7.2 Bronzing 156
 4.7.3 Embossing 156
4.8 Label finishing 156
 4.8.1 Introduction 156
 4.8.2 Straight cutting 157
 4.8.3 Die-cutting 157
 4.8.4 Handling and storage 159
4.9 Label application, labelling and overprinting 159
 4.9.1 Introduction 159
 4.9.2 Glue-applied label applicators 160
 4.9.3 Self-adhesive label applicators 160
 4.9.4 Shrink-sleeve label applicators 161
 4.9.5 Stretch-sleeve label applicators 162
 4.9.6 In-mould label applicators 162
 4.9.7 Modular label applicators 163
4.10 Label legislation, regulations and standards 163
 4.10.1 Acts of Parliament 163
 4.10.2 EC regulations and directives 163
 4.10.3 Standards 164
4.11 Specifications, quality control and testing 164
 4.11.1 Introduction 164
 4.11.2 Testing methods for self-adhesive labels 165
 4.11.3 Testing methods for wet-glue labels 165
4.12 Waste and environmental issues 167

Websites 168

5 Paper bags 169
Smith Anderson Group Ltd, Fife, UK, and Welton Bibby &
Baron Ltd, Radstock, Somerset, UK

5.1 Introduction 169
 5.1.1 Paper bags and the environment 170
5.2 Types of paper bags and their uses 170
 5.2.1 Types of paper bag 170
 5.2.2 Flat and satchel 170
 5.2.3 Strip window bags 172
 5.2.4 Self-opening satchel bags (SOS bags) 172
 5.2.5 SOS carrier bags with or without handles 174
5.3 Types of paper used 175
 5.3.1 Kraft paper – the basic grades 175
 5.3.2 Grease-resistant and greaseproof papers 176
 5.3.3 Vacuum dust bag papers 176
 5.3.4 Paper for medical use and sterilisation bags 176
 5.3.5 Wet-strength kraft 176
 5.3.6 Recycled kraft 176
 5.3.7 Coated papers 176
6 Composite cans

Catherine Romaine Henderson

6.1 Introduction 183
6.2 Composite can (container) 185
 6.2.1 Definition 185
 6.2.2 Manufacturing methods 185
6.3 Historical background 187
6.4 Early applications 189
6.5 Applications today by market segmentation 189
6.6 Designs available 190
 6.6.1 Shape 190
 6.6.2 Size 190
 6.6.3 Consumer preferences 190
 6.6.4 Clubstore/institutional 190
 6.6.5 Other features 191
 6.6.6 Opening/closing systems 191
6.7 Materials and methods of construction 194
 6.7.1 The liner 195
 6.7.2 The paperboard body 196
 6.7.3 Labels 197
 6.7.4 Nitrogen flushing 197
6.8 Printing and labelling options 197
 6.8.1 Introduction 197
 6.8.2 Flexographic 197
 6.8.3 Rotogravure 198
 6.8.4 Lithography (litho/offset) printing 199
 6.8.5 Labelling options 199
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>Environment and waste management issues</td>
<td>200</td>
</tr>
<tr>
<td>6.9.1</td>
<td>Introduction</td>
<td>200</td>
</tr>
<tr>
<td>6.9.2</td>
<td>Local recycling considerations</td>
<td>200</td>
</tr>
<tr>
<td>6.10</td>
<td>Future trends in design and application</td>
<td>200</td>
</tr>
<tr>
<td>6.10.1</td>
<td>Introduction</td>
<td>200</td>
</tr>
<tr>
<td>6.10.2</td>
<td>Increase barrier performance of paper-bottom canisters</td>
<td>201</td>
</tr>
<tr>
<td>6.10.3</td>
<td>Totally repulpable can</td>
<td>201</td>
</tr>
<tr>
<td>6.10.4</td>
<td>Non-paper-backed liner</td>
<td>201</td>
</tr>
<tr>
<td>6.10.5</td>
<td>Film label</td>
<td>201</td>
</tr>
<tr>
<td>6.10.6</td>
<td>Killer paper</td>
<td>201</td>
</tr>
<tr>
<td>6.11</td>
<td>Glossary of composite can-related terms</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>203</td>
</tr>
<tr>
<td></td>
<td>Websites</td>
<td>203</td>
</tr>
</tbody>
</table>

7 Fibre drums
Fibrestar Drums Ltd., Cheshire, UK

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>205</td>
</tr>
<tr>
<td>7.2</td>
<td>Raw material</td>
<td>207</td>
</tr>
<tr>
<td>7.3</td>
<td>Production</td>
<td>208</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Sidewall</td>
<td>208</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Drum base</td>
<td>210</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Lid</td>
<td>210</td>
</tr>
<tr>
<td>7.4</td>
<td>Performance</td>
<td>212</td>
</tr>
<tr>
<td>7.5</td>
<td>Decoration, stacking and handling</td>
<td>214</td>
</tr>
<tr>
<td>7.6</td>
<td>Waste management</td>
<td>215</td>
</tr>
<tr>
<td>7.7</td>
<td>Summary of the advantages of fibre drums</td>
<td>215</td>
</tr>
<tr>
<td>7.8</td>
<td>Specifications and standards</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>216</td>
</tr>
<tr>
<td></td>
<td>Websites</td>
<td>216</td>
</tr>
</tbody>
</table>

8 Multiwall paper sacks
Mondi Industrial Bags, Vienna, Austria

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>217</td>
</tr>
<tr>
<td>8.2</td>
<td>Sack designs</td>
<td>218</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Types of sacks</td>
<td>218</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Valve design</td>
<td>223</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Sewn closures</td>
<td>225</td>
</tr>
<tr>
<td>8.3</td>
<td>Sack materials</td>
<td>226</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Sack body material</td>
<td>226</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Ancillary materials</td>
<td>230</td>
</tr>
<tr>
<td>8.4</td>
<td>Testing and test methods</td>
<td>232</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Sack materials</td>
<td>232</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Sack testing</td>
<td>235</td>
</tr>
<tr>
<td>8.5</td>
<td>Weighing, filling and closing systems</td>
<td>237</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Open mouth sacks</td>
<td>238</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Valve sacks</td>
<td>241</td>
</tr>
</tbody>
</table>
8.5.3 Sack identification 245
8.5.4 Sack flattening and shaping 247
8.5.5 Baling systems 247
8.6 Standards and manufacturing tolerances 248
8.6.1 Standards 248
8.6.2 Manufacturing tolerances 248
8.7 Environmental position 250
References 251
Useful contacts 251
Websites 251

9 Rigid boxes 253
Michael Jukes

9.1 Overview 253
9.2 Rigid box styles (design freedom) 254
9.3 Markets for rigid boxes 256
9.4 Materials
 9.4.1 Board and paper 256
 9.4.2 Adhesives 257
 9.4.3 Print 257
9.5 Design principles 257
9.6 Material preparation 258
9.7 Construction
 9.7.1 Four-drawer box 261
9.8 Conclusion 263
References 263
Websites 263

10 Folding cartons 265
Mark J. Kirwan

10.1 Introduction 265
10.2 Paperboard used to make folding cartons 267
10.3 Carton design
 10.3.1 Surface design 268
 10.3.2 Structural design 269
10.4 Manufacture of folding cartons 277
 10.4.1 Printing 277
 10.4.2 Cutting and creasing 280
 10.4.3 Creasing and folding 287
 10.4.4 Embossing 292
 10.4.5 Hot-foil stamping 293
 10.4.6 Gluing 294
 10.4.7 Specialist conversion operations 295
10.5 Packaging operation
 10.5.1 Speed and efficiency 296
 10.5.2 Side seam-glued cartons 297
 10.5.3 Erection of flat carton blanks 298
10.5.4 Carton storage 300
10.5.5 Runnability and packaging line efficiency 300
10.6 Distribution and storage 303
10.7 Point of sale, dispensing, etc. 306
10.8 Consumer use 307
10.9 Conclusion 311
References 311
Suggested further reading 312
Websites 312

11 Corrugated fibreboard packaging 313
Arnoud Dekker

11.1 Introduction 313
11.1.1 Overview 313
11.1.2 Structure of corrugated fibreboard 313
11.1.3 Types of corrugated fibreboard packaging 315
11.1.4 History of corrugated fibreboard 317
11.2 Functions 318
11.2.1 Overview functions 318
11.2.2 Corrugated fibreboard packaging production 318
11.2.3 Packing lines 319
11.2.4 Palletisation and logistic chain 319
11.2.5 Communication 320
11.2.6 Retail-ready 320
11.2.7 Product safety 320
11.2.8 Recycling and sustainability 321
11.3 Board properties and test methods 321
11.3.1 Overview of board properties and test methods 321
11.3.2 Box tests 323
11.3.3 Pallet tests 324
11.3.4 Predictions 324
11.4 Manufacturing 326
11.4.1 Overview 326
11.4.2 Paper production 326
11.4.3 Corrugated board production 328
11.4.4 Corrugated fibreboard converting 330
11.4.5 Corrugated fibreboard printing 333
11.4.6 Customer packing lines 335
11.4.7 Good manufacturing practice 335
11.5 Corrugated fibreboard and sustainability 335
11.5.1 Sustainable sourcing of raw materials 336
11.5.2 Sustainable production 337
11.5.3 Sustainable packaging design 337
11.5.4 Sustainable supply chain 338
References 338
Websites 338
Suggested further reading 339
12 Solid board packaging
Mark J. Kirwan

12.1 Overview 341
12.2 Pack design 342
12.3 Applications 345
 12.3.1 Horticultural produce 345
 12.3.2 Meat and poultry 346
 12.3.3 Fish 346
 12.3.4 Beer (glass bottles and cans) 346
 12.3.5 Dairy products 346
 12.3.6 Footwear 346
 12.3.7 Laundry 346
 12.3.8 Engineering 346
 12.3.9 Export packaging 347
 12.3.10 Luxury packaging 347
 12.3.11 Slip sheets 347
 12.3.12 Partitions (divisions, fitments and pads) 348
 12.3.13 Recycling boxes 350
 12.3.14 Bag-in-box liquid containers 350
 12.3.15 Shelf-ready packaging 350
12.4 Materials 350
12.5 Water and water-vapour resistance 350
12.6 Printing and conversion 351
 12.6.1 Printing 351
 12.6.2 Cutting and creasing 352
12.7 Packaging operation 352
12.8 Waste management 352
12.9 Good manufacturing practice 352
Reference 352
Websites 352

13 Paperboard-based liquid packaging
Mark J. Kirwan

13.1 Introduction 353
13.2 Packaging materials 357
 13.2.1 Paperboard 357
 13.2.2 Barriers and heat-sealing layers 358
13.3 Printing and converting 360
 13.3.1 Reel-to-reel converting for reel-fed form, fill, seal packaging 360
 13.3.2 Reel-to-sheet converting for supplying printed carton blanks for packing 361
 13.3.3 Sheet-fed for bag-in-box 361
13.4 Carton designs 361
 13.4.1 Gable top 362
 13.4.2 Pyramid shape 362
 13.4.3 Brick shape 363
Contributors

Smith Anderson Group
Anderson Group Ltd
Fife, UK

Welton Bibby & Baron Ltd
Radstock, Somerset, UK

Cullen Packaging Ltd
Glasgow, UK

Daven Chamberlain
Editor
Paper Technology
Bury, Lancashire, UK

Arnoud Dekker
InnoTools Manager
Smurfit Kappa Development Centre
Hoogeveen, The Netherlands

Michael Fairley
Labels & Labelling Consultancy
Hertfordshire, UK

Fibrestar Drums Ltd
Cheshire, UK

Jonathan Fowle
Innovati Partners, Shepton Mallet,
Somerset, UK

Catherine Romaine Henderson
Integrated Communication Consultants
Greer, SC, USA

Michael Jukes
London Fancy Box Company
Kent, UK

Mark J. Kirwan
Paper and Paperboard Specialist
Fellow of the Packaging Society
London, UK

Mondi Industrial Bags
Vienna, Austria
Preface

This book discusses all the main types of packaging based on paper and paperboard. It considers the raw materials and manufacture of paper and paperboard, and the basic properties and features on which packaging made from these materials depends for its appearance and performance. The manufacture of 12 of the main types of paper- and paperboard-based packaging is described, together with their end-use applications and the packaging machinery involved. The importance of pack design is stressed, including how these materials offer packaging designers opportunities for imaginative and innovative design solutions.

Authors have been drawn from major manufacturers of paper- and paperboard-based packaging in the UK, the Netherlands, Austria and the USA, and companies over a much wider area have helped with information and illustrations. The editor has wide experience in industry having spent his career in technical roles in the manufacture, printing, conversion and use of paper, paperboard and packaging.

Packaging represents the largest usage of paper and paperboard and therefore both influences and is influenced by the worldwide paper industry. Paper is based mainly on cellulose fibres derived from wood, which in turn is obtained from forestry. The paper industry is a major user of energy and other resources. The industry is therefore in the forefront of current environmental debates. This book discusses these issues and indicates how the industry stands in relation to the current requirement to be environmentally sound and the need to be sustainable in the long term. Other related issues discussed are packaging reduction, lifecycle analysis and assessment, and the options for waste management.

The book is directed at those joining companies which manufacture packaging grades of paper and paperboard, companies involved in the design, printing and production of packaging and companies which manufacture inks, coatings, adhesives and packaging machinery. It will be essential reading for students of packaging technology in the design and use of paper- and paperboard-based packaging as well as those working in the associated media.

The ‘packaging chain’ mainly comprises:

- Those responsible for sourcing and manufacturing packaging raw materials.
- Printers and manufacturers of packaging, including manufacturers of inks, adhesives, coatings of all kinds and the equipment required for printing and conversion.
- Packers of goods, for example within the food industry, including manufacturers of packaging machinery and those involved in distribution.
- The retail sector, supermarkets, high street shops, etc., together with the service sector, hospitals, catering, education, etc.

The packaging chain creates a large number of supplier/customer interfaces, both between and within companies, which require knowledge and understanding. The papermaker needs to understand the requirements of printing, conversion and use. Equally, those involved in printing conversion and use need to understand the technology and logistics of papermaking together with the packaging needs of their customers and society. Whatever your position
within the packaging chain, it is important to be knowledgeable about the technologies both upstream and downstream from your position.

Packaging technologists play a pivotal role in defining packaging needs and cooperating with other specialists to meet those needs in cost-effective and environmentally sound ways. They work with suppliers to keep abreast of innovations in the manufacture of materials and innovations in printing, conversion and use. They need to be aware of trends in distribution, retailing, point-of-sale/dispensing, consumer use, disposal options and all the societal and environmental issues relevant to packaging in general.
Acknowledgements

My thanks go to the contributing authors and their companies. It is not easy these days to find time for such additional work, and their contributions are much appreciated.

The text has been greatly enhanced by the diagrams kindly provided by a large number of organisations and by the advice and information that I have received from many individuals in packaging companies and organisations involved in the paper, paperboard, packaging and allied industries.

In particular, I would like to acknowledge the help that I have received from the following:

The Confederation of European Paper Industries (CEPI), Pira International (now Smithers Pira), The Packaging Society (IOM3, Institute of Materials, Minerals & Mining), Pro Carton, British Carton Association (BPIF Cartons), Swedish Forest Industries Federation, PITA, Confederation of Paper Industries, Sonoco, Fibrestar Drums, London Fancy Box, INCPEN, Iggesund Paperboard, M-Real (now Metsä Board Corporation), Stora Enso, Bobst SA, AMCOR Flexibles, Billerud Beetham (manufacturer of medical packaging paper, formerly Henry Cooke), Bill Inman (former Technical Manager at Henry Cooke), Alexir Packaging (folding cartons), Smurfit Kappa Packaging (for corrugated fibreboard and solid board), Smurfit Kappa Lokfast, Tetra Pak, Elopak, SIG Combibloc, Rapak, Lamican, HayssenSandiacre Europe Ltd (for Rose Forgrove), Marden Edwards, Robert Bosch GmbH, Rovema Packaging Machines, IMA (tea packaging machinery), Easypack Ltd, DieInfo, Bernal, Atlas, Michael Pfaff (re. rotary cutting and creasing), Diana Twede (School of Packaging, Michigan State University), Neil Robson (re. packaging issues in relation to the developing world), Mondi Industrial Bags, Cullen Packaging, National Starch and Chemical (adhesives), Sun Chemical (inks), Smith Anderson Group, Welton, Bibby & Baron, Interflex Group (wax/paper flexible packaging) and John Wiley & Sons.

This book would not have been attempted without the experience gained in my packaging career, for which I thank former colleagues at Reed Medway Sacks, Bowater Packaging (carton, paper bag and flexible packaging manufacture), Cadbury Schweppes (foods packaging), Glaxo (ethical and proprietary pharmaceuticals packaging), Thames Group (paperboard manufacture) and, in particular, Iggesund Paperboard, who encouraged me to become involved in technical writing.

In helping me to complete this second edition, I acknowledge the consistent help I have received from Richard Coles (Open University and Greenwich University), who involved me in lecturing on packaging technology at B.Sc. and Institute of Packaging Diploma level at West Herts College, Watford, UK, and Daven Chamberlain, Editor of Paper Technology, whom I have also known for many years and who has a wide technical background in the paper industry.

I am indebted to Professor Frank Paine, who stimulated my interest in producing this book in the first place, for his cheerful support and encouragement over many years. I first met Frank as a colleague in Bowater in the 1960s. He has 60 years of international experience in packaging technology research and practice and substantial experience in authorship and editing.
I would like to dedicate this book to the memory of my former colleague, Richard Slade (Findus and Cadbury Schweppes), who involved me in packaging development from the 1960s onwards, and to that of Dennis Hine, who led, lectured and wrote about much of the investigative work on carton performance and packaging machine/packaging materials interactions at Pira International over many years.

Mark J. Kirwan
1 Paper and paperboard – raw materials, processing and properties

Daven Chamberlain\(^1\) and Mark J. Kirwan\(^2\)

\(^1\)Paper Technology, Bury, Lancashire, UK
\(^2\)Paper and Paperboard Specialist, Fellow of the Packaging Society, London, UK

1.1 Introduction – quantities, pack types and uses

Paper and paperboard are manufactured worldwide. The world output for the years quoted is shown in Table 1.1. The trend has been upward for many years; indeed, worldwide production has more than doubled in just three decades. Both materials are produced in all regions of the world. The proportions produced per region in 2010 are shown in Table 1.2.

Paper and paperboard have many applications. These include newsprint, books, tissues, stationery, photography, money, stamps, general printing, etc. The remainder comprises packaging and many industrial applications, such as plasterboard base and printed impregnated papers for furniture. In 2010, paper and paperboard produced for packaging applications accounted for 51% of total paper and paperboard production (BIR, 2011).

A single set of figures for world production of paper and paperboard hides a very significant change that has taken place in the last decade. A large amount of investment has poured into Asia, resulting in the creation of many new mills with large and fast machines. Consequently, the proportion of world production originating from Asia has increased by 10% since 2003; Europe and North America have been the casualties, and both regions have experienced significant numbers of mill closures during this period.

As a result of the widespread uses of paper and paperboard, the apparent consumption of paper and paperboard per capita can be used as an economic barometer, i.e. indication, of the standard of economic life. The apparent consumption per capita in the various regions of the world in 2010 is shown in Table 1.3.

The manufacture of paper and paperboard is therefore of worldwide significance and that significance is increasing. A large proportion of paper and paperboard is used for packaging purposes. About 30% of the total output is used for corrugated and solid fibreboard, and the overall packaging usage is significant. Amongst the membership of CEPI (Confederation of European Paper Industries), 43% of all paper and paperboard output during 2011 was used in packaging, (CEPI, 2011).

Not only is paper and paperboard packaging a significant part of the total paper and paperboard market, it also provides a significant proportion of world packaging consumption.
Up to 40% of all packaging is based on paper and paperboard, making it the largest packaging material used, by weight. Paper and paperboard packaging is found wherever goods are produced, distributed, marketed and used.

Many of the features of paper and paperboard used for packaging, such as raw material sourcing, principles of manufacture, environmental and waste management issues, are identical to those applying to all the main types of paper and paperboard. It is therefore important to view the packaging applications of paper and paperboard within the context of the worldwide paper and paperboard industry.

According to Robert Opie (2002), paper was used for wrapping reams of printing paper by a papermaker around 1550; the earliest printed paper labels were used to identify bales
of cloth in the sixteenth century; printed paper labels for medicines were in use by 1700 and paper labels for bottles of wine exist from the mid-1700s. One of the earliest references to the use of paper for packaging is in a patent taken out by Charles Hilderyerd on 16 February 1665 for ‘The way and art of making blew paper used by sugar-bakers and others’ (Hills, 1988). For an extensive summary of packaging from the 1400s using paper bags, labels, wrappers and cartons, see Davis (1967).

The use of paper and paperboard packaging accelerated during the latter part of the nineteenth century to meet the developing needs of manufacturing industry. The manufacture of paper had progressed from a laborious manual operation, one sheet at a time, to continuous high-speed production with wood pulp replacing rags as the main raw material. There were also developments in the techniques for printing and converting these materials into packaging containers and components and in mechanising the packaging operation.

Today, examples of the use of paper and paperboard packaging are found in many places, such as supermarkets, traditional street markets, shops and departmental stores, as well as for mail order, fast food, dispensing machines, pharmacies, and in hospital, catering, military, educational, sport and leisure situations. For example, uses can be found for the packaging of:

- dry food products – for example cereals, biscuits, bread and baked products, tea, coffee, sugar, flour and dry food mixes
- frozen foods, chilled foods and ice cream
- liquid foods and beverages – milk, wines and spirits
- chocolate and sugar confectionery
- fast foods
- fresh produce – fruits, vegetables, meat and fish
- personal care and hygiene – perfumes, cosmetics and toiletries
- pharmaceuticals and health care
- sport and leisure
- engineering, electrical and DIY
- agriculture, horticulture and gardening
- military stores.

Papers and paperboards are sheet materials comprising an overlapping network of cellulose fibres that self-bond to form a compact mat. They are printable and have physical properties which enable them to be made into various types of flexible, semi-rigid and rigid packaging.

There are many different types of paper and paperboard. Appearance, strength and many other properties can be varied depending on the type(s) and amount of fibre used, and how the fibres are processed in fibre separation (pulping), fibre treatment and in paper and paperboard manufacture.

In addition to the type of paper or paperboard, the material is also characterised by its weight per unit area and thickness. Indeed, the papermaking industry has many specific terms, and a good example is the terminology used to describe weight per unit area and thickness.

Weight per unit area may be described as ‘grammage’ because it is measured in grammes per square metre (g m⁻²). Other area/weight-related terms are ‘basis weight’ and ‘substance’, which are usually based on the weight in pounds of a stated number of sheets of specified dimensions, also known as a ‘ream’, for example 500 sheets of 24 in. × 36 in., which equates to total ream area of 3000 ft². The American organisation TAPPI (Technical Association of the Pulp & Paper Industry, 2002–2003) issues a standard that describes basis weight in great detail; currently there are 14 different areas used for measurement, depending upon the grade being
measured. It is therefore important when discussing weight per unit area, as with all properties, to be clear as to the methods and units of measurement.

Thickness, also described as ‘caliper’, is measured either in microns (µm), 0.001 mm or in thou. (0.001 in.), also referred to as points.

Appearance is characterised by the colour and surface characteristics, such as whether it is smooth or rough and has a high gloss, satin or matte finish.

Paperboard is thicker than paper and has a higher weight per unit area, although the dividing line between the two is somewhat blurred. Paper over 225 g m⁻² is defined by ISO (International Organization for Standardization) as paperboard, board or cardboard. Some products are, however, known as paperboard even though they are manufactured at lower grammages; for example, many producers and merchants now class products of 180–190 g m⁻² upwards as paperboard, because improvements in manufacturing techniques mean these lightweight materials can now be produced with similar strength properties to older heavyweight grades.

The main types of paper and paperboard-based packaging are:

- bags, wrappings and infusible tissues, for example tea and coffee bags, sachets, pouches, overwraps, sugar and flour bags, and carrier bags
- multiwall paper sacks
- folding cartons and rigid boxes
- corrugated and solid fibreboard boxes (transit or shipping cases)
- paper-based tubes, tubs and composite containers
- fibre drums
- liquid packaging
- moulded pulp containers
- labels
- sealing tapes
- cushioning materials
- cap liners (sealing wads) and diaphragms (membranes).

Paper and paperboard-based packaging is widely used because it meets the criteria for successful packing, namely to:

- contain the product
- protect goods from mechanical damage
- preserve products from deterioration
- inform the customer/consumer
- provide visual impact through graphical and structural designs.

These needs are met at all three levels of packaging, namely:

- primary – product in single units at the point of sale or use, for example cartons
- secondary – collections of primary packs grouped for storage and distribution, wholesaling and ‘cash and carry’, for example transit trays and cases
- tertiary – unit loads for distribution in bulk, for example heavy-duty fibreboard packaging.

Paper and paperboard, in many packaging forms, meet these needs because they have appearance and performance properties which enable them to be made into a wide range of packaging structures cost-effectively. They are printable, varnishable and can be laminated to other materials. They have physical properties which enable them to be made into flexible, semi-rigid and rigid packages by cutting, creasing, folding, forming, winding, gluing, etc.
Paper and paperboard packaging is used over a wide temperature range, from frozen-food storage to the temperatures of boiling water and heating in microwave and conventional ovens.

Whilst it is approved for direct contact with many food products, packaging made solely from paper and paperboard is permeable to water, water vapour, aqueous solutions and emulsions, organic solvents, fatty substances (except grease-resistant papers), gases such as oxygen, carbon dioxide and nitrogen, aggressive chemicals, and volatile vapours and aromas. Whilst paper and paperboard can be sealed with several types of adhesive, with certain special exceptions, such as tea-bag grades, it is not itself heat sealable.

Paper and paperboard can acquire barrier properties and extended functional performance, such as heat sealability, heat resistance, grease resistance, product release, etc., by coating, lamination and impregnation. Traditional materials used for these purposes include:

- extrusion coating with polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET or PETE), ethylene vinyl alcohol (EVOH) and polymethyl pentene (PMP)
- lamination with plastic films or aluminium foil
- treatment with wax, silicone or fluorocarbon
- impregnated with a vapour-phase metal-corrosion inhibitor, mould inhibitor or coated with an insect repellent.

Recently, the use of various biopolymers has gained predominance because their use does not impede biodegradation of treated paper or paperboard. Biopolymers based upon proteins (casein and caseinates, whey, soy, wheat gluten or corn zein), polysaccharides (chitosan, alginate or starch) and lipids (long chain fatty acids and waxes) have all been used, singularly or in combination, to form barriers against gases, water vapour or grease. Furthermore, these coatings can be rendered bioactive by addition of natural antimicrobial agents, such as lactic acid, nisin, carvacrol or cinnamaldehyde (Khwaldia et al., 2010).

Packaging made solely from paperboard can also provide a wide range of barrier properties by being overwrapped with a heat-sealable plastic film, such as polyvinylidene chloride (PVdC), coated oriented polypropylene (OPP or, as it is sometimes referred to, BOPP) or regenerated cellulose films, such as Cellophane™.

Several types of paper and paperboard-based packaging may incorporate metal or plastic components, examples being as closures in liquid-packaging cartons and as lids, dispensers and bases in composite cans.

In an age where environmental and waste management issues have a high profile, packaging based on paper and paperboard has important advantages:

- The majority of paper-based packaging grades are now produced using recovered fibre. As such, paper and paperboard packaging forms a very important end product for the recovered paper sector.
- The main raw material (wood or other suitable vegetation) is based on a naturally renewable resource. In most cases it is sustainably sourced from certified plantations.
- The growth of these raw materials removes carbon dioxide from the atmosphere, thereby reducing the greenhouse effect. As such they have a smaller carbon footprint than materials made from non-renewable resources, such as petrochemical derivatives.
When the use of the package is completed, most types of paper and paperboard packaging can be recovered and recycled. Furthermore, they can all be incinerated with energy recovery, and if none of these options is possible, most are biodegradable in landfill.

1.2 Choice of raw materials and manufacture of paper and paperboard

1.2.1 Introduction to raw materials and processing

So far we have indicated that paper and paperboard-based packaging provides a well-established choice for meeting the packaging needs of a wide range of products. We have defined paper and paperboard and summarised the reasons why this type of packaging is used. We now need to discuss the underlying reasons why paper and paperboard packaging is able to meet these needs.

This discussion falls into four distinct sections:

- choice and processing of raw materials
- manufacture of paper and paperboard
- additional processes which enhance the appearance and performance of paper and paperboard by coating and lamination
- use of paper and paperboard in the printing, conversion and construction of particular types of packaging.

Cotton, wool and flax are examples of fibres, and we know that they can be spun into a thread and that thread can be woven into a sheet of cloth material. Papers and paperboards are also based on fibre, but the sheet is a three-dimensional self-bonded structure formed by random overlapping of fibres. The resulting structure, which is known as a sheet or web, is sometimes described as being ‘non-woven’. The fibres are prepared by mixing them with water to form a very dilute suspension, which is poured onto a porous mesh. The paper structure forms as an even layer on this mesh, which is known as a wire and which acts as a sieve. Most of the water is then removed successively by drainage, pressure and heat.

So why does this structure have the strength and toughness which makes it suitable for printing and conversion for use in many applications, including packaging? To answer this question we need to examine the choices which are available in the raw materials used and how they are processed.

According to tradition, paper was first made in China around the year AD 105 using fibres such as cotton and flax. Such fibres are of vegetable origin, based on cellulose, which is a natural polymer, formed in green plants and some algae from carbon dioxide and water by the action of sunlight. The process initially results in natural sugars based on a multiple-glucose-type structure comprising carbon, hydrogen and oxygen in long chains of hexagonally linked carbon atoms, to which hydrogen atoms and hydroxyl (OH) groups are attached. This process is known as photosynthesis; oxygen is the by-product and the result is that carbon is removed (fixed) from the atmosphere. Large numbers of cellulose molecules form fibres – the length, shape and thickness of which vary depending on the plant species concerned. Pure cellulose is non-toxic, tasteless and odourless.

The fibres can bond at points of interfibre contact as the fibre structure dries during water removal. It is thought that bonds are formed between hydrogen (H) and OH units in adjacent
cellulose molecules causing a consolidation of the three-dimensional sheet structure. The degree of bonding, which prevents the sheet from fragmenting, depends on a number of factors which can be controlled by the choice and treatment of the fibre prior to forming the sheet.

The resulting non-woven structure which we know as paper ultimately depends on a three-dimensional overlapped fibre network and the degree of interfibre bonding. Its thickness, weight per unit area and strength can be controlled, and in this context paperboard is a uniform thicker paper-based sheet. It is flat, printable, creasable, foldable, gluable and can be made into many two- and three-dimensional shapes. These features make paper and paperboard ideal wrapping and packaging materials.

Over the centuries, different cellulose-based raw materials, particularly rags incorporating cotton, flax and hemp, were used to make paper, providing good examples of recycling. During the nineteenth century, the demand for paper and paperboard increased, as wider education for the increasing population created a rising demand for written material. This in turn led to the search for alternative sources of fibre. Esparto grass was widely used but eventually processes for the separation of the fibres from wood became technically and commercially successful and from that time (1880 onwards) wood has become the main source of fibre. The process of fibre separation is known as pulping.

Today there are choices in:

- source of fibre
- method of fibre separation (pulping)
- whether the fibre is whitened (bleached) or not
- preparation of the fibre (stock) prior to use on the paper or paperboard machine.

1.2.2 Sources of fibre

Basically, the choice is between virgin, or primary, fibre derived from vegetation, of which wood is the principal source, and recovered, or secondary, fibre derived from waste paper and paperboard. Until 2005, virgin pulp formed the main fibre source for paper manufacture. Since that date, recovered paper has become the principal fibre used worldwide (BIR, 2006). In 2010, about 45% of the fibre used worldwide was virgin fibre and the rest, 55%, was from recovered paper. It must be appreciated at the outset that:

- fibres from all sources, virgin and recovered, are not universally interchangeable with respect to the paper and paperboard products which can be made from them
- some fibres by nature of their use are not recoverable and some that are recovered are not suitable for recycling on grounds of hygiene and contamination
- fibres cannot be recycled indefinitely.

The properties of virgin fibre depend on the species of tree from which the fibre is derived. The flexibility, shape and dimensional features of the fibres influence their ability to form a uniform overlapped network. Some specialised paper products incorporate other cellulose fibres such as cotton, hemp, or bagasse (from sugar cane), and there is also some use of synthetic fibre.

The paper or paperboard maker has a choice between trees which have relatively long fibres, such as spruce, fir and pine (coniferous species), which provide strength, toughness
and structure, and shorter fibres, such as those from birch, eucalyptus, poplar (aspen), acacia and chestnut (deciduous species), which give high bulk (low density), closeness of texture and smoothness of surface.

The long, wood-derived fibres used by the paper and paperboard industry are around 3–4 mm in length and the short fibres are 1–1.5 mm. The fibre tends to be ribbon shaped, about 30 microns across and therefore visible to the naked eye.

The terms ‘long’ and ‘short’ are relative to the lengths of fibres from wood as, by contrast, cotton and hemp fibres may be as long as 20–30 mm.

1.2.3 Fibre separation from wood (pulping)

In trees, the cellulose fibres are cemented together by a hard, brittle material known as lignin, another complex polymer, which forms up to 30% of the tree. The separation of fibre from wood is known as pulping. The process may be based on either mechanical or chemical methods.

Mechanical pulping applies mechanical force to wood in a crushing or grinding action, which generates heat and softens the lignin thereby separating the individual fibres. As it does not remove lignin, the yield of pulp from wood is very high. The presence of lignin on the surface and within the fibres makes them hard and stiff. They are also described as being dimensionally more stable. This is related to the fact that cellulose fibre absorbs moisture from the atmosphere when the relative humidity (RH) is high and loses moisture when the RH is low – a process that is accompanied by dimensional changes, the magnitude of which is reduced if the fibre is coated with a material such as lignin. The degree of interfibre bonding with such fibres is not high, so sheets tend to be weak. Products made from mechanically separated fibre have a ‘high bulk’ or low density, i.e. a relatively low weight per unit area for a given thickness. This, as will be discussed later, has technical and commercial implications. Figure 1.1 illustrates the production of mechanically separated pulp.

The most basic form of mechanical pulping, which is still practised in some mills today, involves forcing a debarked tree trunk against a rotating grinding surface. This process uses a large amount of energy and results in a very high-yield product known as stone groundwood (SGW) pulp. Alternatively, lignin can be softened using heat or by the action of certain chemicals; this reduces the mechanical energy needed to separate fibres during pulping and reduces fibre damage, leading to higher quality pulp. Wood in chip form may be heated prior