Introduction to Logistics Systems Management
Wiley Series in
Operations Research and Management Science

Operations Research and Management Science (ORMS) is a broad, interdisciplinary branch of applied mathematics concerned with improving the quality of decisions and processes and is a major component of the global modern movement towards the use of advanced analytics in industry and scientific research. The Wiley Series in Operations Research and Management Science features a broad collection of books that meet the varied needs of researchers, practitioners, policy makers, and students who use or need to improve their use of analytics. Reflecting the wide range of current research within the ORMS community, the Series encompasses application, methodology, and theory and provides coverage of both classical and cutting edge ORMS concepts and developments. Written by recognized international experts in the field, this collection is appropriate for students as well as professionals from private and public sectors including industry, government, and nonprofit organization who are interested in ORMS at a technical level. The Series is comprised of three sections: Decision and Risk Analysis; Optimization Models; and Stochastic Models.

Advisory Editors ● Optimization Models

Lawrence V. Snyder, Lehigh University
Ya-xiang Yuan, Chinese Academy of Sciences

Founding Series Editor

James J. Cochran, Louisiana Tech University

Decision and Risk Analysis

Forthcoming Titles

Barron ● Game Theory: An Introduction, Second Edition
To Laura, Allegra and Vittoria
To Ann and Cathy
To Maria Carmela, Francesco and Andrea
Contents

Foreword by Marc Goetschalckx xi

Preface xiii

Acknowledgements xv

About the Authors xvii

List of Abbreviations xix

1 Introducing logistics 1
 1.1 Definition of logistics 1
 1.2 Logistics systems 1
 1.2.1 Logistics activities 5
 1.2.2 Information flows and logistics networks 5
 1.2.3 Case of more products 7
 1.3 Reverse logistics 9
 1.4 Integrated logistics 10
 1.5 Objectives of logistics 12
 1.5.1 Measures of the service level 14
 1.6 Management of the logistics system 18
 1.6.1 Planning phase 18
 1.6.2 Organizational phase 19
 1.6.3 Control phase 28
 1.7 Case study: The Pfizer logistics system 33
 1.8 Questions and problems 36

2 Forecasting logistics requirements 44
 2.1 Introduction 44
 2.2 Qualitative methods 46
 2.3 Quantitative methods 48
 2.3.1 Graphical representation of time series 48
 2.3.2 Classification of time series 48
CONTENTS

2.4 Data preprocessing 51
 2.4.1 Insertion of missing data 52
 2.4.2 Detection of outliers 52
 2.4.3 Data aggregation 53
 2.4.4 Removing the calendar variations 55
 2.4.5 Deflating monetary time series 56
 2.4.6 Adjusting for population variations 57
 2.4.7 Normalizing the data 58
2.5 Choice of the forecasting method 59
 2.5.1 Notation 59
 2.5.2 Casual versus extrapolation methods 59
 2.5.3 Decomposition method 60
 2.5.4 Further time series extrapolation methods: The constant
trend case 71
 2.5.5 Further time series extrapolation methods: The linear
trend case 75
 2.5.6 Further time series extrapolation methods: The seasonal
effect case 80
 2.5.7 Further time series extrapolation methods: The irregular
series case 88
 2.5.8 Sporadic time series 91
2.6 Advanced forecasting method 97
2.7 Accuracy measure and forecasting monitoring 98
 2.7.1 Accuracy measures 99
 2.7.2 Tuning of the forecasting methods 100
 2.7.3 Forecast control 102
2.8 Interval forecasts 106
2.9 Case study: Forecasting methods at Adriatica Accumulatori 109
2.10 Case study: Sales forecasting at Orlea 110
2.11 Questions and problems 112

3 Locating facilities in logistics systems 122
 3.1 Introduction 122
 3.2 Qualitative methods 126
 3.3 Quantitative methods 127
 3.3.1 Single-commodity single-echelon continuous location
problems 128
 3.3.2 Single-commodity single-echelon discrete location
problems 132
 3.3.3 Single-commodity two-echelon discrete location
problems 155
 3.3.4 The multicommodity case 159
 3.3.5 Location-covering problems 163
 3.3.6 \(p \)-centre problems 168
 3.4 Hybrid methods 174
CONTENTS

3.5 Stochastic location models 175
3.6 Case study: Container warehouse location at Hardcastle 179
3.7 Case study: The organ transplantation location–allocation policy of the Italian National Transplant Centre 183
3.8 Questions and problems 185

4 Selecting the suppliers 193
4.1 Introduction 193
4.2 Definition of the set of potential suppliers 194
4.3 Definition of the selection criteria 194
4.4 Supplier selection 198
4.5 Case study: The system for the selection of suppliers at Baxter 202
4.6 Questions and problems 205

5 Managing a warehouse 210
5.1 Introduction 210
 5.1.1 Performance parameters 213
 5.1.2 Decision-making problems 216
5.2 Warehouse design 216
 5.2.1 Choice of warehouse systems 217
 5.2.2 Choice of warehouse layout 230
 5.2.3 Sizing of the storage zone 234
 5.2.4 Sizing of the receiving zone 240
 5.2.5 Sizing of the shipping zone 241
5.3 Tactical decisions for warehouse logistics planning 242
 5.3.1 Product allocation to the storage points 242
 5.3.2 Inventory management 249
5.4 Operational decisions for warehouse logistics management 276
 5.4.1 Package picking from the storage zone 276
 5.4.2 Package consolidation in load units 285
5.5 Case study: Performance evaluation of an AS/RS system conducted by Wert Consulting 303
5.6 Case study: Inventory management at Wolverine 305
5.7 Case study: Airplane loading at FedEx 306
5.8 Questions and problems 309

6 Managing freight transport 318
6.1 Introduction 318
 6.1.1 Modes of transport 318
 6.1.2 Classification of transport problems 323
6.2 Freight Traffic Assignment Problems (TAPs) 326
 6.2.1 Minimum-cost flow formulation 327
 6.2.2 Linear single-commodity minimum-cost flow problems 328
 6.2.3 Linear multicommodity minimum-cost flow problems 336
6.3 Service network design problems 342
6.3.1 The linear fixed-charge network design model 344
6.4 Vehicle allocation problems 350
6.5 A dynamic driver assignment problem 352
6.6 Fleet composition 354
6.7 Shipment consolidation 356
6.8 Vehicle routing problems 359
 6.8.1 The travelling salesman problem 362
 6.8.2 The Node Routing Problem with Capacity and Length Constraints 378
 6.8.3 The Node Routing and Scheduling Problem with Time Windows 391
 6.8.4 Arc routing problems 398
 6.8.5 Route sequencing 409
6.9 Real-time vehicle routing problems 410
6.10 Integrated location and routing problems 412
6.11 Vendor-managed inventory routing 414
6.12 Case study: Air network design at Intexpress 422
6.13 Case study: Meter reader routing and scheduling at Socal 427
6.14 Case study: Dynamic vehicle-dispatching problem with pickups and deliveries at eCourier 430
6.15 Questions and problems 432

Index 443
Foreword

Logistics is concerned with the organization, movement and storage of material and people. The term ‘logistics’ was first used by the military to describe the activities associated with maintaining a fighting force in the field and, in its narrowest sense, describes the housing of troops. Over the years the meaning of the term has gradually generalized to cover business and service activities. The domain of logistics activities is providing a system’s customers with the right product, in the right place, at the right time. This ranges from providing the necessary subcomponents for manufacturing, to having inventory on the shelf of a retailer, to having the right amount and type of blood available for hospital surgeries. A fundamental characteristic of logistics is its holistic, integrated view of all the activities that it encompasses. So, while procurement, warehouse management and distribution are all important components, logistics is concerned with the integration of these and other activities to provide the time and space value to the system or corporation. Excess global capacity in most types of industry has generated intense competition. At the same time, the availability of alternative products has created a very demanding type of customer, who insists on the instantaneous availability of a continuous stream of new models. So the providers of logistics activities are asked to do more transactions, in smaller quantities, in less time, for less cost and with greater accuracy. New trends such as mass customization will only intensify these demands. The accelerated pace and greater scope of logistics operations have made planning-as-usual impossible. Even with the increased number and speed of activities, the annual expenses associated with logistics activities in the United States have held constant for the past several years, around 10% of the Gross Domestic Product. Given the significant amounts of money involved and the increased operational requirements, the management of logistics systems has gained widespread attention from practitioners and academic researchers alike. To maximize the value in a logistics system, a large variety of planning decisions has to be made, ranging from the simple warehouse-floor choice of which item to pick next to fulfill a customer order to the corporate-level decision to build a new manufacturing plant. Logistics management supports the full range of those decisions related to the design and operation of logistics systems.

There exists a vast amount of literature, software packages, decision support tools and design algorithms that focus on isolated components of the logistics
system or isolated planning in the logistics systems. In the last two decades, several companies have developed Enterprise Resource Planning (ERP) systems in response to the need of global corporations to plan their entire supply chain. In their initial implementations, the ERP systems were primarily used for the recording of transactions rather than for the planning of resources on an enterprise-wide scale. Their main advantage was to provide consistent, up-to-date and accessible data to the enterprise. In recent years, the original ERP systems have been extended with Advanced Planning Systems (APSs). The main function of APSs is, for the first time, the planning of enterprise-wide resources and actions. This implies a coordination of the plans among several organizations and geographically dispersed locations.

So, while logistics management requires an integrated, holistic approach, its treatment in courses and textbooks tends to be either integrated and qualitative or mathematical and very specific. This book bridges the gap between those two approaches. It provides a comprehensive and modelling-based treatment of the logistics processes. The major components of logistics systems (storage and distribution) are each examined in detail. For each topic the problem is defined, models and solution algorithms are presented that support computer-assisted decision making and numerous application examples are provided. Each chapter concludes with case studies that illustrate the application of the models and algorithms in practice. Because of its rigorous mathematical treatment of real-world management problems in logistics, this book will provide a valuable resource to graduate and senior undergraduate students and practitioners who are trying to improve logistics operations and satisfy their customers.

Marc Goetschalckx
Georgia Institute of Technology
Atlanta, United States
Logistics lies at the heart of modern economies. From the steel factories of Pennsylvania to the port of Singapore, from Nicaraguan banana fields to the postal delivery and solid waste collection companies in any region around the world, almost every organization faces the common problem of getting the right materials to the right place at the right time. Indeed, the fierce competition in today’s markets has made it imperative to manage logistics systems more and more efficiently. In this context, quantitative methods have proved able to achieve remarkable savings.

This textbook has grown from a number of undergraduate and graduate courses on logistics that we have taught to engineering, computer science and management science students. The goal of these courses is to give students a solid understanding of the analytical tools necessary to reduce costs and improve the service level in logistics systems. The lack of a suitable textbook had forced us in the past to make use of a number of monographs and scientific papers which tend to be beyond the level of most students. We therefore committed ourselves to developing a quantitative textbook written at a level accessible to most students.

In 2004 we published with Wiley a book entitled Introduction to Logistics Systems Planning and Control, which was widely used in several universities throughout the world. The 2004 edition of the book received the Roger-Charbonneau award from HEC Montréal as the best pedagogical textbook of the year. In view of this success, we proceeded to prepare a substantially revised edition now entitled Introduction to Logistics Systems Management.

This new edition puts more emphasis on the organizational context in which logistics systems operate. It also covers several new results and techniques that have arisen in the field of logistics over the past decade. This book targets an academic as well a practitioner audience. On the academic side, it should be appropriate for advanced undergraduate and graduate courses in logistics and supply chain management. It should also serve as a methodological reference for practitioners in consulting as well as in industry. We make the assumption that the reader is familiar with the basics of operations research and statistics, and we provide a balanced treatment of forecasting, logistics system design, warehouse management and freight transport management. In our text, every topic is illustrated by a numerical example so that the reader can check his or
her understanding of each concept before moving on to the next one. We provide
at the end of each chapter case studies taken from the scientific literature, which
illustrate the use of quantitative methods for solving complex logistics decision
problems. Finally, every chapter ends with an exhaustive set of exercises.

Gianpaolo Ghiani (gianpaolo.ghiani@unisalento.it)
Gilbert Laporte (gilbert.laporte@cirrelt.ca)
Roberto Musmanno (musmanno@unical.it)

Exercises and Website

This textbook contains questions and problems at the end of every chapter. Some are discussion questions, while others focus on modelling or algorithmic issues. The answers to these problems are available at the book’s website (http://www.wiley.com/go/logistics_systems_management), which also contains additional material (FAQs, a list of references, software, further modelling exercises, links to other websites etc.).
Acknowledgements

We wish to acknowledge all the individuals who have helped in one way or another to produce this text. First, we are grateful to the reviewers whose comments were invaluable in improving the organization and presentation of the book. Similarly, we are indebted to Valentina Caputi, Antonio Igor Cosma, Lucie-Nathalie Cournoyer, Emanuela Guerriero, Rosita Guido, Demetrio Laganà, Emanuele Manni, Francesco Mari, Marco Pina, Ornella Pisacane, Claudia Rotella, Francesco Santoro and Antonio Violi for their scientific and technical support.
About the Authors

Gianpaolo Ghiani is Professor of Operations Research at the University of Salento, Italy, where he teaches Logistics courses at the Faculty of Engineering.

Gilbert Laporte is Professor of Operations Research at HEC Montréal, Canada Research Chair in Distribution Management, adjunct Professor at Molde University College, Norway; the University of Bilkent, Turkey; and the University of Alberta, Canada; and visiting professor at the University of Southampton, United Kingdom.

Roberto Musmanno is professor of Operations Research at the University of Calabria, Italy, where he teaches Logistics courses at the Faculty of Engineering.
List of Abbreviations

1-BP One Bin Packing
2-BP Two Bin Packing
3-BP Three Bin Packing
3PL Third Party Logistics
AGVS Automated Guided Vehicle System
AHP Analytical Hierarchic Process
AIRT Inter-Regional Association of Transplantation
ANN Artificial Neural Network
APS Advanced Planning System
AP Assignment Problem
ARP Arc Routing Problem
AS Air-Stop
AS/RS Automated Storage/Retrieval System
ASM Absolute Scoring Method
ATSP Asymmetric Travelling Salesman Problem
B2B Business-to-Business
BF Best Fit
BFD Best Fit Decreasing
BL Bottom Left
BTT Baxter Transfusion Therapy
CDC Central Distribution Centre
CEO Chief Executive Officer
CIR Inter-Regional Centre
CL Carload
COT Cut-Off Time
CPFR Collaborative Forecasting and Replenishment Program
CPL Capacitated Plant Location
CPP Chinese Postman Problem
CRP Continuous Replenishment Program
DC Distribution Centre
DDAP Dynamic Driver Assignment Problem
EAN European Article Number
EDI Electronic Data Interchange
ELC European Logistics Centre
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EOQ</td>
<td>Economic Order Quantity</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>EUPP</td>
<td>European Union Pfizer Plant</td>
</tr>
<tr>
<td>FBF</td>
<td>Finite Best Fit</td>
</tr>
<tr>
<td>FCNDP</td>
<td>Fixed Charge Network Design Problem</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drugs Administration</td>
</tr>
<tr>
<td>FF</td>
<td>First Fit</td>
</tr>
<tr>
<td>FFD</td>
<td>First Fit Decreasing</td>
</tr>
<tr>
<td>FFF</td>
<td>Finite First Fit</td>
</tr>
<tr>
<td>FIFO</td>
<td>First-In, First-Out</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GOD</td>
<td>Great Organised Distribution</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technology</td>
</tr>
<tr>
<td>IP</td>
<td>Integer Programming</td>
</tr>
<tr>
<td>IRP</td>
<td>Inventory-Routing Problem</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardisation</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>LB</td>
<td>Lower Bound</td>
</tr>
<tr>
<td>LFCNDP</td>
<td>Linear Fixed Charge Network Design Problem</td>
</tr>
<tr>
<td>LIFO</td>
<td>Last-In, First-Out</td>
</tr>
<tr>
<td>LMCFP</td>
<td>Linear Minimum Cost Flow Problem</td>
</tr>
<tr>
<td>LMMCFP</td>
<td>Linear Multicommodity Minimum Cost Flow Problem</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>LTL</td>
<td>Less-Than-Truckload</td>
</tr>
<tr>
<td>MAD</td>
<td>Mean Absolute Deviation</td>
</tr>
<tr>
<td>MAPD</td>
<td>Mean Absolute Percentage Deviation</td>
</tr>
<tr>
<td>MCTE</td>
<td>Multiple-Commodity Two-Echelon</td>
</tr>
<tr>
<td>MIP</td>
<td>Mixed Integer Programming</td>
</tr>
<tr>
<td>MMCFP</td>
<td>Multicommodity Minimum Cost Flow Problem</td>
</tr>
<tr>
<td>MRP</td>
<td>Material Requirement Planning</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple Source</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Squared Error</td>
</tr>
<tr>
<td>MSrTP</td>
<td>Minimum spanning r-tree problem</td>
</tr>
<tr>
<td>MTO</td>
<td>Make to Order</td>
</tr>
<tr>
<td>MTS</td>
<td>Make to Stock</td>
</tr>
<tr>
<td>NAPM</td>
<td>National Association of Purchasing Managers</td>
</tr>
<tr>
<td>NCC</td>
<td>National Classification Committee</td>
</tr>
<tr>
<td>NF</td>
<td>Network Flow</td>
</tr>
<tr>
<td>NITp</td>
<td>Nort-Italy Transplantation</td>
</tr>
<tr>
<td>NMFC</td>
<td>National Motor Freight Classification</td>
</tr>
<tr>
<td>NP</td>
<td>Non-Polynomial</td>
</tr>
<tr>
<td>NRP</td>
<td>Node Routing Problem</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NRPCL</td>
<td>Node Routing Problem with Capacity and Length Constraints</td>
</tr>
<tr>
<td>NRPSC</td>
<td>Node Routing Problem – Set Covering</td>
</tr>
<tr>
<td>NRPSP</td>
<td>Node Routing Problem – Set Partitioning</td>
</tr>
<tr>
<td>NRSPTW</td>
<td>Node Routing and Scheduling Problem with Time Windows</td>
</tr>
<tr>
<td>NTC</td>
<td>National Transplant Centre</td>
</tr>
<tr>
<td>OCST</td>
<td>Centre-South Organization of Transplantation</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PZ</td>
<td>Pick Zone</td>
</tr>
<tr>
<td>RDC</td>
<td>Regional Distribution Centre</td>
</tr>
<tr>
<td>RFld</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>R-LMMCFP</td>
<td>Relaxed Linear Multicommodity Minimum Cost Flow Problem</td>
</tr>
<tr>
<td>RPP</td>
<td>Rural Postman Problem</td>
</tr>
<tr>
<td>RSM</td>
<td>Relative Scoring Method</td>
</tr>
<tr>
<td>RTSP</td>
<td>Road Travelling Salesman Problem</td>
</tr>
<tr>
<td>RZ</td>
<td>Reserve Zone</td>
</tr>
<tr>
<td>SC</td>
<td>Shipment Centre (Section 6.12)</td>
</tr>
<tr>
<td>SC</td>
<td>Set Covering</td>
</tr>
<tr>
<td>SCSE</td>
<td>Single-Commodity Single-Echelon</td>
</tr>
<tr>
<td>SCTE</td>
<td>Single-Commodity Two-Echelon</td>
</tr>
<tr>
<td>SNDP</td>
<td>Service Network Design Problem</td>
</tr>
<tr>
<td>SPL</td>
<td>Simple Plant Location</td>
</tr>
<tr>
<td>SQI</td>
<td>Supplier Quality Index</td>
</tr>
<tr>
<td>SS</td>
<td>Single Source</td>
</tr>
<tr>
<td>SCCC</td>
<td>Serial Shipping Container Code</td>
</tr>
<tr>
<td>STSP</td>
<td>Symmetric Travelling Salesman Problem</td>
</tr>
<tr>
<td>TAP</td>
<td>Traffic Assignment Problem</td>
</tr>
<tr>
<td>TL</td>
<td>Truckload</td>
</tr>
<tr>
<td>TS</td>
<td>Tabu Search</td>
</tr>
<tr>
<td>TSP</td>
<td>Travelling Salesman Problem</td>
</tr>
<tr>
<td>UB</td>
<td>Upper Bound</td>
</tr>
<tr>
<td>VAP</td>
<td>Vehicle Allocation Problem</td>
</tr>
<tr>
<td>VRDP</td>
<td>Vehicle Routing and Dispatching Problem</td>
</tr>
<tr>
<td>VRP</td>
<td>Vehicle Routing Problem</td>
</tr>
<tr>
<td>VRPMT</td>
<td>Vehicle Routing Problem with Multiple Trips</td>
</tr>
<tr>
<td>VRSP</td>
<td>Vehicle Routing and Scheduling Problems</td>
</tr>
<tr>
<td>ZIO</td>
<td>Zero Inventory Ordering</td>
</tr>
</tbody>
</table>
1 Introducing logistics

1.1 Definition of logistics

According to a widespread definition, logistics (from the Greek term \(\text{lógos} \), which means ‘order’, or from the French \(\text{loger} \), which means ‘allocate’) is the discipline that studies the functional activities determining the flow of materials (and of the relative information) in a company, from their origin at the suppliers up to delivery of the finished products to the customers and to the post-sales service. The origins of logistics are of a strictly military nature. In fact, this discipline arose as the study of the methodologies employed to guarantee the correct supply of troops with victuals, ammunitions and fuel and, in general, to ensure armies the possibility of moving and fighting in the most efficient conditions. Indeed it was the Babylonians, in the distant 20th century BC, who first created a military corps specialized in the supply, storage, transport and distribution of soldiers’ equipment. Logistics was applied exclusively in a military context until the end of Second World War. Subsequently, it was extended to manufacturing companies in order to determine all the activities aimed at ensuring the correct purchasing, moving and managing of materials. Logistics problems are also increasingly present in the service sector, for example in the distribution of some services such as water and gas, in postal services, in urban solid waste collection, in the maintenance of road and electricity networks and in the post-sales activities of manufacturing companies (service logistics).

1.2 Logistics systems

From the point of view of companies, logistics is seen as a system (the logistics system), which includes not only all the functional activities determining the flow
of materials and information, but also the infrastructures, means, equipment and resources that are indispensable to the execution of these activities.

A logistics system is made up of facilities, where one or more functional activities are carried out (e.g. storage and distribution). Figure 1.1 shows a schematic representation of a logistics system in which the manufacturing process of the finished goods is divided into a transformation phase and an assembly phase, performed in different centres. At the start are the suppliers of materials and components which feed the final manufacturing process. The end part represents a typical two-level distribution system with a tree structure. The Central Distribution Centres (CDCs) are directly supplied by the production plants, while each Regional Distribution Centre (RDC) is connected to a single CDC which has the task of serving the customer, who can also be dealers or retailers.

![Figure 1.1 Example of a logistics system.](image)

At each facility the flow of materials is temporarily interrupted, generally in order to change their physical-chemical composition, ownership or appearance. In all cases, each logistic activity carried out involves costs which affect the value of the product, constantly adding to it as it draws nearer the facilities closest to the final customer. This added value can be spatial (following e.g. distribution activities) or temporal (owing to storage activities).

Galbani is the Italian leader in the milk and dairy products sector and one of the main actors in the pressed pork market. The Galbani group is currently made up of three independent operational societies, one of them called biG Logistics. This company has the task of managing the logistics activities of the whole group. The logistics system is organized in such a way
as to guarantee an efficient synchronization of the internal production and distribution processes of the products, both for the Great Organized Distribution (GOD) and for the channel represented by the traditional retail shops. The distribution network of the company is organized on two levels: there are, between the production plants and the destination markets, a central warehouse and 11 distribution platforms. This solution allows the minimization of the transport times and of the storage times of the goods in the warehouses. As a result, it favours a rapid delivery of the products, strictly respecting the refrigeration chain (deliveries within 12 hours for national distribution and 24 to 36 hours for abroad). The daily products are dispatched directly by the production plants to the central warehouse, located in the area of Ospedaletto Lodigiano, considered a barycentral position with respect to the national markets of the Galbani group. The central warehouse serves, in turn, the second-level platforms with the orders mixed according to their destination (see Figure 1.2). The platforms receive the entering flow of goods from the central warehouse and supply both the Distribution Centres of the GOD and the so-called satellites. The satellites are small-sized stores without stockpiles, with vans used for distribution to retailers. The van operates as a truly travelling store. There are 111 satellites distributed throughout the national territory, with a coverage radius on the provincial scale.

Figure 1.2 Geographical position of the central warehouse (in grey) and the 11 distribution platforms of the logistics system of Galbani.
A logistics system can be represented by means of a directed (multi)graph $G = (V, A)$, where V is the set of facilities, and A is the set of links existing among the facilities used for the flow of materials (see Figure 1.3). There can be several arcs between a pair of facilities, representative of alternative forms of transport services, different routes, or different products.

Figure 1.3 Representation of a logistics system system by a directed graph.

The logistics system of Galbani can be represented by the directed graph of Figure 1.4.

Figure 1.4 Representation by a directed graph of the logistics system of Galbani.
1.2.1 Logistics activities

Logistics activities are traditionally classified depending on their location with respect to the production and distribution process. In particular, supply logistics is carried out before the production plants and consists in the management of raw materials, materials and component parts supply as a function of the company’s production plan. Internal logistics is carried out in the production plants and consists in receiving and storing materials, in picking them up from the warehouse to feed the production lines and in successively moving the semi-finished goods up to packaging and storing the finished product. Finally, the distribution logistics activities are carried out after the production plants and before the market. They supply the sales points or the customers. In this schematization, the supply logistics and the distribution logistics are collectively called external logistics.

Storage and distribution of the finished products are the primary logistics activities, and particular attention will be paid to them in this text. Logistics activities can be conducted by the company itself or can be entrusted to a third party (3PL, or Third Party Logistics). These choices are made by the company according to the same logic on which ‘make or buy’-type decisions are based. They assume an in-depth knowledge of the nature of the costs that the company bears (fixed costs, variable costs, direct costs, and indirect costs).

When the multinational company Gillette decided to reorganize its logistics system in Turkey in 1999, it entrusted the Exel company with the execution of a series of logistics activities on its behalf, including distribution (both at national and international levels), customs issues, storage of finished products, and repackaging and labelling of the products.

1.2.2 Information flows and logistics networks

Within a logistics system, with the exception of the cases where recycling of product wrapping is provided or where defective components or products are returned, the flow of materials typically moves from the suppliers to the processing and assembly plants, thence to the sales points and finally to the customers. The flow of materials is integrated with an information flow which follows the opposite direction: in the logistics systems of the MTO-type (Make to Order), for example, customers’ orders influence the production plan and the latter determines the demand for materials and components of the processing and assembly plants. Analogously, in MTS-type (Make to Stock) logistics systems, market information (demand recorded in the past, results of possible market surveys etc.) is used to forecast the sales and therefore affects the mode of distribution, as well as the production and supply plans.
The production centres of the Galbani group determine the daily production plan on the basis of recorded predictive data, among others, from the volumes distributed the previous working day. In this case, the 11 logistics platforms gather the sales data recorded both at the GOD and at the satellites, and this information is transmitted to the central warehouse and from there to the production plants.

Hellena is a Dutch company that produces biscuits. The ordering of raw wheat flour is done by fax. Once an order is received and the goods prepared, the supplier provides for the dispatch of the product which must be accompanied by the delivery note. This document must therefore be issued before delivery or dispatch of the goods with specifications of the main elements of the operation (serial number, date, quantity and description of the goods transported etc.) and issued with a minimum of two copies (one must be retained and filed by the supplier and the other must be consigned to the customer together with the transported goods). In this context, two information flows are activated. The first, relative to the sending of the fax, travels in the opposite direction from the transport of the order (from the customer to the supplier) and also uses a different channel. The second, the delivery note, accompanies the consignment, using the same channel as the goods and travelling in the same direction.

An existing information flow (created through fax, email etc.) between a pair of facilities can be represented by an arc. This means that the information network, that is, the set of information flows, can also be represented by a directed (multi)graph, analogously to the network of materials flow.

Networks of materials flow and information networks give rise to *logistics networks* (see Figure 1.5).

![Figure 1.5](image_url)
Figure 1.5 Representation of a logistics network.