DYNAMIC MODELLING AND PREDICTIVE CONTROL IN SOLID OXIDE FUEL CELLS: FIRST PRINCIPLE AND DATA-BASED APPROACHES
DYNAMIC MODELLING AND PREDICTIVE CONTROL IN SOLID OXIDE FUEL CELLS: FIRST PRINCIPLE AND DATA-BASED APPROACHES

Biao Huang
University of Alberta, Canada

Yutong Qi
Corporate Electronics, Canada

AKM Monjur Murshed
Shell Canada, Canada
Contents

Preface xi
Acknowledgments xiii
List of Figures xv
List of Tables xxi

1 Introduction 1
1.1 Overview of Fuel Cell Technology 1
1.1.1 Types of Fuel Cells 2
1.1.2 Planar and Tubular Designs 3
1.1.3 Fuel Cell Systems 4
1.1.4 Pros and Cons of Fuel Cells 5
1.2 Modelling, State Estimation and Control 5
1.3 Book Coverage 6
1.4 Book Outline 6

Part I FUNDAMENTALS

2 First Principle Modelling for Chemical Processes 11
2.1 Thermodynamics 11
2.1.1 Forms of Energy 11
2.1.2 First Law 12
2.1.3 Second Law 13
2.2 Heat Transfer 13
2.2.1 Conduction 14
2.2.2 Convection 15
2.2.3 Radiation 17
2.3 Mass Transfer 18
2.4 Fluid Mechanics 20
2.4.1 Viscous Flow 21
2.4.2 Velocity Distribution 21
2.4.3 Bernoulli Equation 21
2.5 Equations of Change
 2.5.1 The Equation of Continuity
 2.5.2 The Equation of Motion
 2.5.3 The Equation of Energy
 2.5.4 The Equations of Continuity of Species

2.6 Chemical Reaction
 2.6.1 Reaction Rate
 2.6.2 Reversible Reaction
 2.6.3 Heat of Reaction

2.7 Notes and References

3 System Identification I
 3.1 Discrete-time Systems
 3.2 Signals
 3.2.1 Input Signals
 3.2.2 Spectral Characteristics of Signals
 3.2.3 Persistent Excitation in Input Signals
 3.2.4 Input Design
 3.3 Models
 3.3.1 Linear Models
 3.3.2 Nonlinear Models
 3.4 Notes and References

4 System Identification II
 4.1 Regression Analysis
 4.1.1 Autoregressive Moving Average with Exogenous Input Models
 4.1.2 Linear Regression
 4.1.3 Analysis of Linear Regression
 4.1.4 Weighted Least Squares Method
 4.2 Prediction Error Method
 4.2.1 Optimal Prediction
 4.2.2 Prediction Error Method
 4.2.3 Prediction Error Method with Independent Parameterisation
 4.2.4 Asymptotic Variance Property of PEM
 4.2.5 Nonlinear Identification
 4.3 Model Validation
 4.3.1 Model Structure Selection
 4.3.2 The Parsimony Principle
 4.3.3 Comparison of Model Structures
 4.4 Practical Consideration
 4.4.1 Treating Non-zero Means
 4.4.2 Treating Drifts in Disturbances
4.4.3 Robustness 83
4.4.4 Additional Model Validation 83
4.5 Closed-loop Identification 84
4.5.1 Direct Closed-loop Identification 85
4.5.2 Indirect Closed-loop Identification 87
4.6 Subspace Identification 92
4.6.1 Notations 92
4.6.2 Subspace Identification via Regression Analysis Approach 97
4.6.3 Example 100
4.7 Notes and References 102

5 State Estimation 103
5.1 Recent Developments in Filtering Techniques for Stochastic Dynamic Systems 103
5.2 Problem Formulation 105
5.3 Sequential Bayesian Inference for State Estimation 107
5.3.1 Kalman Filter and Extended Kalman Filter 110
5.3.2 Unscented Kalman Filter 112
5.4 Examples 116
5.5 Notes and References 120

6 Model Predictive Control 121
6.1 Model Predictive Control: State-of-the-Art 121
6.2 General Principle 122
6.2.1 Models for MPC 122
6.2.2 Free and Forced Response 125
6.2.3 Objective Function 125
6.2.4 Constraints 126
6.2.5 MPC Law 126
6.3 Dynamic Matrix Control 127
6.3.1 Prediction 127
6.3.2 DMC without Penalising Control Moves 129
6.3.3 DMC with Penalising Control Moves 130
6.3.4 Feedback in DMC 130
6.4 Nonlinear MPC 134
6.5 General Tuning Guideline of Nonlinear MPC 136
6.6 Discretisation of Models: Orthogonal Collocation Method 137
6.6.1 Orthogonal Collocation Method with Prediction Horizon 1 137
6.6.2 Orthogonal Collocation Method with Prediction Horizon N 140
6.7 Pros and Cons of MPC 142
6.8 Optimisation 142
6.9 Example: Chaotic System 144
6.10 Notes and References 145
Part II TUBULAR SOFC

7 Dynamic Modelling of Tubular SOFC: First-Principle Approach

7.1 SOFC Stack Design
7.2 Conversion Process
 7.2.1 Electrochemical Reactions
 7.2.2 Electrical Dynamics
7.3 Diffusion Dynamics
 7.3.1 Transfer Function of Diffusion
 7.3.2 Simplified Transfer Function of Diffusion
 7.3.3 Dynamic Model of Diffusion
 7.3.4 Diffusion Coefficient
7.4 Fuel Feeding Process
 7.4.1 Reforming/Shift Reaction
 7.4.2 Mass Transport
 7.4.3 Momentum Transfer
 7.4.4 Energy Transfer and Heat Exchange
7.5 Air Feeding Process
 7.5.1 Mass Transport in the Cathode Channel
 7.5.2 Cathode Channel Momentum Transfer
 7.5.3 Energy Transfer in the Cathode Channel
 7.5.4 Air in Injection Channel
7.6 SOFC Temperature
 7.6.1 Dynamic Energy Exchange Process
 7.6.2 Conduction
 7.6.3 Convection
 7.6.4 Radiation
 7.6.5 Cell Temperature Model
 7.6.6 Injection Tube Temperature Model
7.7 Final Dynamic Model
 7.7.1 I/O Variables
 7.7.2 State Space Model
 7.7.3 Model Validation
7.8 Investigation of Dynamic Properties through Simulations
 7.8.1 Dynamics of Diffusion
 7.8.2 Dynamics of Fuel Feeding Process
 7.8.3 Dynamics of Air Feeding Process
 7.8.4 Dynamics due to External Load
7.9 Notes and References

8 Dynamic Modelling of Tubular SOFC: Simplified First-Principle Approach

8.1 Preliminary
 8.1.1 Relation of Process Variables
 8.1.2 Limits to Power Output
8.2 Low-order State Space Modelling of SOFC Stack 195
 8.2.1 Physical Processes 195
 8.2.2 Modelling Assumptions 197
 8.2.3 I/O Variables 197
 8.2.4 Voltage 198
 8.2.5 Partial Pressures 199
 8.2.6 Flow Rates 200
 8.2.7 Temperatures 203
8.3 Nonlinear State Space Model 204
8.4 Simulation 205
 8.4.1 Validation 205
 8.4.2 Step Response to the Inputs 207
 8.4.3 Step Responses to the Disturbances 209
8.5 Notes and References 211

9 Dynamic Modelling and Control of Tubular SOFC: System Identification Approach 213
 9.1 Introduction 213
 9.2 System Identification 213
 9.2.1 Selection of Variables 213
 9.2.2 Step Response Test 214
 9.2.3 Non-typical Step Response 217
 9.2.4 Input Design 218
 9.2.5 Linear System Identification 220
 9.2.6 Nonlinear System Identification 234
 9.3 PID Control 241
 9.3.1 Set Point Tracking 243
 9.3.2 Disturbance Rejection 243
 9.3.3 Internal Model Control for Discrete-time Processes 243
 9.3.4 Application of Discrete-time IMC to Multi-loop Control of SOFC 254
 9.4 Closed-loop Identification 257
 9.5 Notes and References 263

Part III PLANAR SOFC

10 Dynamic Modelling of Planar SOFC: First-Principle Approach 267
 10.1 Introduction 267
 10.2 Geometry 268
 10.3 Stack Voltage 268
 10.4 Mass Balance 270
 10.5 Energy Balance 271
 10.5.1 Lumped Model 272
 10.5.2 Detail Model 273
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6 Simulation</td>
<td>277</td>
</tr>
<tr>
<td>10.6.1 Steady-state Response</td>
<td>277</td>
</tr>
<tr>
<td>10.6.2 Dynamic Response</td>
<td>278</td>
</tr>
<tr>
<td>10.7 Notes and References</td>
<td>280</td>
</tr>
<tr>
<td>11 Dynamic Modelling of Planar SOFC System</td>
<td>283</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>283</td>
</tr>
<tr>
<td>11.2 Fuel Cell System</td>
<td>283</td>
</tr>
<tr>
<td>11.2.1 Fuel and Air Heat Exchangers</td>
<td>284</td>
</tr>
<tr>
<td>11.2.2 Reformer</td>
<td>286</td>
</tr>
<tr>
<td>11.2.3 Burner</td>
<td>287</td>
</tr>
<tr>
<td>11.3 SOFC along with a Capacitor</td>
<td>287</td>
</tr>
<tr>
<td>11.4 Simulation Result</td>
<td>289</td>
</tr>
<tr>
<td>11.4.1 Fuel Cell System Simulation</td>
<td>290</td>
</tr>
<tr>
<td>11.4.2 SOFC Stack with Ultra-capacitor</td>
<td>292</td>
</tr>
<tr>
<td>11.5 Notes and References</td>
<td>292</td>
</tr>
<tr>
<td>12 Model Predictive Control of Planar SOFC System</td>
<td>295</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>295</td>
</tr>
<tr>
<td>12.2 Control Objective</td>
<td>296</td>
</tr>
<tr>
<td>12.3 State Estimation: UKF</td>
<td>297</td>
</tr>
<tr>
<td>12.4 Steady-state Economic Optimisation</td>
<td>298</td>
</tr>
<tr>
<td>12.5 Control and Simulation</td>
<td>301</td>
</tr>
<tr>
<td>12.5.1 Linear MPC</td>
<td>301</td>
</tr>
<tr>
<td>12.5.2 Nonlinear MPC</td>
<td>303</td>
</tr>
<tr>
<td>12.5.3 Optimisation</td>
<td>305</td>
</tr>
<tr>
<td>12.6 Results and Discussions</td>
<td>306</td>
</tr>
<tr>
<td>12.7 Notes and References</td>
<td>307</td>
</tr>
<tr>
<td>Appendix A Properties and Parameters</td>
<td>309</td>
</tr>
<tr>
<td>A.1 Parameters</td>
<td>309</td>
</tr>
<tr>
<td>A.2 Gas Properties</td>
<td>309</td>
</tr>
<tr>
<td>References</td>
<td>315</td>
</tr>
<tr>
<td>Index</td>
<td>321</td>
</tr>
</tbody>
</table>
Preface

Today’s energy-hungry civilization is in search of an alternative source to replace the currently available but continuously depleting energy sources. Stringent environmental regulations restricting emissions of greenhouse gases, SOx and NOx have narrowed down the search for a clean source of energy to few options. It has generated a lot of attention towards the fuel cell as an alternative source of clean energy. Fuel cells are electrochemical devices that directly convert chemical energy to electrical energy. As it does not involve any rotary or thermal components, it does not suffer from any friction and combustion loss. Moreover, the unused fuel from the cell can be used to generate more power, making it attain high overall efficiency.

Among various fuel cells, the low temperature proton exchange membrane fuel cell (PEMFC) and the high temperature solid oxide fuel cell (SOFC) have been identified as the likely fuel cell technologies that will capture the market in the future.

In order to operate and control SOFC systems, it is necessary to investigate dynamic characteristics of SOFC through modelling and simulations. Modelling and controller design are two integral parts of advanced process control strategies that are intricately dependent on each other. From the process control view point, models should be easy to use for designing controller and yet be detailed enough for giving a true account of the system dynamics.

In this book, two types of models, first-principle and data-based, are developed for SOFC. The first-principle models take electrochemical, chemical and thermal aspects into account and provide a set of nonlinear ordinary differential equations (ODE). Zero-dimensional thermal models of fuel cell system component such as heat exchangers, reformer and burner are also provided for fuel cell system simulation and control. In parallel, data-based models are developed through the system identification approach.

Dynamic models can be used to investigate responses of the fuel cells under different operating conditions to account for pitfalls associated with the design and material selections. By means of optimal control, one can steer the operating condition towards a favourable one to improve the durability and efficiency of the fuel cells. Thus, dynamic modelling and control are the essential ingredients in fuel cell developments.

With the advent of cheap computational power, applications of difficult-to-implement complex controllers such as nonlinear model predictive controller, have been seen in the industries. In this book, both conventional controls and advanced model predictive controls are applied in the fuel cell system.
This book attempts to consolidate the results developed or published by authors over the last eight years along with fundamentals in one place and presents them in a systematic way. In this respect, the book is likely to be of use for graduate students and researchers as a textbook or monograph and as a place to look for basics as well as state-of-the-art techniques in dynamic modelling and control, and their applications. As several self-contained fuel cell dynamic models with detailed parameters and explanations are presented in the book, it provides an excellent place for researchers in process systems engineering and control systems engineering to look for challenging problems to test new control theory and algorithms. The readers of this book will be graduate students and researchers in Chemical Engineering, Mechanical Engineering or Electrical Engineering, with the major in process control, fuel cells, process systems engineering or control systems.

The book covers a variety of subjects including Chemical Engineering Fundamentals, System Identification, State Estimation and Process Control but they are not a pre-requisite for understanding the material as the book contains detailed introduction to these subjects. In this respect, this book can also be used as a textbook or as a reference for learning the fundamentals of chemical engineering, system identification, state estimation and process control with vivid illustrations of fuel cell application examples.
Acknowledgments

We would like to specifically thank our colleagues and collaborators, Professors Kumar Nandakumar, Karl Chuang and Jingli Luo, who have inspired many discussions and ideas in fuel cell research over the past years, and also to members of the computer process control group at the University of Alberta, Canada, who have provided a stimulating environment for process control research. The broad range of talent within the Department of Chemical and Materials Engineering at the University of Alberta has allowed cross-fertilisation and nurturing of many different ideas that have made this book possible. We are indebted to many of our industrial collaborators, who have inspired us with practical relevance in broad areas of process control research. We would also like to thank our computing support staff and other supporting staff of the Department of Chemical and Materials Engineering at the University of Alberta. The support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Western Canada Fuel Cell Initiative (WCFCI) for this and related research work are gratefully acknowledged. Last but not least, we would like to acknowledge Shima Khatibisepehr and Seraphina Kwak for their detailed review and comments for many chapters of the book.
List of Figures

1.1 Principle of solid oxide fuel cell 3
1.2 Tubular design of SOFC stack and cell 4
1.3 Planar design of SOFC stack and cell 4
2.1 Mechanism of conduction heat transfer 14
2.2 Convection heat transfer and boundary layer 16
2.3 Heat exchange through radiation 17
2.4 Diffusive mass transfer 19
2.5 Mechanism of Newtonian fluid 20
3.1 Step response of a first-order process 37
3.2 Step response of first-order process with noise 37
3.3 Input design for three scales of parameters 38
3.4 Random binary sequence 39
3.5 White noise sequence 41
3.6 Filtered white noise sequence 41
3.7 Sum of sinusoidal sequence 42
3.8 Equivalence of Bode diagram and transfer function 43
3.9 Spectrum of a desired input to cover the frequency of interest 43
4.1 Closed-loop system 84
5.1 Illustrative point estimate examples 107
5.2 Pdf prediction 108
5.3 Pdf update 108
5.4 Sequential Bayesian inferencing 109
5.5 Monte–Carlo simulation, where stars represent the samples drawn according to the distribution 112
5.6 Monte–Carlo simulation, where stars represent the samples and arrows represent the weights that approximate the distribution 112
5.7 An illustrative sigma point example 114
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8</td>
<td>An illustrative UKF inference procedure, where stars represent the sigma points, and arrows represent the corresponding weight</td>
<td>116</td>
</tr>
<tr>
<td>5.9</td>
<td>Second-order exothermic reaction</td>
<td>117</td>
</tr>
<tr>
<td>5.10</td>
<td>Parameter and state estimation of highly nonlinear system</td>
<td>118</td>
</tr>
<tr>
<td>5.11</td>
<td>Parameter and state estimation of virus dynamic model</td>
<td>119</td>
</tr>
<tr>
<td>5.12</td>
<td>Parameter and state estimation of cytotoxicity dynamic model</td>
<td>119</td>
</tr>
<tr>
<td>6.1</td>
<td>Moving horizon concept of general MPC</td>
<td>123</td>
</tr>
<tr>
<td>6.2</td>
<td>Simulated DMC closed-loop response. Top panel is the output and bottom panel is the control action</td>
<td>134</td>
</tr>
<tr>
<td>6.3</td>
<td>Approximation of a function by three-point collocation in one-step-ahead prediction</td>
<td>138</td>
</tr>
<tr>
<td>6.4</td>
<td>Polynomial approximation of a function using three-point collocation method with prediction horizon, $PH = N$</td>
<td>140</td>
</tr>
<tr>
<td>6.5</td>
<td>Control hierarchy</td>
<td>144</td>
</tr>
<tr>
<td>6.6</td>
<td>Control of convective loop reactor by NMPC along with UKF as state estimator. (a) Horizontal temperature difference (measured output). (b) Heating rate</td>
<td>145</td>
</tr>
<tr>
<td>7.1</td>
<td>Tubular SOFC example</td>
<td>150</td>
</tr>
<tr>
<td>7.2</td>
<td>Principle of solid oxide fuel cell</td>
<td>151</td>
</tr>
<tr>
<td>7.3</td>
<td>Equivalent circuit of inherent impedance</td>
<td>154</td>
</tr>
<tr>
<td>7.4</td>
<td>Equivalent circuit of a single fuel cell</td>
<td>155</td>
</tr>
<tr>
<td>7.5</td>
<td>Mass and energy balance on a section of fuel flow</td>
<td>161</td>
</tr>
<tr>
<td>7.6</td>
<td>Mass and energy balance on a section of air flow</td>
<td>167</td>
</tr>
<tr>
<td>7.7</td>
<td>Energy balance on a section of air flow inside the injection tube</td>
<td>168</td>
</tr>
<tr>
<td>7.8</td>
<td>Energy exchange on a section of an SOFC cell tube</td>
<td>169</td>
</tr>
<tr>
<td>7.9</td>
<td>Definition of view factor</td>
<td>173</td>
</tr>
<tr>
<td>7.10</td>
<td>Energy balance on a section of injection tube</td>
<td>174</td>
</tr>
<tr>
<td>7.11</td>
<td>Comparison of simulated and experiment V-I plot</td>
<td>181</td>
</tr>
<tr>
<td>7.12</td>
<td>Comparison of voltage responses to load step changes</td>
<td>182</td>
</tr>
<tr>
<td>7.13</td>
<td>Step responses of SOFC, when hydrogen pressure changes</td>
<td>183</td>
</tr>
<tr>
<td>7.14</td>
<td>Step responses of SOFC, when it enters concentration loss range</td>
<td>184</td>
</tr>
<tr>
<td>7.15</td>
<td>Effect of diffusion layer thickness on step responses of SOFC</td>
<td>185</td>
</tr>
<tr>
<td>7.16</td>
<td>SOFC step responses, when P, T and u in the inlet fuel flow are increased</td>
<td>186</td>
</tr>
<tr>
<td>7.17</td>
<td>Mole fraction step responses, when P, T and u in inlet fuel flow are increased</td>
<td>187</td>
</tr>
<tr>
<td>7.18</td>
<td>SOFC step responses, when P, T and u in inlet air flow are increased</td>
<td>188</td>
</tr>
<tr>
<td>7.19</td>
<td>Mole fraction step responses, when P, T and u in inlet air flow are increased</td>
<td>189</td>
</tr>
<tr>
<td>7.20</td>
<td>Step responses of SOFC slice, when R_{load} changes</td>
<td>190</td>
</tr>
</tbody>
</table>
List of Figures

7.21 Step responses of species mole fractions, when R_{load} changes 191
8.1 Schematic logic correlations of SOFC process variables 194
8.2 Block diagram of the fuel cell process 196
8.3 Fuel and air flow channels in the tubular SOFC stack 201
8.4 Comparison of stack voltage responses to current demand step change 207
8.5 Step response of outputs due to u_1, the upstream fuel pressure $P_{\text{in fuel}}$, increased from 1.0008 to 1.0016 atm 208
8.6 Step response of outputs due to u_2, the upstream air pressure $P_{\text{in air}}$, increased from 1.01 to 1.02 atm 208
8.7 Step response of outputs due to d_1, the current I, increased from 300 to 500 amp 209
8.8 Step response of outputs due to d_2, the fuel inlet temperature T_{fuel}, increased from 823 to 873 K 210
8.9 Step response of outputs due to d_3, the air inlet temperature disturbance T_{air}, increased from 1104 to 1154 K 210
9.1 Calculation for gain, time delay and time constant from a step response 215
9.2 Step response for cell temperature when the fuel gas pressure steps from 1 to 1.3 atm at time 1000 s 216
9.3 Step response for voltage when fuel gas pressure steps from 1 to 1.3 atm at time 1000 s 218
9.4 Zoomed-in step response in Figure 9.3 218
9.5 Input and output data (Model 1) 220
9.6 Impulse response estimation (Model 1) 221
9.7 ARX111 predicted versus actual temperature responses obtained in the validation data set (Model 1) 222
9.8 ARX111 residual tests on the validation data set (Model 1) 223
9.9 ARX331 predicted versus actual temperature responses obtained on the validation data set (Model 1) 223
9.10 ARX331 residual tests on the validation data set (Model 1) 224
9.11 Bode diagram for ARX331 model and empirical transfer function estimate based on spectrum analysis (Model 1) 225
9.12 ARMAX1111 predicted versus actual temperature responses obtained on the validation data set (Model 1) 226
9.13 ARMAX1111 residual tests on the validation data set (Model 1) 226
9.14 OE111 predicted versus actual temperature responses obtained on the validation data set (Model 1) 227
9.15 OE111 residual tests on the validation data set (Model 1) 228
9.16 BJ11111 predicted versus actual temperature responses obtained on the validation data set (Model 1) 229
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.17</td>
<td>BJ11111 residual tests on the validation data set (Model 1)</td>
<td>229</td>
</tr>
<tr>
<td>9.18</td>
<td>SS1 predicted versus actual temperature responses obtained on the validation data set (Model 1)</td>
<td>230</td>
</tr>
<tr>
<td>9.19</td>
<td>SS1 residual tests on the validation data set (Model 1)</td>
<td>230</td>
</tr>
<tr>
<td>9.20</td>
<td>Input and Output data (Model 2)</td>
<td>231</td>
</tr>
<tr>
<td>9.21</td>
<td>Impulse response estimation (Model 2)</td>
<td>232</td>
</tr>
<tr>
<td>9.22</td>
<td>OE11111 predicted versus actual voltage responses obtained on the validation data set (Model 2)</td>
<td>232</td>
</tr>
<tr>
<td>9.23</td>
<td>OE11111 residual tests on the validation data set (Model 2)</td>
<td>233</td>
</tr>
<tr>
<td>9.24</td>
<td>BJ11111 predicted versus actual voltage responses obtained on the validation data set (Model 2)</td>
<td>233</td>
</tr>
<tr>
<td>9.25</td>
<td>BJ11111 residual tests on the validation data set (Model 2)</td>
<td>234</td>
</tr>
<tr>
<td>9.26</td>
<td>BJ222221 predicted versus actual voltage responses obtained on the validation data set (Model 2)</td>
<td>235</td>
</tr>
<tr>
<td>9.27</td>
<td>BJ222221 residual tests on the validation data set (Model 2)</td>
<td>235</td>
</tr>
<tr>
<td>9.28</td>
<td>Bode diagram for BJ222221 model and empirical transfer function estimate based on spectrum analysis (Model 2)</td>
<td>236</td>
</tr>
<tr>
<td>9.29</td>
<td>Step response of BJ222221 model (Model 2)</td>
<td>236</td>
</tr>
<tr>
<td>9.30</td>
<td>Input–output data for nonlinear system identification</td>
<td>237</td>
</tr>
<tr>
<td>9.31</td>
<td>BJ222221 predicted versus actual voltage responses obtained on the validation data set (Model 1)</td>
<td>238</td>
</tr>
<tr>
<td>9.32</td>
<td>BJ222221 residual tests on the validation data set (Model 1)</td>
<td>238</td>
</tr>
<tr>
<td>9.33</td>
<td>BJ333331 predicted versus actual voltage responses obtained on the validation data set (Model 1)</td>
<td>239</td>
</tr>
<tr>
<td>9.34</td>
<td>BJ333331 residual tests on the validation data set (Model 1)</td>
<td>239</td>
</tr>
<tr>
<td>9.35</td>
<td>NLARX331 predicted versus actual voltage responses obtained on the validation data set (Model 1)</td>
<td>240</td>
</tr>
<tr>
<td>9.36</td>
<td>NLARX331 residual tests on the validation data set (Model 1)</td>
<td>240</td>
</tr>
<tr>
<td>9.37</td>
<td>Block diagram of the closed-loop control</td>
<td>241</td>
</tr>
<tr>
<td>9.38</td>
<td>Closed-loop temperature and fuel flow rate response to the set point change at the nominal load</td>
<td>244</td>
</tr>
<tr>
<td>9.39</td>
<td>Closed-loop temperature and fuel flow rate responses to the set point change at different loads</td>
<td>244</td>
</tr>
<tr>
<td>9.40</td>
<td>Closed-loop temperature and fuel flow rate responses to the disturbance at different loads</td>
<td>245</td>
</tr>
<tr>
<td>9.41</td>
<td>Conventional feedback control</td>
<td>245</td>
</tr>
<tr>
<td>9.42</td>
<td>Basic IMC</td>
<td>246</td>
</tr>
<tr>
<td>9.43</td>
<td>Separation of control action into several component activities</td>
<td>247</td>
</tr>
<tr>
<td>9.44</td>
<td>Components of basic IMC</td>
<td>247</td>
</tr>
</tbody>
</table>
List of Figures

9.45 Equivalence of IMC to conventional feedback control 248
9.46 Transform of IMC to design perfect control 248
9.47 IMC filter 252
9.48 Simplified IMC filter 253
9.49 Further simplified IMC filter 253
9.50 Closed-loop temperature and fuel flow rate responses to the set point change at different loads (discrete-time IMC control) 255
9.51 Closed-loop voltage and fuel flow pressure responses to the set point change (discrete-time IMC control) 256
9.52 Zoomed view of the closed-loop voltage and fuel flow pressure responses to the set point change (discrete-time IMC control) 256
9.53 Closed-loop responses to the set point changes (discrete-time multi-loop IMC control) 257
9.54 Temperature response data for closed-loop identification 258
9.55 BJ11111 predicted versus closed-loop temperature response obtained on the validation data set 258
9.56 BJ11111 residual tests on the closed-loop validation data set 259
9.57 BJ12211 predicted versus closed-loop temperature responses obtained on the validation data set 260
9.58 BJ12211 residual tests on the closed-loop validation data set 260
9.59 Voltage response data for closed-loop identification 261
9.60 BJ11111 residual tests on the closed-loop validation data set 261
9.61 BJ22221 predicted versus closed-loop voltage response obtained on the validation data set 262
9.62 BJ22221 residual tests on the closed-loop validation data set 262
10.1 View of a fuel cell unit in a planar SOFC fuel cell stack with cross-flow arrangement 269
10.2 Energy balance boundary layer for both the lumped and detail model 272
10.3 (a) Power–current, (b) voltage–current, (c) temperature–current and (d) partial pressure–current steady-state curve for planar SOFC for detail, lumped and species-only models 278
10.4 Effect of load changes on power, voltage and cell temperature 279
10.5 Effect of fuel and air rate on power, voltage and cell temperature 279
10.6 Effect of fuel and air temperature on power, voltage and cell temperature 280
11.1 SOFC system with heat exchangers, reformer, burner and compressors 284
11.2 Heat exchanger divided into n nodes along the length 285
11.3 SOFC along with capacitor connected in parallel 288
11.4 (a–h) Transient responses of fuel cell system due to load changes 290
11.5 (a–h) Transient responses of fuel cell system due to change in flow rate of methane and air
11.6 Dynamic response of a fuel cell along with capacitor – (a) power, (b) voltage, (c) current load in the fuel cell and (d) current load in the capacitor
12.1 Control hierarchy
12.2 SOFC system with multi-variate control and optimiser
12.3 (a–d) State estimation of stand-alone SOFC by UKF by assuming that only the cell temperature and voltage are measurable; solid line = estimated state; dashed line = true state
12.4 (a–d) State estimation of SOFC system by UKF by assuming that only the flow temperatures and stack voltage are measurable; solid line = estimated state; dashed line = true state
12.5 (a–d) Response to a load change of 500 to 450 amp; PH = 10, CH = 3, $T_s = 1$ s
12.6 (a–d) Response to a load change of 500 to 300 amp; PH = 10, CH = 3, $T_s = 1$ s
12.7 (a–d) Response to a load change of 500 to 300 amp; PH = 30, CH = 3, $T_s = 10$ s
12.8 (a,b) Response to target voltage change for a stand-alone fuel cell
12.9 (a–d) Response to load changes for a fuel cell system
12.10 (a–d) Response to a load change of 500 to 700 amp with optimal steady-state input targets from energy minimisation
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Identification data</td>
<td>100</td>
</tr>
<tr>
<td>6.1</td>
<td>Polynomial roots x_j and the weighting functions W_j for m collocation points</td>
<td>138</td>
</tr>
<tr>
<td>6.2</td>
<td>Matrices for m-point orthogonal collocation found from Equation 6.33</td>
<td>140</td>
</tr>
<tr>
<td>7.1</td>
<td>Input and output variables</td>
<td>176</td>
</tr>
<tr>
<td>8.1</td>
<td>I/O variables of the model</td>
<td>198</td>
</tr>
<tr>
<td>8.2</td>
<td>Variation of species in the SOFC stack from the inlet to the outlet</td>
<td>200</td>
</tr>
<tr>
<td>8.3</td>
<td>SOFC stack design parameters</td>
<td>206</td>
</tr>
<tr>
<td>9.1</td>
<td>Input and output variables</td>
<td>214</td>
</tr>
<tr>
<td>9.2</td>
<td>Time constants for tested processes at three different operation modes</td>
<td>216</td>
</tr>
<tr>
<td>9.3</td>
<td>Gains for tested processes at three different operation modes</td>
<td>217</td>
</tr>
<tr>
<td>9.4</td>
<td>Time delays for tested processes at three different operation modes</td>
<td>217</td>
</tr>
<tr>
<td>9.5</td>
<td>Processes considered for the system identification</td>
<td>219</td>
</tr>
<tr>
<td>9.6</td>
<td>BJ models at three different operation modes</td>
<td>237</td>
</tr>
<tr>
<td>10.1</td>
<td>Model parameters</td>
<td>277</td>
</tr>
<tr>
<td>11.1</td>
<td>Balance of plant (BOP) parameters</td>
<td>289</td>
</tr>
<tr>
<td>12.1</td>
<td>Optimal fuel flows for minimum indirect energy</td>
<td>305</td>
</tr>
<tr>
<td>12.2</td>
<td>Sets of different steady state solution for different initial conditions</td>
<td>307</td>
</tr>
<tr>
<td>A.1</td>
<td>Input conditions for the simulations</td>
<td>310</td>
</tr>
<tr>
<td>A.2</td>
<td>Model parameters</td>
<td>311</td>
</tr>
<tr>
<td>A.3</td>
<td>Inherent property parameters of gas ingredients</td>
<td>311</td>
</tr>
<tr>
<td>A.4</td>
<td>Approximation of specific heat (C_v) of gas ingredients between 700 and 1500 K</td>
<td>312</td>
</tr>
<tr>
<td>A.5</td>
<td>Approximation of viscosity of gas ingredients between 700 and 1500 K</td>
<td>312</td>
</tr>
<tr>
<td>A.6</td>
<td>Approximation of thermal conductivity of gases between 700 and 1500 K</td>
<td>312</td>
</tr>
<tr>
<td>A.7</td>
<td>Approximation of enthalpy of formation between 700 and 1500 K</td>
<td>313</td>
</tr>
</tbody>
</table>
1

Introduction

Fuel cells are electrochemical devices that directly convert chemical energy into electrical energy. As the production of energy in fuel cells does not involve any moving parts and their principle of operation varies from that of heat engines, the energy produced by these cells is neither associated with any mechanical friction loss nor limited by Carnot cycle efficiency. Moreover, the unreacted fuel from the cell can be used to generate more power. The overall efficiency of the cell can also be increased by recovering the heat generated during operation from the exhaust gas.

Today’s energy-hungry civilisation is in search of an alternative source to replace the currently available but continuously depleting conventional energy sources. Stringent environmental regulations have restricted the emission of greenhouse gases, SO$_x$ and NO$_x$, and hence narrowed down the search for a clean source of energy to a few options. These are the main reasons behind the growing interest in the development of fuel cells as an alternative source of clean energy.

However, there are a number of obstacles in the commercialisation of fuel cells as a main source of energy. The main obstacle comes from the high manufacturing cost of the fuel cell. A vast amount of research is being conducted on the design and operation of fuel cells for reducing the cost and hence turning these devices into a viable and competitive source of energy. Selections of materials for electrolyte, catalyst and electrodes also contribute to the cost of a fuel cell. A number of researchers have focussed on this area. It is often required to simulate the fuel cell system under different operating conditions to account for all the pitfalls associated with the design and material selections. Depending on the perspective, the modelling and simulation can range from micro to system levels. This book focuses on solid oxide fuel cell system from the perspective of process control for the safe and efficient operation of the fuel cell system as a power source. It includes control relevant modelling, state estimation and controller design.

1.1 Overview of Fuel Cell Technology

Construction of a unit fuel cell mainly consists of three parts – electrolyte, cathode and anode. Fuel is continuously fed into the anode of the fuel cell, and a suitable oxidant,
usually air, is fed into the cathode. The main purpose of the electrolyte is to prevent direct contact of the fuel with the oxidant while connecting the anode and cathode electrically. The electrolyte also allows the passage of the oxidant or reductant ions to the other side to take part in the electrochemical reaction.

1.1.1 Types of Fuel Cells

The classification of fuel cells is based on the choice of electrolyte and fuel. They are as follows:

- **Solid Oxide Fuel Cell (SOFC):** Solid oxide fuel cell uses a solid ceramic type oxide, and thus receives the name. Y$_2$O$_3$ stabilised ZrO$_2$ (YSZ) is a common electrolyte used in SOFCs. The operating temperature of the fuel cell is usually high (600–1000 °C). Owing to the solid nature of the electrolyte and electrodes, the SOFC can be designed and fabricated in the most versatile ways, including planar and tubular designs.

- **Molten Carbonate Fuel Cell (MCFC):** Molten carbonate fuel cells use different combinations of alkali carbonates as an electrolyte. These carbonates are usually contained in a ceramic matrix. The operating temperature of MCFCs is also high, usually between 600 and 700 °C.

- **Proton Exchange Membrane Fuel Cell (PEMFC):** In this type of fuel cell, a polymeric ion exchange membrane is used as an electrolyte. The operating temperature of these cells is usually low (40–80 °C).

- **Phosphoric Acid Fuel Cell (PAFC):** The electrolyte in the PAFC is 100% phosphoric acid, which is held in a silicon carbide structure. The operating temperature of the fuel cell is about 150–220 °C, which is one of the attractive features of PAFC. This operating temperature makes it flexible to design the fuel cell and the balance of plant (BOP).

Other types of fuel cells include alkaline fuel cell (AFC), direct methanol fuel cell (DMFC), regenerative fuel cell (RFC) and metal air fuel cell (MAFC). Fue (2004) provides a summary of major differences in different types of fuel cells.

The low-temperature PEMFC and the high-temperature SOFC have been identified as the likely fuel cell technologies that will capture the most significant market in the future.

The basic principle of a typical hydrogen SOFC is shown in Figure 1.1. The chemical reactions inside the cell, which are directly involved in the production of electricity, are as follows:

At anode triple phase boundary (tpb): \[H_2 + O^{2-} \rightarrow H_2O + 2e^- \]

At cathode triple phase boundary (tpb): \[\frac{1}{2}O_2 + 2e^- \rightarrow O^{2-} \]

(1.1)

At the anode of the SOFC, hydrogen gas reacts with oxygen ions that are migrated through the electrolyte to form water and release electrons. At the cathode, oxygen ionises with electrons and creates \(O^{2-} \) ions. \(O^{2-} \) ions are transported to anode through the electrolyte. Electrons produced at the anode flow through an external electrical circuit and reach
the cathode. These reactions, therefore, both proceed continuously and supply electricity to the external circuit. Usually, SOFCs work at a high temperature, in the range of 600–1000 °C, to meet the electrolyte’s ionic conductivity requirement. Hydrogen used as the fuel for SOFCs can be produced by steam reforming of natural gas. For a high-temperature fuel cell such as SOFC, the reforming reaction can be performed internally, within the anode of the cell.

1.1.2 Planar and Tubular Designs

To meet the voltage requirement for most of the applications, fuel cell systems need to be composed of stacks of connected individual cells. An SOFC stack is composed of a number of SOFC cells to produce a high voltage output. In designing SOFC stack and cells, there are many factors that need to be considered, such as gas delivery, thermal stresses, mechanical strength, inherent electrical and ionic resistance and choice of seal materials. SOFCs are manufactured in various geometries, the most common of which are the planar and tubular designs shown in Figures 1.2 and 1.3, respectively.

One of the most important advantages of the tubular design is that it does not need the seal to separate fuel and air flow. Another advantage is that the tubular shape can improve the strength of the cell. The tubular shape can also improve the gas delivering property. This kind of design is suitable for stationary and large-scale power generation applications.

On the other hand, the most significant advantage of the planar SOFC design is its lower electrical resistance. Planar SOFCs are more suitable for mobile and low power applications.
1.1.3 Fuel Cell Systems

In an ideal fuel cell, hydrogen is used as a fuel along with air as an oxidant. Such a fuel cell can work as the cleanest possible source of energy – the by-product of the reaction being water. However, as hydrogen is not readily available in nature, in practice, the hydrogen used as fuel for these systems needs to be produced from other sources. Hydrogen-rich fuels are most commonly used to produce hydrogen either internally or externally to the fuel cell. Thus, a fuel cell plant usually involves components for pre- and post-processing of the reactants and products. The components, which are also called BOP, may include compressors, turbines, heat exchangers, reactors for reforming of the fuel and a DC–AC converter or inverter to connect the fuel cell to an existing power grid.
Compressors or blowers are required to build necessary pressure to pass reactants and products through different components. The unreacted fuel from the fuel cell itself can be combusted in a gas turbine for generating more power. The compressor–turbine duo thus provides a net power in addition to the direct power generated by the fuel cell itself. In residential applications, the hot effluent gas can be used to supply hot water and provide heat for the households.

A fuel cell directly converts chemical energy into electrical energy. The output being a DC voltage is appropriate to operate small equipment. For a fuel cell power plant, the DC power needs to be converted to AC in order to be transferable to the power supply grid. Thus, the BOP may also include a power conditioning unit (PCU).

1.1.4 Pros and Cons of Fuel Cells

Fuel cells have various advantages over conventional power generation systems such as batteries and turbines. As with any other technology, a fuel cell comes with some advantages and disadvantages. Some of these are described below.

Advantages:

- Unlike turbines, a fuel cell system does not have any moving components, and thus does not have any mechanical friction loss associated with it. It also provides a quiet operation and less maintenance.
- Unlike a heat engine, a fuel cell converts chemical energy directly into electrical energy. Thus, it is not limited by Carnot cycle efficiency.
- The exhaust (unreacted fuel) gas from the fuel cell can be used to generate excess power by coupling with a heat engine, thereby, increasing the efficiency.
- The efficiency of a fuel cell is not limited by size. Thus, a small fuel cell powering a laptop or a personal electronic gadget can generate power at the same efficiency as a 10 MW fuel cell power plant.
- A wide range of fuels may be used for fuel cells.
- As the reaction inside a fuel cell occurs between specific ions only, it limits the release of NO\textsubscript{x} and SO\textsubscript{x} to the environment.

Disadvantages:

- Fuel cells are expensive compared to other energy producing technologies at least at the moment.
- Most fuel cells use hydrogen as fuel, and it impedes commercialisation of these devices because of the cost and complexities associated with the production, storage and transportation of hydrogen.
- In comparison with batteries, fuel cells have lower power densities and shorter lifetimes.
- Impurity of fuel gas may poison catalysts in electrodes.

1.2 Modelling, State Estimation and Control

Process modelling, state estimation and design of the controller are part of advanced process control strategies. They are intricately dependent on each other. For example, building a model (whether it is first-principle or data-based, linear or nonlinear, 0D or 3D model) affects the design of the controller and state estimation techniques. Thus,
the modelling of a process should always be based on the objective. A simple model
developed for the purpose of control may perform better than a complex 3D model,
which, on the other hand, may be suitable for design and performance analysis of the
process. In simple words, the modelling objective of this book can be stated as finding
a model that is suitable for controller design.

Similarly, controller design and state estimation techniques should be objective-
oriented. A process expressed by a complex model may be stable enough to be controlled
by a regular proportional integral derivative (PID) controller. On the other hand, a
simple process may have a lot of environmental and economic constraints, requiring a
multivariate controller to maintain the optimal performance of the system.

An SOFC system, which exhibits highly nonlinear characteristics, needs to be studied
by various modelling, estimation and control techniques. This book covers all these three
inter-related aspects, that is, modelling, state estimation and control.

1.3 Book Coverage

The book consists of three parts. Part I provides a tutorial of the fundamental principles
used in the subsequent chapters. Specifically, chemical engineering principles, system
identification, state estimation and model predictive control are applied to fuel cell systems
and thus their fundamentals are covered in Part I.

Part II focuses on detailed and simplified dynamic modelling of tubular SOFC cells.
The first-principle modelling considers all dynamics of the flow, including mass, energy
and moment balances.

The data-based modelling in Part II is based on the system identification approach,
which is presented in detail in Part I. Various aspects of system identification are illustrated
through applications in the modelling of the fuel cell. As a natural outcome of system
identification, the models identified are used for feedback control design including PID
and IMC.

Recent advances and growing interest in fuel cells have led to a lot of activities on not
only the modelling of fuel cells but also their system components. These models range
from zero-dimensional to complex three-dimensional models and also cover the area of
performance evaluation and optimal design of the fuel cell. However, little work has been
done on developing control relevant models on the system level that sufficiently describe
the fuel cell system dynamics, yet are simple enough for control design. This motivated
us for developing lumped models of fuel cell and BOP to form a fuel cell system in
Part III. To diversify the coverage of the book, Part III is devoted to the planar SOFC.

A wide range of linear and nonlinear control techniques have been developed and
implemented in various industries. Especially during the past decade, with the advent
of cheap computational power, a trend shifted from traditional PID controller towards
previously non-implementable controllers, such as nonlinear model predictive controller
(NMPC). This led us to attempting NMPC in SOFC systems along with optimisation to
maximise electrical energy generated from SOFCs.

1.4 Book Outline

The book is organised as follows:

Chapter 2 provides an introduction to chemical engineering fundamentals, which are
the basis for first-principle modelling in the subsequent chapters.