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Notation

The following types of alphabetic symbol are used in the mathematical expressions in this book:

Nonbold italic letters (both Latin-script and Greek-script) are used for quantities taking values (or for functions
taking a range of values) in the form of single numbers (in some system of units). Examples are energy
(E), wave function (ψ), magnitude of magnetic induction (B), polarizability (α), temperature (T), and the
speed of light (c). Nonbold italic letters are also used for vector and tensor indices.

Bold italic letters (mostly Latin script) are used to denote three-component vectors and pseudovec-
tors. Examples are the radius vector (r), three-momentum (p), magnetic induction (B), and angular
momentum (L).

Regular (that is, nonbold and upright) Latin-script letters are used to denote standard functions (sin, cos, exp,
etc.) and physical units (kg, m, s, J, W, etc.). They are also used (as are regular Greek-script letters) to
denote matrices, including row matrices and column matrices. Examples are (3 × 3) rotation matrices λ,
(2 × 2) Pauli matrices σx , σy , σz, (4 × 4) Dirac matrices γ0, γ1, γ2, γ3, and (4 × 1) Dirac column-matrix
wave functions �. Unit and null matrices are denoted by 1 and 0, respectively.

Bold upright letters (both Latin-script and Greek-script) are used to denote three-component vector matrices.
An example is the vector Pauli matrix σ with components σx , σy , and σz.





Preface

The twentieth century saw the birth and development of two great theories of physics – quantum mechanics
and relativity, leading to an extraordinarily accurate description of the world, on all scales from subatomic to
cosmological.

Indeed, the transformation of our understanding of the physical world during the past century has been so
profound and so wide in its scope that future histories of science will surely acknowledge that the twentieth
century was the century of physics.

Should not the great intellectual achievements of twentieth-century physics by now be part of our culture
and of our way of viewing the world? Perhaps they should, but this is still very far from being the case. To
take an example, Einstein’s general theory of relativity is one of the most beautiful products of the human
mind, in any field of endeavor, providing us with a tool to understand our universe and its evolution. Yet, far
from having become part of our culture, general relativity is barely studied, even in university physics degree
courses, and the majority of graduate physicists cannot even write down Einstein’s field equations, let alone
understand them.

The reason for this is clear. There is a consensus amongst university physics professors (reinforced by the
fact that as students they were mostly victims of the same consensus) that the mathematics of general relativity
is “too difficult”. The result is that the general theory of relativity rarely finds its way into the undergraduate
physics syllabus.

Of course, any mathematical methods that have not been carefully explained first will always be “too
difficult”. This applies in all fields of physics – not just in general relativity. Careful, and appropriately
placed, explanations of mathematical concepts are essential. Serious students are unwilling to take results on
trust, but at the same time may not wish to spend valuable time on detailed and often routine mathematical
derivations. It is better that the latter be provided, so that a student has at least the choice as to whether to read
them or omit them. Claims that “it can be shown that . . .” can lead to relatively unproductive expenditure
of time on the filling of gaps – time that students could better spend on gaining a deeper understanding of
physics, or on improving their social life.

Several excellent first-year physics degree texts have recognized the likely mathematical limitations of
their readers, and, while covering essentially the entire first-year syllabus, ensure that their readers are not
left struggling to fill in the gaps in the derivations.

This book is the result of extending this approach to an account of theoretical topics covered in the second,
third and fourth years of a degree course in physics in most universities. These include quantum mechanics,
thermal and statistical physics, special relativity, and the classical theory of fields, including electromagnetism.
Other topics covered here, such as general relativity, many-body theory, relativistic quantum mechanics
and gauge theories, are not always all covered in such courses, even though they are amongst the central
achievements of twentieth-century theoretical physics.

The book covers all these topics in a single volume. It is self-contained in the sense that a reader who has
completed a higher-school mathematics course (for example, A-level mathematics in the United Kingdom)
should find within the book everything he or she might need in order to understand every part of it. Details
of all derivations are supplied.



xvi Preface

The theoretical concepts and methods described in this book provide the basis for commencing doctoral
research in a number of areas of theoretical physics, and indeed some are often covered only in first-year
postgraduate modules designed for induction into particular research areas. To illustrate their power, the book
also includes, with full derivations of all expressions, accounts of Nobel-prize-winning work such as the
Bardeen–Cooper–Schrieffer theory of superconductivity and the Weinberg–Salam theory of the electroweak
interaction.

The book is divided into five parts, each of which provides a mathematically detailed account of the
material typically covered in a forty-lecture module in the corresponding subject area.

Each of the modules is, necessarily, shorter than a typical textbook specializing in the subject of that
module. This is not only because many detailed applications of the theory are not included here (nor would
they be included in most university lecture modules), but also because, in each of the modules beyond the
first, the necessary background can all be found in preceding modules of the book.

The book is the product of over thirty years of discussing topics in theoretical physics with students on
degree courses at Exeter University, and of identifying and overcoming the (often subtle) false preconceptions
that can impede our understanding of even basic concepts. My deepest thanks go to these students.

Like most course textbooks in such a highly developed (some would say, almost completed) subject area
as theoretical physics, this book lays no claim to originality of the basic ideas expounded. Its distinctness
lies more in its scope and in the detail of its exposition. The ideas themselves have been described in very
many more-specialized textbooks, and my inclusion of some of these books in the lists of recommended
supplementary reading is also to be regarded as my grateful acknowledgment of their authors’ influence on
my chosen approaches to the relevant subject matter.

John Shepherd
Exeter, July 2012
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Nonrelativistic Quantum Mechanics





1
Basic Concepts of Quantum Mechanics

1.1 Probability interpretation of the wave function

In quantum mechanics the state of some particle moving in time and space is described by a (complex)
wave function ψ(r, t) of the space coordinate r (= ix + jy + kz) and time coordinate t. The state of the
particle is “described” by ψ(r, t) in the sense that knowledge of the precise form of this function enables us to
make precise predictions of the probabilities of the various possible outcomes of any given type of physical
measurement on the particle. In particular, in a position measurement the probability of finding the particle
to be in an infinitesimal box of volume dxdydz ≡ d3 r with centre at r at time t is

P (r, t)dxdydz = ψ∗(r, t)ψ(r, t)dxdydz, (1.1)

where ψ∗(r, t) is the complex conjugate of the function ψ(r, t). Equation (1.1) may be written alternatively
as

P (r, t)d3 r = |ψ(r, t)|2 d3 r. (1.2)

Clearly, since any probability must be a dimensionless number, and d3 r has the dimensions of volume [L]3,
the quantity P (r, t) is a probability density, with dimensions [L]−3.

The wave function ψ(r, t) is also known as the probability amplitude, and has (in three-dimensional
space) dimensions [L]−3/2.

Since the particle must be found somewhere in space, the continuous sum (i.e., integral) of the probabilities
(1.2) over infinitesimal boxes filling all space must be equal to unity:

∫

all space

|ψ |2 d3 r = 1. (1.3)

A wave function ψ satisfying (1.3) is said to be normalized.

A Course in Theoretical Physics, First Edition. P. J. Shepherd.
© 2013 John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd.
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1.2 States of definite energy and states of definite momentum

If a particle is in a state of definite energy E, the corresponding wave function ψ(r, t) can be separated as a
product of a space-dependent factor φ(r) and a time-dependent factor that takes the form of a pure harmonic
wave e−iωt [i.e., there is only one Fourier component (one frequency) in the Fourier decomposition of the
time dependence], where the frequency ω is given by ω = E/� (the Einstein relation E = �ω), in which �

(= 1.055 × 10−34 Js) is Planck’s constant h divided by 2π .
Thus, the time dependence of the wave function of a particle (or, indeed, a system of many particles) with

definite energy E is always of the form e−iEt/�.
If a particle is in a state of definite momentum p = ipx + jpy + kpz (so that the energy is also well defined

and the above-mentioned factorization occurs), the space-dependent part φ(r) of the corresponding wave
function ψ(r, t) is a harmonic plane wave eik·r [i.e., there is only one Fourier component (one wave vector
k) in its Fourier decomposition], where the wave vector k = ikx + jky + kkz is related to the momentum p
by k = p/�, i.e., kx = px/�, and so on. [This is the well known de Broglie relation p = � k, which, for the
magnitudes, gives

p ≡ | p| = � | k| ≡ �k = h

2π
· 2π

l
= h

l
,

where l is the wavelength associated with wave number k.]
Thus, the space dependence of the wave function of a particle with definite momentum p is the plane wave

φ p(r) = ei p· r/� . (1.4)

[To see the reason for the designation “plane wave”, we choose the z axis to lie along the direction of the
momentum p. Then (1.4) takes the form eipz/�, which clearly has the same phase (and so takes the same
value) over any surface z = const (a plane).]

Successive planes on which the function (1.4) has the same phase are separated by a distance equal to the
wavelength l and are called wave fronts.

To understand the motion of wave fronts, consider a particle of definite energy E and definite momentum
p (along the z axis). Then the corresponding wave function is

ψE, p(t) ∝ ei(pz−Et)/�,

and the equation of motion of a wave front, that is, of a plane z = zP with given phase of the wave function,
is found by equating the phase of ψE, p(t) to a constant:

pzP − Et = const,

that is,

zP = zP(t) = E

p
t + const ≡ vPt + const,

Thus, a wave front (surface of constant phase) moves with phase velocity vP = E/p (> 0) along the
positive z axis, that is, in the direction of the momentum p.
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1.3 Observables and operators

With every physically measurable quantity (“observable”) A we can associate an operator Â, such that, if a
particle is in a state with a well defined value a of A [we denote the wave function corresponding to this state
by ψa(r, t)], then

Âψa(r, t) = aψa(r, t). (1.5)

Thus, the action of the operator Â on the function ψa(r, t) is to reproduce precisely the same function of r
and t but scaled by a constant factor a equal to the well defined value of A in this state. We say that ψa(r, t)
is an eigenfunction of the operator Â, and a is the corresponding eigenvalue of the operator Â.

1.4 Examples of operators

As follows from section 1.2, the state of a particle with definite energy E and definite momentum p is described
by a wave function of the form

ψE, p(r, t) ∝ ei(k· r−ωt) = ei(p· r−Et)/�.

Accordingly [see (1.5)], there must exist an energy operator Ê and a momentum operator p̂ such that

Êei(p· r−Et)/� = Eei(p· r−Et)/�

and

p̂ei(p· r−Et)/� = pei(p· r−Et)/�.

The differential operators

Ê = i�
∂

∂t
(1.6)

and

p̂ = −i�

(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
≡ −i�∇ (1.7)

clearly have the required properties (if we bear in mind that p · r = pxx + pyy + pzz).
Just as we have found the energy and momentum operators by considering wave functions corresponding

to definite energy and definite momentum, we can find the position operator by considering a wave function
corresponding to definite position. We restrict ourselves, for the moment, to motion confined to one dimension.
Then a particle with (at some given time) a definite position x = x1 will be described by a wave function with
the following spatial dependence (at that time):

φx1 (x) = δ(x − x1),
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where δ(x − x1) is the Dirac delta-function, equal to zero when x �= x1 and with the properties∫
f (x)δ(x − x1)dx = f (x1) and

∫
δ(x − x1)dx = 1,

(provided that the range of integration includes the point x = x1). We need an operator x̂ with the following
effect:

x̂φx1 (x) = x1φx1 (x),

that is,

x̂δ(x − x1) = x1δ(x − x1). (1.8)

The purely multiplicative operator

x̂ = x

has the required property, since (1.8) becomes

xδ(x − x1) = x1δ(x − x1),

which is clearly true both for x �= x1 and for x = x1. Similarly, we have ŷ = y and ẑ = z, and so the operator
of the three-dimensional position vector r is r̂ = r.

The operator corresponding to a general observable A(r, p) is obtained by the prescription

A → Â = A( r̂, p̂) (1.9)

with

r̂ = r and p̂ = −i�∇ . (1.10)

For example, the angular momentum, about the coordinate origin, of a particle at a vector distance r from the
origin and with momentum p is given classically by the vector product L = r × p, and the corresponding
operator L̂ is given by:

L̂ = r̂ × p̂ = −i� r × ∇ . (1.11)

1.5 The time-dependent Schrödinger equation

The total energy E of a particle at a given point r at time t is given by the sum of the kinetic energy T(r, t) and
potential energy V(r, t):

E = E(r, t) = T (r, t) + V (r, t)

= p · p
2m

+ V (r, t) ≡ p2

2m
+ V (r, t), (1.12)

where p = p(r, t) is the momentum of the particle (of mass m) at the point r at time t.



1.6 Stationary states and the time-independent Schrödinger equation 7

We make the operator replacements (section 1.4):

E → Ê = i�
∂

∂t
,

p → p̂ = −i�∇ (so that p2 ≡ p · p → −�
2∇ · ∇ ≡ −�

2∇2), (1.13)

V (r, t) → V̂ = V ( r̂, t) = V (r, t).

Since the relation E = T + V is a physical requirement, a physically acceptable wave function ψ(r, t) must
satisfy the equation Êψ = T̂ ψ + V̂ ψ , that is,

i�
∂ψ(r, t)

∂t
= − �

2

2m
∇2

ψ(r, t) + V (r, t)ψ(r, t). (1.14)

This is the time-dependent Schrödinger equation, and is (for the nonrelativistic case and in three dimensions)
a completely general differential equation (first order in time and second order in space) for the evolution of
the wave function ψ(r, t) of a particle whose energy may or may not be well defined, moving in a potential
that may or may not be varying in time.

1.6 Stationary states and the time-independent Schrödinger equation

We now specialize to the case when the particle is in a state with definite energy E. For this case (section 1.2)
the wave function is always of the form

ψ(r, t) = φ(r)e−iEt/�, (1.15)

where φ(r) specifies the space-dependent part of the function. Because, from (1.15), |ψ(r, t)|2 = |φ(r)|2,
which is independent of the time t, such a state is called a stationary state. When (1.15) is substituted into the
time-dependent Schrödinger equation (1.14) the left-hand side becomes Eψ(r, t), and so, after cancellation
of the factor e−iEt/�, we obtain

− �
2

2m
∇2

φ(r) + V (r)φ(r) = Eφ(r), (1.16)

where we have also replaced V(r, t) by V(r), since for a particle to be in a state of well-defined energy E it
is a necessary (though not sufficient) condition that the potential-energy function be time independent. [This
is clearly seen from the fact that equation (1.16) with different potentials Vt (r) ≡ V (r, t) at different times
t will have different solutions φt (r) with different energy eigenvalues Et , contradicting the assumption of a
definite energy E.] The equation (1.16) is the time-independent Schrödinger equation, and is an eigenvalue
equation [see (1.5)] of the form

Ĥφ(r) = Eφ(r) (1.17)

with

Ĥ = − �
2

2m
∇2 + V (r) (1.18)

(the hamiltonian operator, or hamiltonian).
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1.7 Eigenvalue spectra and the results of measurements

The set of all possible eigenvalues a of an operator Â is called the spectrum of the operator Â. A measurement
of A always yields a value belonging to this spectrum.

Two cases are possible:
(a) The wave function ψ(r, t) describing the state of the particle is an eigenfunction ψi(r, t) of Â, that is,

Âψi(r, t) = aiψi(r, t). (1.19)

Then the result of measuring A will certainly be ai .
(b) The wave function ψ(r, t) describing the state of the particle is not an eigenfunction of Â; that is,

the action of Â on ψ(r, t) gives a function that is not simply a scaled version of ψ(r, t). But since the
eigenfunctions ψi(r, t) of Â form a complete set, in the sense that any normalized function can be expanded
in terms of them, we may write ψ(r, t) as such an expansion:

ψ(r, t) =
∑

i

ciψi(r, t). (1.20)

Then a measurement of A can yield any eigenvalue ai for which the corresponding eigenfunction appears in
the sum (1.20) with nonzero weight ci . For example, a measurement of A yields the result aj with probability∣∣cj

∣∣2
.

1.8 Hermitian operators

The operators corresponding to all physical observables are hermitian.

Definition. An operator Â is said to be hermitian if, for any pair of normalizable wave functions ψ(r, t)
and χ (r, t), the relation

∫
χ∗Âψd3 r =

∫
(Âχ )∗ψd3 r (1.21)

always holds.

The eigenvalues of hermitian operators are real. This is proved as follows. Choose χ and ψ to be the same
eigenfunction ψi of the operator Â, with corresponding eigenvalue ai ; that is, choose

χ = ψ = ψi (Âψi = aiψi).

Then (1.21) becomes

ai

∫
ψ∗

i ψid
3 r = a∗

i

∫
ψ∗

i ψid
3 r,

that is, ai = a∗
i , or, in other words, the eigenvalue ai (and hence any eigenvalue of Â) is real.
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Now choose χ and ψ to be two different eigenfunctions of Â: let χ be ψi with eigenvalue ai , and let ψ be
ψj with eigenvalue aj . Then (1.21) becomes

∫
ψ∗

i Âψj d3 r =
∫

(Âψi)
∗ψj d3 r,

whence

aj

∫
ψ∗

i ψj d3 r = a∗
i

∫
ψ∗

i ψj d3 r.

But a∗
i = ai and, since aj �= ai , we have:

∫
ψ∗

i ψj d3 r = 0. (1.22)

This result states that eigenfunctions of a hermitian operator that correspond to different eigenvalues of that
operator are orthogonal.

We now use the idea of orthogonality to prove an inequality

∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣
2

≤
(∫

φ∗φd3 r
) (∫

χ∗χd3 r
)

(1.23)

that will be used in section 1.11 to prove the general uncertainty relation. The case when the functions
φ and χ are the same function clearly corresponds to the equality in (1.23). The inequality (1.23), if true,
will be true for any normalization of φ and χ , since when we multiply φ and χ by arbitrary factors these
factors cancel in the inequality (1.23). Therefore, for convenience in examining the left-hand side of (1.23),
we choose unit normalization for φ and χ . But if in the left-hand side |∫ φ∗χd3 r|2 the function χ contains
not only a part proportional to φ but also a part proportional to a normalized function ρ orthogonal to φ, so
that χ = aφ + bρ, with |a|2 + |b|2 = 1 (note that then, in particular, |a| ≤ 1), we have:

∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣ =
∣∣∣∣
∫

φ∗(aφ + bρ)d3 r

∣∣∣∣ = |a|
∫

φ∗φd3 r ≤
∫

φ∗φd3 r. (1.24)

Similarly, expressing φ in this case as φ = cχ + dη, with the function η orthogonal to χ and with both χ

and η normalized to unity (so that |c|2 + |d|2 = 1 and, in particular, |c| ≤ 1), we have

∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣ =
∣∣∣∣
∫

χ∗φd3 r

∣∣∣∣ =
∣∣∣∣
∫

χ∗(cχ + dη)d3 r

∣∣∣∣ = |c|
∫

χ∗χd3 r ≤
∫

χ∗χd3 r, (1.25)

so that, taking the product of (1.24) and (1.25), we obtain (1.23).
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1.9 Expectation values of observables

The expectation value of an observable A in a particle state described by a wave function ψ(r, t) is defined
as the average result of N (→ ∞) measurements of A, all carried out on a particle in the same state ψ(r, t).
The prescription for calculating the expectation value when the (normalized) function ψ(r, t) is known is

〈A〉ψ(r,t) ≡
∫

ψ∗(r, t)Âψ(r, t)d3r. (1.26)

To show that this prescription is equivalent to the definition of the expectation value as an average, we
substitute the expansion (1.20) into (1.26) and use the fact that the eigenfunctions ψi(r, t) of Â are normalized
and mutually orthogonal (an orthonormal set). (We showed in section 1.8 that eigenfunctions belonging to
different eigenvalues of a hermitian operator are always mutually orthogonal. Also, although eigenfunctions
belonging to the same eigenvalue need not be mutually orthogonal, it is always possible to form linear
combinations of them that are.) The result is

〈A〉ψ(r,t) =
∑

i

|ci |2 ai. (1.27)

This relation asserts (in precise accord with its definition as an average) that the expectation value of A in the
state ψ(r, t) is the sum of all possible outcome ai , each weighted by the probability |ci |2 that in this state a
measurement of A will yield the result ai .

1.10 Commuting observables and simultaneous observability

If the operators corresponding to two observables A and B have a common, complete set of eigenfunctions ψij

(i labels the corresponding eigenvalues ai of Â, and j labels the corresponding eigenvalues bj of B̂), we say
that A and B can be simultaneously well defined, or, equivalently, that they are simultaneously observable.

The commutator [Â, B̂] ≡ ÂB̂ − B̂Â of any pair of simultaneously well-definable observables A and B is
identically zero, in the sense that its action on an arbitrary normalizable function ψ gives zero. To show this,
we use the fact that any such function ψ can be written as a linear combination of the common eigenfunctions
ψij of Â and B̂, so that

[Â, B̂]ψ = [Â, B̂]
∑
i,j

cijψij =
∑
i,j

cij[Â, B̂]ψij = 0, (1.28)

which follows from the fact that

[Â, B̂]ψij ≡ ÂB̂ψij − B̂Âψij = Âbjψij − B̂aiψij

= bj Âψij − aiB̂ψij = bjaiψij − aibjψij = 0.

The converse is clearly also true, in that if two operators Â and B̂ commute, that is, [Â, B̂] = 0, they can
be simultaneously well defined.
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1.11 Noncommuting observables and the uncertainty principle

If [Â, B̂] �= 0, the observables A and B cannot be simultaneously well defined. We define the uncertainty in
A in the state ψ by

(�A)ψ =
√〈(

Â − 〈
Â

〉
ψ

)2
〉
ψ

(1.29)

(which is clearly the standard deviation of A, i.e., the root mean square deviation of A from the mean of A,
where the “mean” here is the expectation value in the state ψ). Then, as is proved below, the product of the
uncertainties in two observables A and B is given by the inequality (general uncertainty relation)

(�A)ψ (�B)ψ ≥ 1

2

∣∣∣〈[Â, B̂]
〉
ψ

∣∣∣ . (1.30)

Proof: With the definition (1.29) in mind, we set φ ≡ (Â − 〈Â〉ψ )ψ and χ ≡ (B̂ − 〈B̂〉ψ )ψ , so that

∫
φ∗φd3 r =

∫ [(
Â − 〈

Â
〉
ψ

)
ψ

]∗ (
Â − 〈

Â
〉
ψ

)
ψd3 r

=
∫

ψ∗
(
Â − 〈

Â
〉
ψ

) (
Â − 〈

Â
〉
ψ

)
ψd3 r = (�A)ψ

2,

where we have used the fact that Â is a hermitian operator [see (1.21)]. Similarly,
∫

χ∗χd3 r = (�B)ψ 2. Then
the inequality (1.23) becomes:

(�A)ψ
2(�B)ψ

2 =
(∫

φ∗φd3 r
)(∫

χ∗χd3 r
)

≥
∣∣∣∣
∫

φ∗χd3 r

∣∣∣∣
2

=
∣∣∣∣Re

(∫
φ∗χd3 r

)∣∣∣∣
2

+
∣∣∣∣Im

(∫
φ∗χd3 r

)∣∣∣∣
2

≥
∣∣∣∣Im

(∫
φ∗χd3 r

)∣∣∣∣
2

=
∣∣∣∣
∫

φ∗χd3 r − ∫
χ∗φd3 r

2i

∣∣∣∣
2

= 1

4

∣∣∣∣
∫ ((

Â − 〈
Â

〉
ψ

)
ψ

)∗ (
B̂ − 〈

B̂
〉
ψ

)
ψd3 r −

∫ ((
B̂ − 〈

B̂
〉
ψ

)
ψ

)∗ (
Â − 〈

Â
〉
ψ

)
ψd3 r

∣∣∣∣
2

= 1

4

∣∣∣∣
∫

ψ∗
(
Â − 〈

Â
〉
ψ

) (
B̂ − 〈

B̂
〉
ψ

)
ψd3 r −

∫
ψ∗

(
B̂ − 〈

B̂
〉
ψ

) (
Â − 〈

Â
〉
ψ

)
ψd3 r

∣∣∣∣
2

,

where we have again used the fact that that Â and B̂ are hermitian operators. Thus, we have

(�A)ψ
2(�B)ψ

2 ≥ 1

4

∣∣∣〈ÂB̂
〉
ψ

− 2
〈
Â

〉
ψ

〈
B̂

〉
ψ

+ 〈
Â

〉
ψ

〈
B̂

〉
ψ

−
(〈

B̂Â
〉
ψ

− 2
〈
B̂

〉
ψ

〈
Â

〉
ψ

+ 〈
B̂

〉
ψ

〈
Â

〉
ψ

)∣∣∣2

= 1

4

∣∣∣〈ÂB̂ − B̂Â
〉
ψ

∣∣∣2
≡ 1

4

∣∣∣〈[Â, B̂]
〉
ψ

∣∣∣2
,

from which (1.30 follows). For example, when Â = x̂ = x and B̂ = p̂x = −i�∂/∂x, we have [x̂, p̂x]ψ =
−i�

(
x

∂ψ

∂x
− ∂

∂x
(xψ)

)
= i�ψ . From this we see that [x̂, p̂x] = i�, and so (1.30) yields (�x)ψ (�px)ψ ≥ �

2 ,

which asserts that for a particle in one-dimensional motion no state ψ exists for which the product of the
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uncertainties in the position and momentum is smaller than �/2. In fact, the equality (�x)ψ (�px)ψ = �

2
(corresponding to the smallest possible product of the position and momentum uncertainties) is found in the
case of a one-dimensional harmonic oscillator in its ground state, as can be seen by substituting the gaussian
space-dependent part φ(x) ∝ exp(−αx2) of the latter [see (3.36)] into the expressions for (�x)ψ and (�px)ψ.

1.12 Time dependence of expectation values

Using the expression (1.26) for the expectation value of an observable A, and also the time-dependent
Schrödinger equation (1.14) in the form

i�
∂ψ(r, t)

∂t
= Ĥψ(r, t) (1.31)

(together with the complex conjugate of this equation), we can immediately obtain an expression for the rate
of change of the expectation value with time:

i�
d

dt
〈A〉ψ = 〈

[Â, Ĥ ]
〉
ψ

+ i�
〈
∂Â/∂t

〉
ψ

, (1.32)

which is known as Ehrenfest’s theorem.

1.13 The probability-current density

We now use the time-dependent Schrödinger equation (1.14) to find the time rate of change of the probability
density P (r, t) = ψ∗(r, t)ψ(r, t). We find

∂P (r, t)
∂t

+ ∇ · j(r, t) = 0 (1.33)

(the continuity equation for the probability density). Here,

j = − i�

2m

(
ψ∗∇ψ − (∇ψ∗)ψ

)
(1.34)

is the probability-current density.

1.14 The general form of wave functions

In this section, for simplicity, we consider the case of one-dimensional motion of a particle of mass m and
potential energy V(x).

The space part φE(x) of the wave function of a stationary state with energy E satisfies the time-independent
Schrödinger equation:

− �
2

2m

d2φE

dx2
+ V (x)φE = EφE, (1.35)


