Related Titles

Chianese, Angelo / Kramer, Herman J. (eds.)
Industrial Crystallization Process Monitoring and Control
2012
ISBN: 978-3-527-33173-4

Pollak, P.
Fine Chemicals
The Industry and the Business
Second edition
2011

Duffar, T. (ed.)
Crystal Growth Processes Based on Capillarity
Czochralski, Floating Zone, Shaping and Crucible Techniques
2010

Capper, P., Rudolph, P. (eds.)
Crystal Growth Technology
Semiconductors and Dielectrics
2010
ISBN: 978-3-527-32593-1
Crystallization

Basic Concepts and Industrial Applications
Contents

List of Contributors XIII

1 Crystallization: Introduction 1
 Wolfgang Beckmann

2 Mechanisms of Crystallization 7
 Wolfgang Beckmann
 2.1 Crystal Lattice 7
 2.1.1 Arrangement of Building Blocks and Symmetries 7
 2.1.2 Unit Cell 9
 2.1.3 Miller Indices to Describe Crystal Faces 11
 2.1.4 Lattice Defects 12
 2.1.5 Equilibrium, Growth, and Dissolution Form of Crystals 14
 2.1.6 Morphology and Habit 16
 2.2 Nucleation of Crystals 17
 2.2.1 Mechanism of Primary Nucleation 18
 2.2.2 Metastable Zone and Induction Time for Nucleation 20
 2.2.3 Form Crystallized: Ostwald’s Law of Stages 25
 2.3 Growth and Growth Rate of Crystals 25
 2.3.1 Kink Position and F, S, and K Faces 26
 2.3.2 Growth of Ideal Crystals 27
 2.3.3 Growth of Real Crystals 28
 2.3.4 Transport Phenomena 32
 Further Reading 33

3 Solubility and Solution Equilibria in Crystallization 35
 Heike Lorenz
 3.1 Phase Equilibria and Phase Diagrams: General Issues 36
 3.1.1 Phases, Phase Rule, and Binary Systems 36
 3.1.2 Melt and Solution Equilibria 38
 3.1.3 Thermodynamic Description of SLE: Liquidus Curve in the Phase
 Diagram 39
 3.1.4 Phase Diagrams of Ternary and Quaternary Systems 42
3.2 Melt Phase Diagrams 44
3.2.1 Types of Phase Diagrams and Their Occurrence 44
3.2.2 Measurement of Melt Phase Diagrams 46
3.2.2.1 Methods 46
3.2.3 Example of a Diastereomeric System 50
3.3 Solution Equilibria 53
3.3.1 Solubility and Concentration Units 53
3.3.2 Solubility Curves of Inorganic and Organic Substances 54
3.3.2.1 Inorganic Substances 55
3.3.2.2 Organic Substances 57
3.3.3 Solvates, Polymorphs, and Cocrystals 58
3.3.4 Influence of Solvents and Impurities 60
3.3.5 Measurement of Solubilities and Corroboration 62
3.3.5.1 Ensuring Equilibrium Conditions 63
3.3.5.2 Excess Method as a Classical Isothermal Method 64
3.3.5.3 Polythermal Measurements 65
3.3.5.4 Prediction and Correlation of Solubilities 67
3.3.6 Oiling-Out 68
3.3.7 Ternary Solution Equilibria: Case of Enantiomers 70
3.3.8 Quaternary Systems: Case of Reciprocal Salt Pairs 72

4 Agglomeration during Crystallization 75
Wolfgang Beckmann
4.1 Mechanisms and Kinetics of Agglomeration 75
4.1.1 Process of Agglomeration 75
4.1.2 Kinetics of Agglomeration 77
4.2 Parameters Influencing Agglomeration 77
4.3 Agglomeration during Crystallization 80
4.3.1 Agglomeration during Crystallization 80
4.3.2 Spherical Agglomeration 83
4.4 Mechanical Properties of Agglomerates 83

5 Polymorphism of Crystalline Systems 85
Rolf Hilfiker
5.1 Introduction and Definitions 85
5.2 Occurrence and Properties of Polymorphs and Solvates 86
5.3 Thermodynamics of Polymorphs of Solid-State Forms 87
5.3.1 Basics 87
5.3.2 Energy–Temperature Diagrams 88
5.3.3 Rules to Predict Thermodynamic Relationships 90
5.4 Thermodynamics of Hydrates 91
5.5 Experimental Techniques to Elucidate Thermodynamics 94
7.2.5 Downstream Processes 142
7.2.5.1 Solid–Liquid Separation and Sweating 143
7.2.5.2 Reslurrying and Washing 144
7.2.6 Workflow to “Manage” Impurities in Process Development 146

References 147

8 Characterization of Crystalline Products 149

Rolf Hilfiker

8.1 Introduction 149
8.2 Characterization of Intrinsic Properties of a Solid 149
8.2.1 Crystal Structure 150
8.2.1.1 X-Ray Powder Diffraction (XRPD) 150
8.2.1.2 Vibrational Spectroscopy (Raman, IR, NIR, THz) 151
8.2.1.3 Solid-State NMR (ssNMR) 152
8.2.2 Thermodynamic Properties 154
8.2.2.1 Differential Scanning Calorimetry (DSC) 154
8.2.2.2 Isothermal Microcalorimetry 157
8.2.3 Composition 158
8.2.3.1 Thermogravimetry (TG, TG-FTIR, and TG-MS) 158
8.2.3.2 Dynamic Vapor Sorption (DVS) 158
8.3 Characterization of Particle Shape and Size 161
8.3.1 Particle Size Distribution: Characteristic Values and Graphs 161
8.3.2 Overview of Available Methods 162
8.3.2.1 Microscopy 163
8.3.2.2 Laser Light Diffraction 163
8.3.2.3 Sieving 165
8.4 Powder Flow Properties 165
8.5 In-Process Characterization 167
8.5.1 Turbidity 167
8.5.2 Raman 168
8.5.3 FBRM and PVM 169

References 171

9 Basics of Industrial Crystallization from Solution 173

Wolfgang Beckmann

9.1 Generation of Supersaturation in a Crystallizer 173
9.2 Mass and Population Balance for Growth from Suspension 176
9.2.1 Mass Balance 176
9.2.2 Population Balance 176
9.3 Operation of a Continuous Crystallizer: Basics 178
9.3.1 Concept and Design of Continuous Crystallizers 178
9.3.2 Mass Balance in a Continuous Crystallizer 178
9.3.3 Population Balance in a Continuous Crystallizer 178
9.3.4 Mean Particle Size 180
9.3.5 Secondary Nucleation 180
9.4 Operation of a Batch Crystallizer: Basics 183
9.4.1 Concept and Design of Batch Crystallizers 183
9.4.2 Mass and Population Balance in a Batch Crystallizer 184

10 Development of Batch Crystallizations 187
 Dierk Wiechhusen
10.1 Setting Goals 187
10.2 Crystallization of Organic Moieties 188
10.3 Generation of Supersaturation in Batch Crystallizations 189
10.3.1 Cooling 189
10.3.2 Use of Antisolvent 190
10.3.3 Evaporation 191
10.4 Initiation of Crystallization – Nucleation Phase 192
10.5 Seeded Batch Crystallizations 193
10.5.1 Seeding Strategy 194
10.5.2 Designing a Seeding Process 194
10.5.2.1 Quality of Seeds 195
10.5.2.2 Quantity of Seeds 195
10.5.2.3 Preparation of Seeds 196
10.5.2.4 Supersaturation at the Start of Crystallization 197
10.5.2.5 Holding Time After Seeding 197
10.6 Crystallization Period 197
10.7 Scale-Up Considerations 198
10.7.1 Process Time – Rate of crystallization 198
10.7.2 Stirring 199
10.7.3 Operational Aspects 200
10.8 Manipulating Particle Shape 201

11 Continuous Crystallization 203
 Gunter Hofmann and Christian Melches
11.1 Concept and Design of Continuous Crystallizers 204
11.1.1 Importance of Secondary Nucleation 204
11.1.2 Control of Supersaturation 205
11.1.3 Adjustment of the Granulometry – Mean Crystal Size and Crystal Size Distribution 209
11.1.4 Energy Input and Retention Time 212
11.1.5 Which Type of Crystallizer to Select? 215
11.1.6 Seeding of DTB and Oslo Crystallizers 216
11.2 Various Continuous Crystallizers 218
11.2.1 FC Group 218
11.2.2 DTB Group 220
11.2.3 Group of Fluidized Bed Crystallizers 222
11.2.4 Comments on Population Balance and Modeling 223
11.2.5 Manipulation of Crystal Size Distributions 225
11.3 Periphery 226
11.4 Special Features of the Process 229
11.4.1 Surface Cooling Crystallization 229
11.4.2 Vacuum Cooling Crystallization 230
11.4.3 Vacuum Evaporation Crystallization 230

11.5 Adjustment of Suspension Densities 232

References 233

12 Precipitation 235
Wolfgang Beckmann

12.1 Precipitation from Solution by Mixing Two Streams 235
12.1.1 Devices and Mixing Schemes 235
12.2 Semi-Batch Precipitations 236
12.3 Model of Mixing during Precipitation 238
12.4 Precipitations Using Supercritical Fluids 239
12.5 Crystal Issues 241
12.5.1 Polymorphism of Precipitates 241
12.5.2 Crystal Perfection 243
12.5.3 Agglomeration 244
12.6 Particle Size as a Function of Operating Conditions 244

13 Mixing in Crystallization Processes 247
Bernd Nienhaus

13.1 Mixing in Batch and Continuous Crystallization Processes 247
13.2 Basic Mixing Tasks – Mixing Tasks in Crystallization 248
13.3 Impellers and Agitation Systems 249
13.3.1 General Overview and Selection Criteria 250
13.3.2 Axial Impellers 250
13.3.2.1 Propeller 250
13.3.2.2 Pitched Blade Turbine 250
13.3.2.3 Helical Ribbon Impeller 252
13.3.3 Radial Impellers 252
13.3.3.1 Flat Blade Disk Turbine 252
13.3.3.2 Disperser Disk 252
13.3.4 Tangential Impellers 253
13.4.1 Diameter Ratio 255
13.4.2 Bottom Clearance 256
13.4.3 Filling Level 256
13.4.4 Multistage Impellers 256
13.5 Blending 256
13.5.1 Degree of Homogeneity 256
13.5.2 Turbulent Blending 257
13.5.3 Significance of Circulation Rate 258
13.5.4 Laminar Blending 258
13.6 Suspending 259
List of Contributors

Wolfgang Beckmann
Bayer Technology Services
Crystallization
Building E41
51368 Leverkusen
Germany

Rolf Hilfiker
Solvias AG
Römerpark 2
4303 Kaiseraugst
Switzerland

Günter Hofmann
GEA Messo GmbH
Friedrich-Ebert-Str. 134
47299 Duisburg
Germany

Matthew J. Jones
AstraZeneca
Västra Mälarehamnen 9
15185 Södertälje
Sweden

Heike Lorenz
MPI für Dynamik komplexer technischer Systeme
Sandtorstr. 1
39106 Magdeburg
Germany

Christian Melches
GEA Messo GmbH
Friedrich-Ebert-Str. 134
47299 Duisburg
Germany

Bernd Nienhaus
EKATO Rühr- und Mischtechnik GmbH
Käppelemattweg 2
79650 Schopfheim
Germany

Christiane Schmidt
AstraZeneca
Västra Mälarehamnen 9
15185 Södertälje
Sweden

Torsten Stelzer
University of Halle
Zentrum für Ingenieurwissenschaften, Verfahrenstechnik
Hoher Weg 7
06099 Halle (Saale)
Germany
List of Contributors

Joachim Ulrich
University of Halle
Zentrum für Ingenieurwissenschaften, Verfahrenstechnik
Hoher Weg 7
06099 Halle (Saale)
Germany

Dierk Wieckhusen
Novartis AG
Lichtstr. 35
4002 Basel
Switzerland
1 Crystallization: Introduction

Wolfgang Beckmann

The beauty of crystals can be found in both the naturally appearing minerals such as diamonds or quartzite crystals and the industrial products such as sugar crystals. Crystals that are bound by flat faces intersecting at well-defined angels are characteristic of the substance and give the crop a reproducible appearance. This regular appearance is due to the long-range order of the building blocks of the crystal, be it either atoms or molecules. For example, in sodium chloride, the sodium and chlorine atoms are arranged in a cubic lattice (Figure 1.1). This arrangement maximizes the attractive interactions between the building blocks and thus minimizes the energetic state. The long-range order of its building blocks makes the crystalline state distinct from the gaseous and liquid as well as the amorphous solid state. The long-range order is also the root cause of a number of well-defined properties of the crystals, so these properties can be tailored through the crystallization process.

A further consequence of the well-defined arrangement of the building blocks is the outer shape of the crystals; crystals are limited by flat faces that intersect under well-defined angles determined by the lattice. This can be easily observed for the large crystals of rock sugar (Figure 1.2). For a given substance, ordering is a characteristic. Consequently, the faces and their angles are characteristics of a given substance. All crystals grown under similar conditions will exhibit the same faces and partitioning of the faces.

Though the lattice is characteristic of a given substance, a large number of substances can crystallize following more than one ordering motive, leading to polymorphism. Carbon, for example, can crystallize in two different lattices, as diamond and as graphite. In diamond, the carbon atoms are arranged in two face-centered cubic lattices; in graphite, the carbon atoms are arranged in layers in which the atoms have a hexagonal symmetry (Figure 1.3). With respect to energy and stability, graphite is more stable than diamond at room temperature and ambient pressure, though the barrier for transformation is extremely high.

A further equally important consequence of packing is the well-known purification during crystallization; only molecules of one type are incorporated, while most other molecules are rejected by the growing interface. This is for geometric as well as...
Figure 1.1 Arrangement of the sodium and chlorine atoms in the simple cubic lattice of sodium chloride.

Figure 1.2 Crystals of rock sugar with large well-developed flat faces, which intersect under certain angels characteristic of the substance; note that the apparent roughness of the faces arises not from the crystallization process, but from the downstream processes like washing.
for energetic reasons as it is energetically favorable to incorporate a proper building block instead of an impurity molecule.

Crystallization belongs to the oldest unit operations known to mankind. Namely, the crystallization of salts can be found through the ages. Early civilizations in coastal areas used large open ponds, salines, to crystallize out the salt, which could then be easily handled, stored, transported, traded, and finally used (Figure 1.4). Salines around the seaport of Ostia are said to have facilitated the development of Roma and the Roman Empire.

However, salt obtained by evaporation of seawater had a number of drawbacks; the purity was limited, mainly due to the high content of inclusions of mother liquor that entrained impurities. Hence, industrial techniques have developed over the time for the industrial crystallization of salt, resulting in the modern continuous vacuum crystallization apparatus.

Today, crystalline products can be found in every aspect of life. Relevant product properties are determined by crystal properties and thus tailored via crystallization. Three examples are shown in Figure 1.5. Sucrose, sugar, is extracted from
plants and crystallized to meet a certain particle size distribution, typically in the range of 700–800 μm, to be free of fines, which allows a free-flowing product that does not agglomerate. Finally, the process arrives at purities of >99.5% in an essentially single-step process of a seeded batch crystallization. Table salt also is required to be free flowing and not to agglomerate even in the high relative humidity environment of a kitchen. Here, additives can be employed during the crystallization, which is usually continuously operated evaporation crystallization. Finally, one of the main components of chocolate, cocoa fat has to be crystallized in a certain crystal modification or polymorph to achieve the special mouth taste of chocolate. This modification is unstable at room temperature and achieved via melt crystallization, where the crystals of the desired modification are generated and grown via a temperature program. In addition, additives can be used to stabilize the required modification. The unstable modification of the fatty acid ester can recrystallize to a more stable one, resulting in undesired changes in the appearance of the product.

In a number of cases, mother liquor is the desired product of the crystallization process. The crystallization of ice from aqueous solutions can be used for freeze concentration of aqueous solutions. One example of everyday life is orange
juice that can be freeze concentrated at low temperatures gently and in an energy-efficient way. The concentration of waste from effluent waters is another application.

The application of crystallization in industry ranges from the isolation of the few milligrams of a substance newly synthesized in the laboratory – where a well-defined melting point is used to both achieve and prove a decent purity of the crop and as an identity check – to a mass crystallization carried out in very diverse industries; some products are listed with their annual production volume in Table 1.1.

The equipment used in the industrial crystallization varies widely, from multi-purpose batch vessels in the life science industry to highly sophisticated dedicated equipment used for some large volume products.

In the following chapters, the basic concepts of the modern understanding of crystallization will be discussed, such as the internal structure of the crystals and their growth mechanisms or the phase diagrams. Attention will be directed to the purification by crystallization and to effects of polymorphism. Next, the basic methods to carry out a crystallization, from both the solution and the melt, are discussed. Finally, the concepts of mass crystallization in continuously operated crystallizers will be shown.

<table>
<thead>
<tr>
<th>Product</th>
<th>Produced in</th>
<th>Production (t/a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium chloride</td>
<td>2001 in the EU</td>
<td>38 350 000</td>
</tr>
<tr>
<td>Sugar</td>
<td>2001 in the EU</td>
<td>15 000 000</td>
</tr>
<tr>
<td>Caprolactam</td>
<td>2002 worldwide</td>
<td>3 500 000</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>2009 worldwide</td>
<td>110 000</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>2008 worldwide</td>
<td>35 000</td>
</tr>
</tbody>
</table>
2
Mechanisms of Crystallization

Wolfgang Beckmann

One of the most important features of crystals is the long-range order of their building blocks and symmetry of their arrangement. This arrangement maximizes the interaction between the building blocks, stabilizing the crystal. Most macroscopic properties of crystals, such as their shape or the purification during crystallization, are a direct consequence of this arrangement. Thus, the discussion of the mechanisms of crystallizations has first to deal with the symmetry and long-range order in crystals. In the second part, the nucleation and growth mechanisms of crystals are discussed. In both cases, a supersaturated mother phase or a deviation from saturation is necessary. The dependence of the processes on supersaturation and other parameters has to be discussed. The discussion of crystal nucleation has two goals: first, to determine the mechanisms and thus also the prerequisites for nucleation; second, to derive expressions for the dependence on supersaturation.

2.1
Crystal Lattice

2.1.1
Arrangement of Building Blocks and Symmetries

Crystallization is a phase transformation for which the free enthalpy $\Delta_{tr} G$ has to be negative (Equation 2.1). The crystal will be stabilized by minimizing the enthalpy term $\Delta_{tr} H$, which is determined by the interaction of the building blocks. Interactive forces might either be van der Waals or electrostatic forces. In molecular crystals, hydrogen bonding also plays an important role.

The van der Waals forces do have a relatively short-range order, a typical potential is given by $\Phi = (A/r^{12}) - (B/r^6)$, where r is the distance between the interaction bodies. The potential is shown in Figure 2.1. The interaction potential of electrostatic forces decreases via $\Phi = C/r$.

$$\Delta_{tr} G = \Delta_{tr} H - T \Delta_{tr} S.$$ (2.1)
Due to the rapid decrease of the potential with distance, the nearest-neighbor interactions determine the energetics of the arrangement. Consequently, only well-defined symmetries in the arrangement of the building blocks of a crystal are allowed. This is visualized for a two-dimensional lattice by packing units with different symmetries (Figure 2.2). In part (a), objects with a two-, four-, and sixfold symmetry are packed; in part (b), the units have a five- and sixfold symmetry. The former set of objects allows packing, maximizing the pair interaction of building blocks, while the latter ones lead to suboptimal packing that is subsequently not found in crystals.

The considerations can be applied to the three-dimensional lattice. The packing of spheres in a plane is optimal for a hexagonal arrangement, as shown in Figure 2.3.

![Figure 2.1 Trend of the pair interaction potential of van der Waals forces. Note that the minimum in the pair interaction at r_{min} is slightly different from the equilibrium distance in a crystal. It is apparent that the interaction is mainly determined by the first nearest neighbors.](image)

Figure 2.2 Construction of a 2D lattice by packing units with different symmetries. In part (a), objects with a two-, four-, and sixfold symmetry are packed; in part (b), the units have a five- and sixfold symmetry. While the former set of objects maximizes the interaction between building blocks, the latter ones can only be arranged in a suboptimal packing.
Between three building blocks, a concave cavity is formed. In successive layers, the building blocks are also hexagonally arranged. The building blocks of the second layer reside in the cavities formed between the blocks of the first layer. For the packing of the third layer, two possibilities exist. This layer can reside in a different cavity, as shown in Figure 2.3. This leads to the cubic closest-packed lattice, which is a face centred lattice as will be shown later. Alternatively, the layer can be arranged like the first, leading to the hexagonally closest packing. The space filling in both cases is 74%.

In the following, only the face-centered cubic lattice (fcc) will be discussed. For this lattice, a ball-and-stick model is shown in Figure 2.4. The bottom view shows the stacking arrangement in the two different cavities, while the side view shows the ABCABC . . . stacking. Some building blocks have been color coded to indicate the unit cell to be discussed in Section 2.1.2.

2.1.2
Unit Cell

The arrangement of the building blocks in the lattice can be reduced to the smallest unit, the unit cell, from which the lattice can be built by simple displacements in

![Figure 2.3](image3.png)

Figure 2.3 Optimized packing of spheres in (a) in one dimension, followed by the addition of further layers of hexagonally arranged building blocks (b and c). Here, only the case of the cubic closest packing is shown.

![Figure 2.4](image4.png)

Figure 2.4 Lattice model for the closest packing of spheres. The bottom view in (a) can be compared with the packing shown in Figure 2.3. Part (b) shows that this packing leads to the ABCABC . . . stacking.
three dimensions. Figure 2.5 shows such a unit cell and the construction of the lattice by adding successive cells. The unit cell has the dimensions a, b, and c. The vectors of the unit cell are orthogonal, but not necessarily perpendicular; α is the angle between the y- and z-axes, β is the angle between the x- and z-axes; and γ is the angle between the x- and y-axes.

As described for a two-dimensional lattice (Figure 2.2), only certain symmetry operations are allowed to build the crystal lattice. These are the seven crystal systems listed in Figure 2.6. For the cubic and monoclinic lattices, the unit cells are also shown.

In certain of the seven crystal systems, the unit cells can contain face- or body-centered building blocks. For the cubic lattice, the body- and face-centered unit cell is shown in Figure 2.7.

For the body-centered cubic lattice (bcc), the addition of a building block is equal to a linear displacement by half a lattice constant in the three lattice directions. For building blocks that do not have a rotational symmetry, an additional rotation of the building blocks can occur; one of the most prominent being a rotation by 180°. This combined displacement and rotation by 180° appears like the movement of a screw.

<table>
<thead>
<tr>
<th>Crystal System</th>
<th>$a - b - c$</th>
<th>$\alpha - \beta - \gamma$ or 90°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cubic</td>
<td>$a - b - c$</td>
<td>$\alpha - \beta - \gamma - 90^\circ$</td>
</tr>
<tr>
<td>Tetragonal</td>
<td>$a - b - c$</td>
<td>$\alpha - \beta - \gamma - 90^\circ$</td>
</tr>
<tr>
<td>Monoclinic</td>
<td>$a - b - c$</td>
<td>$\alpha - \gamma - 90^\circ, \beta - 90^\circ$</td>
</tr>
<tr>
<td>Triclinic</td>
<td>$a - b - c$</td>
<td>$\alpha - \beta - \gamma - 90^\circ$</td>
</tr>
<tr>
<td>Orthorhombic</td>
<td>$a - b - c$</td>
<td>$\alpha - \beta - \gamma - 90^\circ$</td>
</tr>
<tr>
<td>Trigonal</td>
<td>$a - b - c$</td>
<td>$\alpha - \beta - \gamma - 90^\circ$</td>
</tr>
<tr>
<td>Hexagonal</td>
<td>$a - b - c$</td>
<td>$\alpha - \beta - 90^\circ, \gamma - 120^\circ$</td>
</tr>
</tbody>
</table>

Figure 2.6 Relation of the lattice constants and angles for the seven crystal systems that are allowed. The simple cubic and monoclinic lattices are drawn.
The lattice of closely packed spheres (Figure 2.3) can be reduced to a cubic unit cell with face-centered building blocks, as shown in Figure 2.8.

2.1.3 Miller Indices to Describe Crystal Faces

The well-defined flat faces limiting a crystal are described by Miller indices. They are denoted hkl and are independent of the size of the crystal. Using the three axes of the unit cell, a face will intersect these axes at certain distances, for example, for the y-axis at $2b$ (Figure 2.9). By referring the intersection to the length of the unit cell in this direction, one arrives at certain multiples for the intersection, that is, $n_y = y / b$. The Miller indices hkl are defined as the reciprocal of the three intersections (Equation 2.2). It is required that hkl are integers:

$$h : k : l = \frac{a}{x} : \frac{b}{y} : \frac{c}{z} = \frac{1}{n_x} : \frac{1}{n_y} : \frac{1}{n_z}.$$

Figure 2.7 Cubic unit cell with $a = b = c$ and $\alpha = \beta = \gamma = 90^\circ$. The simple cubic cell (a) and the body-centered (b) and face-centered (c) cubic unit cells are to be distinguished.

Figure 2.8 Comparison of the lattice model of closest-packed spheres with the ABCAB . . . stacking with the fcc lattice.

The lattice of closely packed spheres (Figure 2.3) can be reduced to a cubic unit cell with face-centered building blocks, as shown in Figure 2.8.

2.1.3 Miller Indices to Describe Crystal Faces

The well-defined flat faces limiting a crystal are described by Miller indices. They are denoted hkl and are independent of the size of the crystal. Using the three axes of the unit cell, a face will intersect these axes at certain distances, for example, for the y-axis at $2b$ (Figure 2.9). By referring the intersection to the length of the unit cell in this direction, one arrives at certain multiples for the intersection, that is, $n_y = y / b$. The Miller indices hkl are defined as the reciprocal of the three intersections (Equation 2.2). It is required that hkl are integers:

$$h : k : l = \frac{a}{x} : \frac{b}{y} : \frac{c}{z} = \frac{1}{n_x} : \frac{1}{n_y} : \frac{1}{n_z}.$$

The calculation of the indices is shown in Figure 2.9 for a face at two different growth stages, the small dark face and the larger gray face. Both indices are the same.
The indices of the three lowest indexed faces of a cubic lattice are shown in Figure 2.10. It should be noted that in a cubic system, all six faces of the cube are identical, so the indices (001), (010), and (001) describe the same faces and can be used arbitrarily. By definition, \((hkl)\) describe a certain face, while \(\{hkl\}\) describe symmetrically equivalent faces.

2.1.4
Lattice Defects

The perfect lattice just described will not be found for real crystals, not even for crystals grown with extreme care. Instead, the crystals will contain a variety of lattice defects with different density. These defects determine the properties of the crystals such as mechanical strength or electric conductivity. Lattice defects also play an
important role in the growth of the crystals, namely, the screw dislocation (see Section 2.3.3).

Lattice defects are characterized by their dimensionality D with which they extend into the lattice. This will be explained by often encountered defects (Table 2.1).

Figure 2.11 shows a two-dimensional lattice with two different defects, a vacancy and an interstitial atom. Both defects are confined to a point and do not extend into the lattice, so their dimensionality is $D = 0$.

Screw dislocations are one example for line defects and can be generated by a shearing of the crystal (Figure 2.12). This defect extends in one dimension along the line shown, so that $D = 1$.

Twinning is the most prominent example of faults with $D = 2$. The fault extends through an entire plane in the crystal (Figure 2.13). For a fcc lattice, twinning can occur by stacking faults; the order of ABCABC . . . is reversed at a certain point to ABCBAC For the outer shape of the crystal, twinning will appear as an inflection, or forming of a mirror image, a twin. Figure 2.13 also shows a twin of a silver halide crystal. The twin plane is clearly seen.

Finally, volume defects $D = 3$ can be formed by the inclusion of mother liquor (Figure 2.14). It is interesting to note that the liquid inclusions can be confined by well-expressed low-indexed (negative) faces. Liquid inclusions, for example, occur under high growth rates, for example, for precipitations.

Table 2.1 Lattice defects ordered by their dimensionality D.

<table>
<thead>
<tr>
<th>Defect</th>
<th>D</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>0</td>
<td>Vacancy, interstitial atom</td>
</tr>
<tr>
<td>Line</td>
<td>1</td>
<td>Step dislocation, screw dislocation</td>
</tr>
<tr>
<td>Surface</td>
<td>2</td>
<td>Twin, small-angle grain/tilt boundary</td>
</tr>
<tr>
<td>Volume</td>
<td>3</td>
<td>Inclusion</td>
</tr>
</tbody>
</table>

Figure 2.11 Vacancy and interstitial atoms in a two-dimensional lattice. These lattice defects are confined to a point; thus, $D = 0$.
2.1.5 Equilibrium, Growth, and Dissolution Form of Crystals

The discussion of crystal shapes has to distinguish between the equilibrium form, which is governed by thermodynamics, and the growth and dissolution form, which is governed by the kinetics of the growth process.