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Preface

Structural dynamics is a subject that traditionally figures in the curriculum of
engineering schools. An introductory course in structural dynamics is often available
as an elective in engineering programs, followed by a more advanced course during
graduate work at the master’s or doctoral level. The new standards and building codes
promote the use of dynamic computation to determine the distribution of seismic
forces when designing large or irregularly shaped buildings or, in some cases, as
the method of choice for determining the effects of seismic forces. As a result,
the importance of an introductory course in structural dynamics should be obvious.
This book is intended for engineering students and practising engineers dealing with
problems related to structural vibration and seismic design.

This volume has two parts. The first deals with single-DOF systems, which
include complex systems that can be reduced to single-DOF systems. The second part
looks at systems with multiple DOF that are solved using the finite-element method.
This division could be viewed as the separation between an introductory course on
structural dynamics for undergraduates and an advanced course for graduate students.
That would not be a very profitable approach, since it would not include modal
analysis, which is discussed in the second part of this book. The goal is to introduce
modal analysis as part of an introductory course on structural dynamics analysis.
Understanding the book’s contents requires no more knowledge of mathematics and
structural analysis than any engineering student would have. The book breaks down
as follows.

Chapter 1 provides an introduction to structural dynamics. The first part of
the book deals with single-degree-of-freedom (SDOF) systems. Chapter 2 provides
the equations of motion for single-DOF systems. Chapter 3 develops conventional
solutions for single-DOF systems, i.e. under the initial conditions imposed without
dynamic loading. System response to harmonic loading is discussed in Chapter 4,
which leads to damping and its experimental measurement, dealt with in Chapter 5.
The Fourier decomposition of periodic loading is considered in Chapter 6, which
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shows that the response is the superimposition of a set of harmonic loadings. Chapter 7
shows how to calculate the response of a single-DOF system subjected to any kind of
loading using Duhamel’s integral. Chapter 8 introduces applying frequency-domain
analysis to dynamics problems and calculating the response to any kind of loading
using the Fourier transform. Chapter 9 provides an introduction to the direct numerical
integration of equations of motion. The topics treated include an exact method for
piecewise linear loading functions, the central difference method, and conventional
Newmark methods. Chapter 10 considers computation of the response of nonlinear
single-DOF systems using direct numerical integration combined with Newton’s
iterative method for error reduction. Chapter 11 focuses on systems that can be
reduced to a single DOF using Rayleigh’s method. The book’s first part ends with
an examination of single-DOF systems under earthquake action (Chapter 12).

Part 2 is devoted to discrete systems with multiple DOF. Chapter 13 establishes
the equations of motion for multiple-degree-of-freedom (MDOF) systems and defines
mass, damping and stiffness matrices based on a basic knowledge of structural matrix
computations. Chapter 14 provides an introduction to the finite-element method so that
the mass and rigidity matrices can be established more formally. The free response
of conservative multiple-DOF systems is seen in Chapter 15, which provides for
defining and computing the natural frequencies and associated mode shapes. Chapter
16 deals with the free vibration of discrete dissipative systems. Chapter 17 shows
how to use modal superposition to compute the response of discrete systems for any
load, whereas Chapter 18 deals with seismic loading. Chapter 19 looks at several
properties of eigenvalues and eigenvectors required for a more in-depth study of their
numerical determination. Chapter 20 presents several coordinate reduction methods,
which are of prime importance in structural dynamics, and introduces Ritz analysis.
Chapter 21 presents several classic methods for computing eigenvalues and the
associated eigenvectors. Direct numerical integration methods to solve equations of
motion for discrete multiple-DOF systems receive in-depth treatment in Chapter 22,
including error and stability analysis of the different methods. Application of direct
numerical integration methods to solve nonlinear problems is seen in Chapter 23.

The appendix provides some mathematical notions needed to understand the text.
This book contains 88 examples illustrating application of the theories and methods
discussed herein as well as 181 problems.

The contents can be used to develop a number of courses, including:

1) Introduction to Structural Dynamics: an introductory course for engineering
students would cover Chapters 1 to 7, 9, 11 and part of 12, 13, 15 to 18.

2) Advanced Structural Dynamics: this course for graduate students who have
taken the introductory course in structural dynamics would comprise Chapters 1, 8,
12 to 18, and 20 to 23, in part.



Preface xv

3) Computational Structural Dynamics: this advanced course would be reserved
for graduate students who have already taken the advanced structural dynamics course,
in which Chapters 1, 8 and 14 to 23 would be seen.

This text was used in delivering the structural dynamics course to senior students at
the University of Sherbrooke. I take this opportunity to thank all my former students
who, through attending lectures and their enthusiasm for solving weekly problems
with CALWin, LAS and MATLAB, led me to write this book. Professor Jacky Mazars
played an essential role in the process leading to this book, first by inviting me to give a
course on structural dynamics at the École Normale Supérieure in Cachan to students
at the DEA-MAISE and Laboratoire de Mécanique et Technologie for a number of
years, and then by inviting me to publish it in the civil-engineering collection at
ISTE and John Wiley & Sons. This text provided the foundation for an introductory
course in structural dynamics given to Master’s students in civil engineering and
infrastructure at the Grenoble IUP as well as for an advanced computational structural
dynamics course given to students at the doctoral school of Joseph Fourier University
in Grenoble at the invitation of Professor Laurent Daudeville. Lastly, part of the book
was presented in English to doctoral students attending ALERT sessions in Aussois,
France.

I entered the text, performed the layout, and designed the artwork. Professor Najib
Bouaanani read some of the chapters of the French version and made suggestions
that, without a doubt, have improved the presentation and made the text clearer.
In the final phase of writing the French version of the book, Dr. Benedikt Weber
and Dr. Thien-Phu Le read all the chapters. Dr. Benedikt Weber played an essential
role suggesting clarifications and developing solutions for several problems using
MATLAB, whereas Éric Lapointe and myself developed all solutions with LAS.
Olivier Gauron, Research Assistant at the University of Sherbrooke proofread the
translation of the French version of the book into English, checked the solutions of the
problems and coordinated the production of the artwork in English. His role was not
limited to these tasks as he made valuable suggestions that helped clarify part of the
book. The author is grateful to Sébastien Mousseau, Najib Bouaanani, Cédric Adagbe,
Adamou Saidou Sanda, Danusa Tavares and Gustavo Siqueira for their dedication in
meticulously and expertly preparing the drawings.

I am particularly grateful to my former Professor René Tinawi for initially
piquing my interest in the subject. For a number of years, I taught a course on
structural dynamics in parallel with a course taught by Professor Pierre Léger, first
at McGill University and now at École Polytechnique in Montréal. I have fond
memories of many discussions with Professor Léger about teaching approaches and
the development of software for teaching structural dynamics. The same is true for
Professor Jean Proulx who also wrote the first version of the CALWin program
which is the ancestor of LAS. I wish to thank Éric Lapointe, Master’s student
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at the University of Sherbrooke for the development of the LAS1 program that
runs under Windows. The LAS program is based on an earlier non-graphical basic
version developed by Dr. Charles Carbonneau. Éric Lapointe’s enthusiasm, technical
knowledge, refined programming skills that allows him to put algorithms into code
at a record speed led to completion of a project that was dear to me for a number of
years. The program is available as freeware to anyone interested. LAS is a powerful
program that can be used to quickly learn structural matrix computation methods, the
finite-element method, structural dynamics and matrix computations. LAS software
can be downloaded from http://www.civil.usherbrooke.ca/ppaultre/. Lastly, I would
like to thank Professor Jean Proulx who was a great help in the translation of the book
from French to English.

This book was typeset with LATEX2ε. Donald Knuth cannot be thanked enough for
TEX.

Patrick Paultre, Sherbrooke 2010

“Let no one say that I have said nothing new; the arrangement of the subject is
new.”

Blaise Pascal, Pensées 22-696

1. LAS is an acronym for Language for the Analysis of Structures which in French is Language
pour l’Analyse des Structures.

http://www.civil.usherbrooke.ca/ppaultre/


Chapter 1

Introduction

The aim of this book is to study vibrations of structures caused by dynamic
loadings that vary over time as opposed to static loadings. These dynamic loadings
give rise to displacements, internal forces, reactions, and stresses that are time
dependent. Hence, a unique solution does not exist as for a static problem. In a
dynamic problem, it is necessary to calculate the displacements in time – collectively
called dynamic response – before determining maximum values of forces, reactions,
and stresses that are necessary for design purposes. It is, however, easy to conclude
that time is the only difference between the dynamic and static analysis of a structure.
This is obviously not true, because, on the one hand, a load is never applied statically
and, on the other hand, the effects of a static load do vary in time due to the viscoelastic
properties of the materials (creep, shrinkage, relaxation, etc.) forming the structures.
The distinctive nature of a dynamic problem comes from the presence of inertia
forces, fI(t), which oppose the motion generated by the applied dynamic loading,
p(t). The dynamic character of the problem is dominant if the inertia forces are
large compared to the total applied forces. The problem can be treated as static if the
motion generated by the applied load is so small that the inertia forces are negligible.
Figure 1.1 illustrates the effects on the bending moment of a concentrated force
applied dynamically and statically to the tip of a column.

A dynamic load has intensity, direction, and point of application that can vary in
time. If it is a known function of time, the loading is said to be prescribed dynamic
loading. The analysis of a structure under a prescribed dynamic loading is considered
deterministic. If the variation in time of the loading function is unknown and can only
be described in statistical terms, it is said to be random dynamic loading. Random
vibration analyses study the response of a structure under random dynamic loadings.
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Figure 1.1. Difference between static and dynamic loading: (a) static loading and
corresponding bending moment diagram, (b) dynamic loading and corresponding bending

moment diagram (not at scale)

1.1. Dynamic response

The end result of the deterministic analysis of a structure excited by a given
dynamic loading is the dynamic response expressing the displacements of the structure
with time, which is also called the displacement time history. The strains, stresses,
internal forces, and reactions are determined once the displacement time history is
known (Figure 1.2). We recall that there is no uncertainty in expressing the loading
function in a deterministic analysis.

Figure 1.2. Response time history: displacements, stresses or forces

Dynamic response varies with time. However, for design or verification, all that is
required is the maximum dynamic response which, for a linear system, can be added
to the maximum static response to yield the maximum total response. For a nonlinear
system, the static effects need to be calculated first and added to the dynamic effects
to determine the total nonlinear response.

1.2. Dynamic loading

Dynamic loadings can be divided into periodic loadings and non-periodic
loadings. Table 5.1 summarizes the different types of dynamic loadings that are
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encountered in civil engineering. Permanent and live loads that are applied slowly
compared to the period of vibration of structures are generally considered static
loadings, as are dead loads.

Sources of dynamic loadings

Periodic Non-periodic

Simple harmonic Arbitrary periodic Arbitrary Impulsive

Rotating machine Reciprocating machine Construction Construction

Walking, jogging Wind Impact

Wind Waves Explosion

Earthquakes Loss of support

Traffic Rupture of an element

Table 1.1. Types and sources of dynamic loadings

1.2.1. Periodic loadings

A periodic loading repeats itself after a regular time interval, T , called the period.
Periodic loadings can be divided into simple harmonic loadings and arbitrary periodic
loadings.

1.2.1.1. Harmonic loadings

Figure 1.3. Harmonic loading applied by a rotating machine

The simplest periodic loading varies as a sinusoid and is called simple harmonic
loading (Figure 1.3). This type of loading is generated by rotating machines and
exciters with unbalanced masses and it gives rise to the resonance phenomenon when
the excitation period matches the structure’s natural period of vibration.

1.2.1.2. Arbitrary periodic loadings

Arbitrary periodic loadings repeat themselves at regular interval of time. This type
of loading is generated by reciprocating machines, by walking or jogging by one or
many persons crossing a pedestrian bridge (Figure 1.4), by rhythmic jumping and
dancing by one or many persons on a floor, by hydrodynamic forces generated by the
propeller of a boat, by waves, etc.
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Figure 1.4. Periodic loading caused by the steps of a person crossing a pedestrian bridge

1.2.2. Non-periodic loadings

Non-periodic loadings vary arbitrarily in time without periodicity. Non-periodic
loadings can be divided into impulsive short-duration loadings and arbitrary long-
duration transient loadings.

1.2.2.1. Impulse loadings

Impulse loads have a very short duration with respect to the vibration period of
the structures and are caused by explosions (Figure 1.5), shock, failure of structural
elements, support failure, etc.

Figure 1.5. Impulse loading caused by an explosion

1.2.2.2. Arbitrary loadings

Arbitrary loads are of long duration and are caused by earthquakes, wind, waves,
etc. Figure 1.6 shows the time variation of the acceleration that occurs at the base of
a structure during an earthquake, giving rise to time-varying inertia forces over the
structure’s height.

1.3. Additional considerations

Additional considerations are needed for dynamic loads. These considerations are
mostly related to the cyclic nature of the loading – which can lead to fatigue-related
failure – and to the properties of specific materials whose behavior changes with the
loading rate.
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Figure 1.6. Long-duration arbitrary load caused by an earthquake

When the external loads are lower than the structure’s elastic limit, fatigue-related
rupture is caused by stress concentrations near defects where fatigue microcracks can
begin to propagate. One such crack will dominate and propagate by cyclically opening
and closing to a critical size that will lead to instability of the structural member.
This failure depends on the difference between the maximum and minimum stress,
and on the number of cycles during which this difference remains above a specific
level.

The rate of loading also influences the stiffness and resistance characteristics of
certain materials. The stiffness and resistance of such materials increase with the rate
of loading. For example, the compressive strength of concrete can increase by close to
30% for strain rates of 0.05/s, which is typical of the rates induced in a structure by
earthquake loading.

1.4. Formulation of the equation of motion

In order to determine the dynamic response of a structural system, we need to
write the equations of motion governing the dynamic displacement of the system.
The solution of these equations provide the system’s response as a function of
time. Three methods will be used in this book to write the dynamic equations of
motions, i.e. Newton’s second law of motion, d’Alembert’s principle, and the principle
of virtual work, particularly the principle of virtual displacements. A variational
approach using the notion of work and energy and leading to Hamilton’s principle
can also be used. Although very powerful and often leading to a more profound
understanding of the dynamic phenomena, this formulation will not be used in
this book.
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1.4.1. System with one mass particle

1.4.1.1. Newton’s second law of motion

Newton’s1 second law of motion states that the rate of change of momentum of a
mass particle m is equal to the sum of forces acting onto it, that is

p(t) =
d
dt

(
m

du
dt

)
[1.1]

where p(t) is the sum or resultant of all forces acting on the mass particle m, u is its
position vector and m(du/dt) its momentum. Assuming the mass does not vary with
time as is usually the case, equation [1.1] can be written as

p(t) = m
d2u
dt2

[1.2]

which we will write

p(t) = mü(t) [1.3]

where the dots represent differentiation with time. Equation [1.3] can be written in
terms of the components of the vectors, that is

pi(t) = müi(t), i = 1, 2, 3. [1.4]

1.4.1.2. D’Alembert’s principle

Transposing the right-hand side of equation [1.2] to the left, we obtain

p(t) −mü(t) = 0 [1.5]

or in component form

pi(t) −müi(t) = 0, i = 1, 2, 3. [1.6]

These equations are an expression of d’Alembert’s2 principle which states that the sum
of all applied force vectors and vector −mü for a dynamic system is equal to zero.
The vector mü whose magnitude is mü and direction is opposite to the acceleration
is called inertia force vector. In other words, this powerful principle states that an
accelerating mass particle is equivalent to a static system in equilibrium when the

1. Isaac Newton, physicist, mathematician, and natural philosopher, born in Woolsthorpe,
Lincolnshire, England on December 25, 1642; died in London, England on March 20, 1727.
2. Jean Le Rond d’Alembert, lawyer, mathematician, physicist, and philosopher, born on
November 17, 1717 in Paris, France; died on October 29, 1783 in Paris, France.
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inertial force is added. The mass particle is said to be in dynamic equilibrium. Note that
the inertial force must act through the center of mass and in the case of a rotating mass,
an inertial moment acting anywhere must also be considered. The sum of all applied
forces includes all forces resulting from kinematic constraints opposing displacement,
all viscous forces opposing velocities and all external applied forces. The application
of d’Alembert’s principle is in general the simplest way of writing the equations of
motion of a dynamic system and will be used quite extensively in this book.

1.4.1.3. Virtual work principle

Figure 1.7. Mass particle and virtual displacement

Let us assume that the mass particle follows a path u from a given position u(t1)
at time t1 to a final position at u(t2) at time t2 (Figure 1.7). Let us assume an arbitrary
virtual path u′ that has same position as u at time t1 and t2, i.e. u′i(t1) = ui(t1)
and u′i(t2) = ui(t2). We define the components of a virtual displacement δui of the
system at time t1 < t < t2 as

δui = u′i − ui, i = 1, 2, 3 [1.7]

where ui and u′i are respectively the components of u and u′ in direction 1, 2 and 3.
The virtual displacement is arbitrary except for the following conditions:

δui(t1) = δui(t2), i = 1, 2, 3. [1.8]

From equation [1.5], it follows that

d
dt

(δui) =
d
dt

(u′i − ui) = u̇′i − u̇i = δu̇i [1.9]

where it is seen that the symbol δ commutes with the first differential operator
d. In fact, the symbol δ is more than an indicator of a virtual quantity but
behaves like a variational operator obeying the rule of operation similar to the first
differential operator d. If we multiply the dynamic equilibrium equations [1.6] by the
corresponding virtual displacement and we take the sum of the components, we obtain

3∑
i=1

(pi(t) −müi(t)) δui = 0 [1.10]
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which is the principle of virtual displacements – a particular case of the principle of
virtual work – that can be stated as below.

THEOREM.– The work done by the effective forces acting on a mass particle during a
virtual displacement δui is equal to zero.

1.4.1.4. Constraints

The position of a mass particle that is restricted to move in a plane can be described
by two coordinates x and y or xi, i = 1, 2. The system is said to have two DOF
(DOFs).

Figure 1.8. Pendulum restricted to move on a plane: (a) simple pendulum, (b) double
pendulum

If the mass at coordinates x1 and x2 is attached to a frictionless hinge at position
(0, 0) (Figure 1.8a) by a rigid massless bar with length L – this system is called a
pendulum – a constraint is introduced which can be expressed by

x2
1 + x2

2 = L2 [1.11]

which is a constraint equation. The introduction of a constraint in this case reduce
the number of DOFs by one. Either x1 or x2 or more often the angle θ between the
pendulum and the vertical axis can be chosen as DOF. The constraint equation can be
written as

f(x1, x2, x3, t) = const. [1.12]

Systems for which the constraint equation is a function of the coordinates and time are
called holonomic system and the constraint equation is called a holonomic constraint.
A holonomic system is further subdivided into rheonomic if time appears in the
constraint equation or scleronomic otherwise. If the constraint equation is also a
function of the derivatives of the coordinates with time such that

f(ẋ1, ẋ2, ẋ3, x1, x2, x3, t) = const [1.13]

the system is called non-holonomic. We are concerned in this book with only
holonomic systems.
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1.4.2. System with many mass particles

If we have N mass particles, we will have 3N equations of dynamic equilibrium

pik(t) −müik = 0, i = 1, 2, 3; k = 1, 2, . . . , N [1.14]

where pik are the components of all applied forces. In this case, the system is said to
have 3N DOFs.

Let us define the virtual displacements which satisfy the kinematic conditions of
the system such as

δuik = u′ik − uik, i = 1, 2, 3; k = 1, 2, . . . , N [1.15]

with the conditions

δuik(t1) = δuik(t2), i = 1, 2, 3; k = 1, 2, . . . , N [1.16]

Equation [1.10] becomes

N∑
k=1

3∑
i=1

(pik(t) −müik(t)) δuik = 0 [1.17]

which can be stated as below.

THEOREM.– A system of particles is in equilibrium if the total virtual work done for
every virtual displacement is equal to zero.

The position of a mass particle is described by three coordinates xi, i = 1, 2, 3 in
3D space and has three DOFs. A system of N particles in space has 3N DOFs. The
number of DOFs is reduced by one for every kinematic constraints that are introduced
between the mass particles. Hence, the number of DOFs in 3D is given by

n = 3N − nc [1.18]

where n is the number of DOFs and nc is the number of constraints. A double
pendulum consisting of two masses m1 and m2 connected by massless rigid bars of
length L1 and L2 and restricted to move in a plane has n = 4 − 2 = 2 DOFs (Figure
1.8b). The two constraint equations are

x2
11 + x2

12 = L2
1 and x2

21 + x2
22 = L2

2. [1.19]

For many mass particles systems with constraints, the principle of virtual
displacement can therefore be restated as below.
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THEOREM.– A mechanical system is in equilibrium if the total virtual work done for
every virtual displacement consistent with the constraints is equal to zero.

Mechanical systems in the previous theorem include rigid bodies with their mass
and mass moment of inertia concentrated at their center of mass.

1.4.3. System with deformable bodies

No proof will be given, but the principle of virtual displacements can be stated as
below.

THEOREM.– A system is in equilibrium if the virtual work of external forces is equal
to the virtual work of internal forces when it is subjected to a virtual displacement
field that is consistent with the constraints.

1.5. Dynamic degrees of freedom

From the preceding discussion, it can be stated that the number of degrees of
freedom (DOFs) of a structural system is the number of independent displacement
coordinates or generalized coordinates that is necessary to completely and uniquely
describe the displaced or deformed shape of a structure. Generalized coordinates are
Cartesian coordinates but can also be rotations or even amplitude of deflected shapes
and Fourier series expansion as we shall observe. A simply supported beam has an
infinite number of DOFs. Let us assume that two bending moments are applied to
the ends of a simply supported beam. If we dispose of an analytical function relating
the deflexion of the beam at any point along its length to the rotation at the ends
of the beam, we need only two DOFs, namely these two rotations, to define the
deformed shape of the beam. This definition applies to a static problem and needs
some specialization for a dynamic problem. The generalized coordinates that must
be considered in order to represent the effects of every important inertia forces on
a structural system are called dynamic DOFs, and their number is the total number
of DOFs in the system. In the case of a dynamic problem, the nodal displacements
that control inertia forces are generally not significantly affected by local deformation
variations. As a result, fewer DOFs are required for a dynamic model than for a static
model. Let us illustrate the difference between a static and a dynamic problem with a
simple example. Only basic knowledge of matrix structural analysis is required (see
Chapter 13).

Consider the frame illustrated in Figure 1.9a, which consists of a beam supported
by two columns fixed at their base. The beam and columns are modeled with linear
beam elements and meet at points called nodes. Consider the case of static forces
applied only at the nodes. In an elastic system that undergoes small displacements, the
transverse displacement of the elements are uniquely related to the node displacements
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by cubic polynomials. If the six displacements u1 to u6 are known, the transverse
displacements of any given point on an element can be determined. This structure
therefore has six static DOFs, as shown in Figure 1.9b. If other forces are present or
if the displacement of other points is sought, additional nodes must be added, which
increases the number of static DOFs (three per additional node). A beam often consists
of a web and a slab that is very rigid in the longitudinal axis. In this case, it can be
considered as rigid in the longitudinal direction with respect to the column’s flexural
stiffness, which removes one DOF. Moreover, for low-rise structures, as is the case
here, column longitudinal deformations can be neglected with very little impact on
accuracy. Thus, there remain three static DOFs: the horizontal displacement u1, and
the rotations u2 and u3 (see Figure 1.9c). In a static problem, the stresses depend on
the derivatives of the displacement. A more refined model improves the deformation
gradient, thereby improving stress predictions.

Figure 1.9. Static and dynamic DOFs
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In the case of a dynamic load, as illustrated in Figure 1.9d, the effects of rotational
inertia can be shown to be negligible. The system reduces to four translation DOFs
u1 to u4 (see Figure 1.9e). The effects of longitudinal deformation are also negligible,
as is the case in the static problem. We can also assume that the column masses are
negligible with respect to the total structural mass, which is concentrated at the roof
level. DOFs u2 to u4 can therefore be eliminated from the preceding model. The
structure is reduced to a single-degree-of-freedom (SDOF) system in the horizontal
direction, as shown in Figure 1.9f.

1.6. Modeling a dynamic problem

We have explained that the inertia forces characterize a dynamic problem. These
forces must therefore be well defined in any model. For continuous systems such as a
beam, the mass is distributed along its entire length, which means that accelerations
and displacements should be defined for each point on the beam. Analysis of a beam,
for example, leads to simultaneous partial differential equations that are a function
of the position x along the beam and time t. It is almost impossible to solve these
differential equations analytically, except with very simple structures and load cases.
Discretization techniques are generally used to formulate and solve equations for
dynamic problems. These techniques can be simple mass concentrations or more
sophisticated coordinate-reduction methods such as Rayleigh3 and Ritz4 methods or
the widely used finite element method. In structural dynamics, the finite element
method is very often used for the spatial discretization of structures, combined with the
finite difference method for time discretization. These methods are briefly described
below.

1.6.1. Mass concentration

Important simplifications can be achieved by concentrating the masses on a given
number of points. The inertia forces can only be developed at these points, and the
response parameters are only defined at these locations. Figure 1.10 represents a
three-span bridge with variable inertia. The bridge is modeled as a discrete system
in which the mass is concentrated (or lumped) at seven specific points. Neglecting
the longitudinal deformations and rotational inertia results in a model with seven
dynamic DOFs. This type of modeling generally leads to an n DOFs system. The
problem is determining n in order to represent the inertia forces as accurately as

3. John William Strutt Lord Rayleigh, mathematician and physicist, born on November 12, 1842
in Langford Grove, Essex, UK, died on June 30, 1919 in Terling Place, Essex, UK.
4. Walter Ritz, physicist, born on February 22, 1878 in Sion, Switzerland, died on July 7, 1909
in Göttingen, Germany.


