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Foreword

It’s too big! It’s too hot! It’s too expensive! And the litany goes on, recognizable to those of us

who have designed inductors and transformers, the bane of power electronics. In writing this

book, Professor Hurley and Doctor W€olfle have combined their expertise to produce a resource

that, while not guaranteeing freedom from pain, at least provides substantial anaesthesia.

Ger Hurley has been engaged in research, teaching and writing about magnetic analysis

and design for almost 40 years, since his time as a graduate student at MIT completing his

thesis on induction heating under my supervision. And Werner W€olfle brings to this text, in

addition to his extensive industrial experience, the benefit of having been Prof. Hurley’s stu-

dent. So, in some very small way, I take some very small credit for this book.

Today’s demands on power electronics are unprecedented and, as their application moves

ever further into the commodity marketplace (solar PV converters, EV and hybrid drives,

home automation, etc.), the emphases placed on cost and efficiency are driving a sharp focus

on the high-cost transformers and inductors in these products. As we venture into design

domains, where electroquasistatics no longer obtains, and where the contradictory demands

of efficiency and size reduction create an engineering confrontation, we need the guidance

that this book provides.

While many books have been written to aid the engineer in the design of magnetics, they

almost exclusively present design rules and formulas without exposing the underlying

physics that governs their use. Hurley and W€olfle, too, provide formulas and rules, but the

emphasis is on understanding the fundamental physical phenomena that lead to them. As we

move to higher frequencies, new geometries, new materials and new manufacturing technol-

ogies, we can no longer simply find an appropriate formula, go to a catalogue to select a pot

core, C-core or E-core, and begin winding. An understanding of electromagnetic fundamen-

tals, modelling and analysis is now critically important to successful design – an understand-

ing that Hurley and W€olfle convey most effectively.

With its comprehensive scope and careful organization of topics, covering fundamentals,

high-frequency effects, unusual geometries, loss mechanisms, measurements and application

examples, this book is a ‘must have’ reference for the serious power electronics engineer

pursuing designs that are not too big, not too hot and not too expensive. Hurley and W€olfle
have produced a text that is destined to be a classic on all our shelves, right next to ‘The

Colonel’s’ book1. A remarkable achievement.

John G. Kassakian

Professor of Electrical Engineering

The Massachusetts Institute of Technology

1McLyman, Colonel W.T. (1978) Transformer and Inductor Design Handbook. Marcel Dekker, Inc., New York.





Preface

The design of magnetic components such as transformers and inductors has been of interest

to electronic and electrical engineers for many years. Traditionally, treatment of the topic has

been empirical, and the ‘cook-book’ approach has prevailed. In the past, this approach has

been adequate when conservative design was acceptable. In recent years, however, space and

cost have become premium factors in any design, so that the need for tighter designs is

greater. The power supply remains one of the biggest components in portable electronic

equipment. Power electronics is an enabling technology for power conversion in energy sys-

tems. All power electronic converters have magnetic components in the form of transformers

for power transfer and inductors for energy storage.

The momentum towards high-density, high-efficiency power supplies continues unabated.

The key to reducing the size of power supplies is high-frequency operation, and the bottle-

neck is the design of the magnetic components. New approaches are required, and concepts

that were hitherto unacceptable to the industry are gaining ground, such as planar magnetics,

integrated magnetics and matrix configurations.

The design of magnetic components is a compromise between conflicting demands. Con-

ventional design is based on the premise that the losses are equally divided between the core

and the winding. Losses increase with frequency, and high-frequency design must take this

into account.

Magnetic components are unique, in that off-the-shelf solutions are not generally availa-

ble. The inductor is to the magnetic field what the capacitor is to the electric field. In the

majority of applications, the capacitor is an off-the-shelf component, but there are several

reasons for the lack of standardization in inductors and transformers. In terms of duality, the

voltage rating is to the capacitor what the current rating is to the inductor. Dielectric materi-

als used in capacitor manufacture can be chosen so that voltage rating greatly exceeds the

design specification without incurring extra cost. In this way, a spectrum of voltage ratings

can be covered by a single device.

On the other hand, the current flow in an inductor gives rise to heat loss, which contributes

to temperature rise, so that the two specifications are interlinked. This, in turn, determines

the size of the conductors, with consequential space implications. Magnetic components are

usually the most bulky components in a circuit, so proper sizing is very important.

Returning to the duality analogy, the dielectric material in a capacitor is to the electric

field what ferromagnetic material in a magnetic component is to the magnetic field. In gen-

eral, dielectrics are linear over a very large voltage range and over a very wide frequency

range. However, ferromagnetic materials are highly non-linear and can be driven into



saturation with small deviations from the design specifications. Furthermore, inductance is a

frequency-dependent phenomenon. Dielectric loss does not contribute to temperature rise in

a critical way, whereas magnetic core loss is a major source of temperature rise in an

inductor.

The totality of the above factors means that magnetic component design is both complex

and unique to each application. Failure mechanisms in magnetic components are almost

always due to excessive temperature rise, which means that the design must be based on

both electrical and thermal criteria. A good designer must have a sound knowledge of circuit

analysis, electromagnetism and heat transfer. The purpose of this book is to review the fun-

damentals in all areas of importance to magnetic component design and to establish sound

design rules which are straightforward to implement.

The book is divided into four sections, whose sequence was chosen to guide the reader in a

logical manner from the fundamentals of magnetics to advanced topics. It thus covers the full

spectrum of material by providing a comprehensive reference for students, researchers and

practising engineers in transformer and inductor design.

The Introduction covers the fundamental concepts of magnetic components that serve to

underpin the later sections. It reviews the basic laws of electromagnetism, as well as giving a

historical context to the book. Self and mutual inductance are introduced and some important

coil configurations are analyzed; these configurations form the basis of the practical designs

that will be studied later on. The concepts of geometric mean distance and geometric mean

radius are introduced to link the formulas for filaments to practical coils with finite wires

such as litz wires.

In Section I, the design rules for inductor design are established and examples of different

types of inductors are given. The single coil inductor, be it in air or with a ferromagnetic core

or substrate, is the energy storage device. A special example is the inductor in a flyback

converter, since it has more than one coil. This treatment of the inductor leads on to the

transformer in Section II, which has multiple coils and its normal function is to transfer

energy from one coil to another.

Section II deals with the general design methodology for transformers, and many exam-

ples from rectifiers and switched mode power supplies are given. Particular emphasis is

placed on modern circuits, where non-sinusoidal waveforms are encountered and power fac-

tor calculations for non-sinusoidal waveforms are covered. In a modern power converter, the

transformer provides electrical isolation and reduces component stresses where there is a

large input/output conversion ratio. The operation of the transformer at high frequency

reduces the overall size of the power supply.

There is an inverse relationship between the size of a transformer and its frequency of

operation, but losses increase at high frequency. There is skin effect loss and proximity effect

loss in the windings due to the non-uniform distribution of the current in the conductors. The

core loss increases due to eddy currents circulating in the magnetic core and also due to

hysteresis. General rules are established for optimizing the design of windings under various

excitation and operating conditions – in particular, the type of waveforms encountered in

switching circuits are treated in detail. A simple, straightforward formula is presented to

optimize the thickness of a conducting layer in a transformer winding.

Finally, Section III treats some advanced topics of interest to power supply designers. The

authors feel that the book would be incomplete without a section on measurements, a topic

that is often overlooked. Advances in instrumentation have given new impetus to accurate

xx Preface



measurements. Practitioners are well aware of the pitfalls of incorrect measurement tech-

niques when it comes to inductance, because of the non-linear nature of hysteresis. Planar

magnetics have now become mainstream. The incorporation of power supplies into inte-

grated circuits is well established in current practice.

This book is of interest to students of electrical engineering and electrical energy systems –

graduate students dealing with specialized inductor and transformer design and practising

engineers working with power supplies and energy conversion systems. It aims to provide a

clear and concise text based on the fundamentals of electromagnetics. It develops a robust

methodology for transformer and inductor design, drawing on historical references. It is also a

strong resource of reference material for researchers. The book is underpinned by a rigorous

approach to the subject matter, with emphasis on the fundamentals, and it incorporates both

depth and breadth in the examples and in setting out up-to-date design techniques.

The accom panying website www.wiley.com /go/hur ley_tr ansformer s cont ains a full set of

instructors’ presentations, solutions to end-of-chapter problems, and digital copies of the

book’s figures.

Prof. W. G. Hurley and Dr Werner W€olfle
National University of Ireland, Galway, Ireland

March 2013
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Nomenclature

The following is a list of symbols used in this book, and their meanings.

A Average or geometric mean radius

Ac Cross-sectional area of magnetic core

Ag Cross-sectional area of the gap

AL Inductance per turn

Am Effective cross-sectional area of magnetic circuit

Ap Product of window winding area� cross-sectional area

At Surface area of wound transformer

Aw Bare wire conduction area

a Transformer turns ratio

a1, a2 Inside and outside radii of a coil

Bmax Maximum flux density

Bo Optimum flux density

Bsat Saturation flux density

b Winding dimension: see Figure 6.4

Ceff Effective capacitance of a transformer

D Duty cycle

d Thickness of foil or layer

d1, d2 Height of filaments or coil centres above ferromagnetic substrate

F Magnetomotive force, mmf

f Frequency in hertz

G, g Maximum and minimum air gap lengths

GMD Geometric mean distance between coils

g(x) Air-gap length at x

h Winding dimension: see Figure 2.14

hc Coefficient of heat transfer by convection

h1, h2 Coil heights in axial direction

Î Peak value of the current waveform

Idc Average value of current

In RMS value of the nth harmonic of current

In(x), Kn(x) Modified Bessel functions of the first and second kind, respectively

I’rms RMS value of the derivative of the current waveform

Irms RMS value of the current waveform

Jo Current density



J(r) Current density at radius r

J0(x), J1(x) Bessel functions of the first kind

Kc Material parameter

K(f), E(f) Complete elliptic integrals of the first and second kind, respectively

Ki Current waveform factor

Kt 48.2� 103

Kv Voltage waveform factor

k Coupling coefficient

ka, kc, kw Dimensionless constants (see Equations 3.25, 3.26 and 3.27)

kf Core stacking factor Am/Ac

ki Defined in Figure 7.28

kp Power factor

kpn Ratio of the AC resistance to DC resistance at nth harmonic frequency

ks Skin-effect factor

ku Window utilization factor

L Self-inductance

Leff Effective inductance

Ll Leakage inductance

Lm Magnetizing inductance

Ls Additional coil inductance due to ferromagnetic substrate

lc Magnetic path length of core

M Mutual inductance

MLT Mean length of a turn

m
p
(jvm0s)

N Number of turns in coil

n Harmonic number

Pcu Copper or winding loss

Pfe Iron or core loss

Po Output power

Pv Power loss per unit volume

p Number of layers

R Average or geometric mean radius

R Reluctance

Rac AC resistance of a winding with sinusoidal excitation

Rdc DC resistance of a winding

Reff Effective AC resistance of a winding, with arbitrary current waveform

Rd DC resistance of a winding of thickness d0
Ru Thermal resistance

r1, r2 Inside and outside radii of a coil

ro Radius of bare wire

s Substrate separation in sandwich structure

T Period of a waveform

Ta Ambient temperature

Tmax Maximum operating temperature

t Substrate thickness

tr Rise time (0–100%)

xxiv Nomenclature



Vrms RMS value of the voltage waveform

VA Voltampere rating of winding

Vc Volume of core

Vo DC output voltage

Vs DC input voltage

Vw Volume of winding

hvi Average value of voltage over time t

Wa Window winding area of core

Wc Electrical conduction area

Wm Stored energy in a magnetic field

w Winding dimension: see Figure 6.4

Z Impedance

Zi Internal impedance of a conductor

z Axial separation

a, b Material constants

a20 Temperature co-efficient of resistivity at 20�C
D Ratio d/d0
DB Flux density ripple

DT Temperature rise

DV Output voltage ripple

d Skin depth

d0 Skin depth at fundamental frequency

dn Skin depth at the nth harmonic frequency

f Flux

f(k) Defined in Equation 9.49

f0 Defined in Equation 9.58

g Ratio of iron loss to copper loss

L Defined in Equation 9.36

l Flux linkage

m Static or absolute permeability

m0 Magnetic permeability of free space 4p� 10–7 H/m

meff Effective relative permeability

mi Initial permeability

minc Incremental permeability

mopt Optimum value of effective relative permeability

mr Relative permeability

mrs Complex relative permeability

h Porosity factor

r20 Electrical resistivity at 20 �C
rw Electrical resistivity

s Electrical conductivity

t Time for flux to go from zero to its maximum value

C (5p2–1)/15

v Angular frequency (rad/s)

Nomenclature xxv





1

Introduction

In this chapter, we describe the historical developments that led to the evolution of induc-

tance as a concept in electrical engineering. We introduce the laws of electromagnetism

which are used throughout the book. Magnetic materials that are in common use today for

inductors and transformers are also discussed.

1.1 Historical Context

In 1820, Oersted discovered that electric current flowing in a conductor produces a magnetic

field. Six years later, Ampere quantified the relationship between the current and the magnetic

field. In 1831, Faraday discovered that a changing magnetic field causes current to flow in any

closed electric circuit linked by the magnetic field, and Lenz showed that there is a relation-

ship between the changing magnetic field and the induced current. Gauss established that

magnetic poles cannot exist in isolation. These phenomena established the relationship

between electricity and magnetism and became the basis for the science of electromagnetism.

In 1865, Maxwell unified these laws in the celebrated form of Maxwell’s equations, which

established the basis for modern electrical engineering. He also established the link between

phenomena in electromagnetics and electrostatics. Father Nicholas Joseph Callan, who was

Professor of Natural Philosophy at the National University of Ireland, Maynooth, in the

1830 s, invented the induction coil. Alexander Anderson was Professor of Natural Philoso-

phy at the National University of Ireland, Galway in the early 1900 s and gave his name to

the Anderson Bridge for measuring inductance.

These individuals provide the inspiration for a textbook on magnetic design that focuses

on the issues that arise in power electronics. Power electronics is an enabling technology for

modern energy conversion systems and inductors and transformers are at the heart of these

systems.

Figure 1.1 shows a straight conductor carrying a current, i. The presence of the magnetic

field is detected by placing a freely-suspended magnet in the vicinity of the conductor. The

direction of the magnetic field (a vector) is given by the direction in which the north pole of

the search magnet points. It turns out that the magnitude of the magnetic field is constant on

any circle concentric with the conductor, and its direction is tangential to that circle, given by
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the right hand rule – that is, a conventional (right-handed) cork screw will rotate in the direc-

tion of the magnetic field if it is driven in the direction of the current flow. It also turns out

that the magnitude of the magnetic field is proportional to the current in the conductor and is

inversely proportional to the radial distance from the conductor axis.

The magnetic field around a straight conductor is illustrated in Figure 1.2. The direction of

the magnetic field as shown complies with the right hand screw rule. An alternative to the

right hand screw rule for establishing the direction of the magnetic field created by the cur-

rent is to point the thumb of your right hand along the conductor in the direction of the cur-

rent flow, and your fingers will wrap themselves around the conductor in the direction of the

magnetic field. The higher density of the lines near the conductor indicates a stronger mag-

netic field in this area.

The magnetic field around the current carrying conductor is described by two vector quan-

tities: the magnetic flux density B and the magnetic field intensity H.

The magnetic field intensity H is best explained by Ampere’s law, which expresses these

observations about the current-carrying conductor in their most general form:

þ
C

H � dl ¼
ð
S

Jf � nda ð1:1Þ

Current into paper
Current out of paper

Figure 1.2 Magnetic field around a current-carrying conductor.

S

N i

magnetic field
search
magnet

conductor

Figure 1.1 Magnetic field created by a current.
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