IMPROVING SURVEYS
WITH PARADATA
WILEY SERIES IN SURVEY METHODOLOGY

Established in Part by WALTER A. SHEWHART AND SAMUEL S. WILKS

Editors: Mick P. Couper, Graham Kalton, J. N. K. Rao, Norbert Schwarz, Christopher Skinner
Editor Emeritus: Robert M. Groves

A complete list of the titles in this series appears at the end of this volume.
IMPROVING SURVEYS WITH PARADATA
Analytic Uses of Process Information

Edited by

FRAUKE KREUTER
Joint Program in Survey Methodology, University of Maryland
Institute for Employment Research, Nuremberg
Ludwig Maximilian University, Munich
1 IMPROVING SURVEYS WITH PARADATA: INTRODUCTION

Frauke Kreuter

1.1 Introduction 1
1.2 Paradata and Metadata 2
1.3 Auxiliary Data and Paradata 3
1.4 Paradata in the Total Survey Error Framework 4
1.5 Paradata in Survey Production 6
1.6 Special Challenges in the Collection and Use of Paradata 6
 1.6.1 Mode-Specific Paradata 6
 1.6.2 Complex Structure 7
 1.6.3 Quality of Paradata 7
1.7 Future of Paradata 8
References 9
PART I PARADATA AND SURVEY ERRORS

2 PARADATA FOR NONRESPONSE ERROR INVESTIGATION 13
Frauke Kreuter and Kristen Olson

2.1 Introduction 13
2.2 Sources and Nature of Paradata for Nonresponse Error Investigation 14
 2.2.1 Call History Data 14
 2.2.2 Interviewer Observations 17
 2.2.3 Measures of the Interviewer–Householder Interaction 19
2.3 Nonresponse Rates and Nonresponse Bias 20
 2.3.1 Studying Nonresponse with Paradata 22
 2.3.2 Call Records 22
 2.3.3 Interviewer Observations 27
 2.3.4 Observations of Interviewer–Householder Interactions 29
2.4 Paradata and Responsive Designs 30
2.5 Paradata and Nonresponse Adjustment 31
2.6 Issues in Practice 32
2.7 Summary and Take Home Messages 34
 References 34

3 COLLECTING PARADATA FOR MEASUREMENT ERROR EVALUATIONS 43
Kristen Olson and Bryan Parkhurst

3.1 Introduction 43
3.2 Paradata and Measurement Error 44
3.3 Types of Paradata 47
 3.3.1 Time Stamps 47
 3.3.2 Keystrokes 49
 3.3.3 Mouse Clicks 50
 3.3.4 Behavior Codes 51
 3.3.5 Vocal Characteristics 53
 3.3.6 Interviewer Evaluations 54
3.4 Differences in Paradata by Modes 56
 3.4.1 In-Person Surveys 56
 3.4.2 Telephone Surveys 57
 3.4.3 Web Surveys 60
4 ANALYZING PARADATA TO INVESTIGATE MEASUREMENT ERROR 73

Ting Yan and Kristen Olson

4.1 Introduction 73

4.2 Review of Empirical Literature on the Use of Paradata for Measurement Error Investigation 73

4.2.1 Using Paradata to Understand the Question–Answering Process 74

4.2.2 Using Paradata to Investigate Usability Issues in CAI Systems 75

4.2.3 Reduction of Measurement Error 75

4.2.4 Adjusting for Measurement Error 76

4.3 Analyzing Paradata 76

4.3.1 Units of Analysis 77

4.3.2 Data Management 78

4.3.3 Other Auxiliary Variables 82

4.3.4 Modeling Decisions 82

4.4 Four Empirical Examples 83

4.4.1 Draisma and Dijkstra (2004)—Item Level: Paradata as an Independent Variable 83

4.4.2 Malhotra (2008)—Survey Level: Paradata as an Independent Variable 86

4.4.3 Yan and Tourangeau (2008)—Item Level: Paradata as a Dependent Variable 87

4.4.4 Lenzner, Kaczmirek, and Lenzner (2010)—Survey Level: Paradata as a Dependent Variable 88

4.5 Cautions 89

4.6 Concluding Remarks 90

References 90
5 PARADATA FOR COVERAGE RESEARCH
Stephanie Eckman

5.1 Introduction 97
5.2 Housing Unit Frames 101
 5.2.1 Postal Delivery Databases 101
 5.2.2 Housing Unit Listing 104
 5.2.3 Random Route Sampling 106
 5.2.4 Missed Unit Procedures 108
5.3 Telephone Number Frames 109
5.4 Household Rosters 111
5.5 Population Registers 113
5.6 Subpopulation Frames 113
5.7 Web Surveys 114
5.8 Conclusion 115
 Acknowledgments 115
 References 116

PART II PARADATA IN SURVEY PRODUCTION

6 DESIGN AND MANAGEMENT STRATEGIES FOR PARADATA-DRIVEN RESPONSIVE DESIGN: ILLUSTRATIONS FROM THE 2006–2010 NATIONAL SURVEY OF FAMILY GROWTH
Nicole G. Kirgis and James M. Lepkowski

6.1 Introduction 123
6.2 From Repeated Cross-Section to Continuous Design 124
6.3 Paradata Design 129
6.4 Key Design Change 1: A New Employment Model 134
6.5 Key Design Change 2: Field Efficient Sample Design 135
6.6 Key Design Change 3: Replicate Sample Design 137
6.7 Key Design Change 4: Responsive Design Sampling of Nonrespondents in a Second Phase 139
6.8 Key Design Change 5: Active Responsive Design Interventions 140
6.9 Concluding Remarks 141
 References 143
7 USING PARADATA-DRIVEN MODELS TO IMPROVE CONTACT RATES IN TELEPHONE AND FACE-TO-FACE SURVEYS 145

James Wagner

7.1 Introduction 145
7.2 Background 146
7.3 The Survey Setting 148
7.4 Experiments: Data and Methods 149
 7.4.1 Call Windows 150
 7.4.2 The Data 151
 7.4.3 The Models 154
 7.4.4 Procedure: Telephone Survey 157
 7.4.5 Procedure: Face-to-Face Survey 160
7.5 Experiments: Results 161
 7.5.1 Telephone Survey 161
 7.5.2 Face-to-Face Survey 165
7.6 Discussion 166
References 169

8 USING PARADATA TO STUDY RESPONSE TO WITHIN-SURVEY REQUESTS 171

Joseph W. Sakshaug

8.1 Introduction 171
8.2 Consent to Link Survey and Administrative Records 175
 8.2.1 Modeling Linkage Consent Using Paradata: Example from the Health and Retirement Study 176
 8.2.2 Using Paradata for Intervention 178
8.3 Consent to Collect Biomeasures in Population-Based Surveys 178
 8.3.1 Modeling Biomeasure Consent Using Paradata: Example from the Health and Retirement Study 179
 8.3.2 Using Paradata for Intervention 180
8.4 Switching Data Collection Modes 180
 8.4.1 Predicting Mode Switch Response Using Paradata: Example from a Survey of University Alumni 181
 8.4.2 Using Paradata for Intervention 182
8.5 Income Item Nonresponse and Quality of Income Reports 183
 8.5.1 Studying Income Item Nonresponse and Quality of Income Reports Using Paradata: Examples from the Health and Retirement Study 184
 8.5.2 Using Paradata for Intervention 186
9 **MANAGING DATA QUALITY INDICATORS WITH PARADATA BASED STATISTICAL QUALITY CONTROL TOOLS: THE KEYS TO SURVEY PERFORMANCE** 191
Matt Jans, Robyn Sirkis, and David Morgan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>191</td>
</tr>
<tr>
<td>9.2 Defining and Choosing Key Performance Indicators (KPIs)</td>
<td>193</td>
</tr>
<tr>
<td>9.3 KPI Displays and the Enduring Insight of Walter Shewhart</td>
<td>200</td>
</tr>
<tr>
<td>9.3.1 Understanding a Process: Impediments to Clear Quality Control Steps</td>
<td>205</td>
</tr>
<tr>
<td>9.3.2 Rules for Finding Special Cause Variation in a Control Chart</td>
<td>207</td>
</tr>
<tr>
<td>9.4 Implementation Steps for Survey Analytic Quality Control with Paradata Control Charts</td>
<td>210</td>
</tr>
<tr>
<td>9.5 Demonstrating a Method for Improving Measurement Process Quality Indicators</td>
<td>213</td>
</tr>
<tr>
<td>9.6 Reflections on SPC, Visual Data Displays, and Challenges to Quality Control and Assurance with Survey Analytics</td>
<td>220</td>
</tr>
<tr>
<td>9.7 Some Advice on Using Charts</td>
<td>221</td>
</tr>
<tr>
<td>Appendix</td>
<td>224</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>226</td>
</tr>
<tr>
<td>References</td>
<td>226</td>
</tr>
</tbody>
</table>

10 **PARADATA AS INPUT TO MONITORING REPRESENTATIVENESS AND MEASUREMENT PROFILES: A CASE STUDY OF THE DUTCH LABOUR FORCE SURVEY** 231
Barry Schouten and Melania Calinescu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>231</td>
</tr>
<tr>
<td>10.2 Measurement Profiles</td>
<td>233</td>
</tr>
<tr>
<td>10.2.1 What are Measurement Profiles?</td>
<td>233</td>
</tr>
<tr>
<td>10.2.2 Measurement Profiles in the Labour Force Survey</td>
<td>234</td>
</tr>
<tr>
<td>10.3 Tools for Monitoring Nonresponse and Measurement Profiles</td>
<td>236</td>
</tr>
<tr>
<td>10.4 Monitoring and Improving Response: A Demonstration Using the LFS</td>
<td>242</td>
</tr>
<tr>
<td>10.4.1 The Choice of Design Features in Monitoring Nonresponse and Measurement Profiles</td>
<td>242</td>
</tr>
<tr>
<td>10.4.2 The Choice of Population Subgroups in Monitoring</td>
<td>243</td>
</tr>
</tbody>
</table>
10.4.3 Partial R-indicators for the Sequential and Cumulative Analysis 245
10.4.4 Adaptive Survey Designs 250
10.5 Including Paradata Observations on Households and Persons 253
10.6 General Discussion 255
10.7 Take Home Messages 256
Acknowledgments 257
References 257

PART III SPECIAL CHALLENGES

11 PARADATA IN WEB SURVEYS 261
Mario Callegaro

11.1 Survey Data Types 261
11.2 Collection of Paradata 262
11.3 Typology of Paradata in Web Surveys 262
11.3.1 Uses of Paradata: Device Type 264
11.3.2 Uses of Paradata: Questionnaire Navigation 267
11.4 Using Paradata to Change the Survey in Real Time: Adaptive Scripting 271
11.5 Paradata in Online Panels 272
11.6 Software to Collect Paradata 272
11.7 Analysis of Paradata: Levels of Aggregation 273
11.8 Privacy and Ethical Issues in Collecting Web Survey Paradata 274
11.9 Summary and Conclusions on Paradata in Web Surveys 275
References 276

12 MODELING CALL RECORD DATA: EXAMPLES FROM CROSS-SECTIONAL AND LONGITUDINAL SURVEYS 281
Gabriele B. Durrant, Julia D’Arrigo, and Gerrit Müller

12.1 Introduction 281
12.2 Call Record Data 283
12.3 Modeling Approaches 285
12.3.1 Analysis Approaches and the Use of Multilevel Modeling 285
12.3.2 Specifications of Multilevel Discrete-Time Event History Models for the Analysis of Call Record Data 287
12.3.3 Modeling Strategy and Estimation of Models 292
12.4 Illustration of Call Record Data Analysis Using Two Example Datasets
 12.4.1 Analyzing Call Outcomes in the PASS Longitudinal Survey 293
 12.4.2 Analyzing Call Outcomes in the UK Census Nonresponse Link Study 296
12.5 Summary 304
Acknowledgments 304
References 304

13 BAYESIAN PENALIZED SPLINE MODELS FOR STATISTICAL PROCESS MONITORING OF SURVEY PARADATA QUALITY INDICATORS 309
Joseph L. Schafer

13.1 Introduction 309
 13.1.1 Processes Under Control and Out of Control 309
 13.1.2 Motivating Example 311
 13.1.3 Looking Ahead 313
13.2 Overview of Splines 313
 13.2.1 Definition 313
 13.2.2 Basis Functions 315
 13.2.3 Parameters of Interest 316
 13.2.4 Branching Splines 318
 13.2.5 Knot Density and Roughness 319
13.3 Penalized Splines as Linear Mixed Models 321
 13.3.1 Model Formulation 321
 13.3.2 Estimating Parameters 322
 13.3.3 Estimating the Function 323
 13.3.4 Difficulties with Likelihood Inference 324
13.4 Bayesian Methods 325
 13.4.1 Bayesian Inference for the Smoothing Parameter 325
 13.4.2 Bayesian Intervals and Predictions 326
13.5 Extensions 329
Appendix 330
 A.1 Maximum-Likelihood Estimation 330
 A.2 Posterior Simulation 333
 A.3 Bayesian Inference About the Mean Function 335
 A.4 Disclaimer 337
References 337
14 THE QUALITY OF PARADATA: A LITERATURE REVIEW

Brady T. West and Jennifer Sinibaldi

14.1 Introduction 339
14.2 Existing Studies Examining the Quality of Paradata 340
14.2.1 Computer-Generated Process Data 340
14.2.2 Interviewer-Recorded Call Record Data 343
14.2.3 Interviewer Observations 349
14.3 Possible Mechanisms Leading to Error in Paradata 352
14.3.1 Computer-Generated Process Data 352
14.3.2 Interviewer Observations 353
14.4 Take Home Messages 356
References 356

15 THE EFFECTS OF ERRORS IN PARADATA ON WEIGHTING CLASS ADJUSTMENTS: A SIMULATION STUDY

Brady T. West

15.1 Introduction 361
15.2 Design of Simulation Studies 364
15.2.1 Simulation Parameters 364
15.2.2 Alternative Estimators 368
15.3 Simulation Results 370
15.3.1 Scenario 1: D has a Positive Relationship with Y and a Negative Relationship with R, FNRs are Greater Than FPRs for Both Respondents and Nonrespondents, FNRs are Equal for Respondents and Nonrespondents, and FPRs are Equal for Respondents and Nonrespondents 370
15.3.2 Scenario 2: D has a Positive Relationship with Both Y and R, FNRs are Greater Than FPRs for Both Respondents and Nonrespondents, FNRs are Equal for Respondents and Nonrespondents, and FPRs are Equal for Respondents and Nonrespondents 373
15.3.3 Scenario 3: D has a Positive Relationship with Y and a Negative Relationship with R, FNRs are Greater Than FPRs for Both Respondents and Nonrespondents, FNRs for Nonrespondents are Greater Than Those for Respondents, and FPRs for Nonrespondents are Greater Than Those for Respondents 376
15.3.4 Scenario 4: D has a Positive Relationship with Both Y and R, FNRs are Greater Than FPRs for Both Respondents and Nonrespondents, FNRs for Nonrespondents are Greater Than Those for Respondents, and FPRs for Nonrespondents are Greater Than Those for Respondents 378

15.3.5 Additional Scenarios 379

15.4 Take Home Messages 383

15.5 Future Research 385

References 387

INDEX 389
Newspapers and blogs are now filled with discussions about “big data,” massive amounts of largely unstructured data generated by behavior that is electronically recorded. “Big data” was the central theme at the 2012 meeting of the World Economic Forum and the U.S. Government issued a Big Data Research and Development Initiative the same year. The American Statistical Association has also made the topic a theme for the 2012 and 2013 Joint Statistical Meetings.

Paradata are a key feature of the “big data” revolution for survey researchers and survey methodologists. The survey world is peppered with process data, such as electronic records of contact attempts and automatically captured mouse movements that respondents produce when answering web surveys. While not all of these data sets are massive in the usual sense of “big data,” they are often highly unstructured, and it is not always clear to those collecting the data which pieces are relevant, and how they should be analyzed. In many instances it is not even obvious which data are generated.

Recently Axel Yorder, the CEO of the company Webtrends, pointed out that just as “Gold requires mining and processing before it finds its way into our jewelry, electronics, and even the Fort Knox vault […] data requires collection, mining and, finally, analysis before we can realize its true value for businesses, governments, and individuals alike.”¹ The same can be said for paradata. Paradata are data generated in the process of conducting a survey. As such, they have the potential to shed light on the survey process itself, and with proper “mining” they can point to errors and breakdowns in the process of data collection. If captured and analyzed immediately paradata can assist

with efficiency during data collection field period. After data collection ends, para-
data that capture measurement errors can be modeled alongside the substantive data
to increase the precision of resulting estimates. Paradata collected for respondents
and nonrespondents alike can be useful for nonresponse adjustment. As discussed in
several chapters in this volume, paradata can lead to efficiency gains and cost savings
in survey data production. This has been demonstrated in the U.S. National Survey of
Family Growth conducted by the University of Michigan and the National Center for
Health Statistics.

However, just as for big data in general, many questions remain about how to
turn paradata into gold. Different survey modes allow for the collection of different
types of paradata, and depending on the production environment, paradata may be
instantaneously available. Fast-changing data collection technology will likely open
doors to real-time capture and analysis of even more paradata in ways we cannot
currently imagine. Nevertheless some general principles regarding the logic, design,
and use of paradata will not change, and this book discusses these principles. Much
work in this area is done within survey research agencies and often does not find its
way into print, thus this book also serves as a vehicle to share current developments
in paradata research and use.

This book came to life during a conference sponsored by the Institute for Employ-
ment Research in Germany, November of 2011 when most of the chapter authors
participated in a discussion about it. The goal was to write a book that goes into more
detail than published papers on the topic. Because this research area is relatively new
we saw the need to collect information that is otherwise not easily accessible and to
give practitioners a good starting point for their own work with paradata. The team
of authors decided to use a common framework and standardized notation as much
as possible. We tried to minimize overlap across the chapters without hampering the
possibility for each chapter to be read on its own. We hope the result will satisfy the
needs of researchers starting to use paradata as well as those who are already experi-
cenced. We also hope it will inspire readers to expand the use of paradata to improve
survey data quality and survey processes. As we strive to update our knowledge on
behalf of all authors, I ask you to tell us about your successes and failures in dealing
with paradata.

We dedicate this volume to Mick Couper and Robert Groves. Mick Couper coined
the term “paradata” in a presentation at the 1998 Joint Statistical Meeting in Dallas
where he discussed the potential of paradata to reduce measurement error. For his
vision regarding paradata he was awarded the American Association for Public
Opinion Research’s Warren J. Mitofsky Innovators Award in 2008. As the director
of the University of Michigan Survey Research Center and later as Director of the
U.S. Census Bureau, Robert Groves implemented new ideas on the use of paradata
to address nonresponse, showing the breadth of applications paradata have to survey
errors and operational challenges. After a research seminar in the Joint Program in
Survey Methodology on this topic, I remember him saying: “You should write a book
on paradata!” Both Mick and Bob have been fantastic teachers and mentors for most
of the chapter authors and outstanding colleagues to all. Their perspectives on Survey
Methodology and the Total Survey Error Framework are guiding principles visible in each of the chapters.

I personally also want to thank Rainer Schnell for exposing me to paradata before they were named as such. As part of the German DEFECT project that he led, we walked through numerous villages and cities in Germany to collect addresses. In this process we took pictures of street segments and recorded, on the first generation of handheld devices, observations and judgments about the selected housing units. Elizabeth Coutts, my dear friend and colleague in this project, died on August 5, 2009, but her ingenious contributions to the process of collecting these paradata will never be forgotten.

We are very grateful to Paul Biemer, Lars Lyberg and Fritz Scheuren for actively pushing the paradata research agenda forward and for making important contributions by putting paradata into the context of statistical process control and the larger metadata initiatives. This book benefitted from discussions at the International Workshop on Household Survey Nonresponse and the International Total Survey Error Workshop and we are in debt to all of the researchers who shared their work and ideas at these venues over the years. In particular, we thank Nancy Bates, James Dahlhamer, Mirta Galesic, Barbara O’Hare, Rachel Horwitz, François Laflamme, Lars Lyberg, Andrew Mercer Peter Miller and Stanley Presser for comments on parts of this book. Our thanks also goes to Ulrich Kohler for creating the cover page graph.

The material presented here provided the basis for several short courses taught during the Joint Statistical Meeting of the American Statistical Association, continuing education efforts of the U.S. Census Bureau, the Royal Statistical Society, and the European Social Survey. The feedback I received from course participants helped to improve this book, but remaining errors are entirely ours.

On the practical side, this book would not have found its way into print without our LaTeX wizard Alexandra Birg, the constant pushing of everybody involved at Wiley, and the support from the Joint Program in Survey Methodology in Maryland, the Institute for Employment Research in Nuremberg, and the Department of Statistics at the Ludwig Maximilian University in Munich. We thank you all.

Frauke Kreuter

Washington D.C.
September, 2012
CONTRIBUTORS

MELANIA CALINESCU, VU University Amsterdam, NL

MARIO CALLEGARO, Google London, UK

JULIA D’ARRIGO, Southampton Statistical Sciences Research Institute (S3RI), University of Southampton, Southampton, UK

GABRIELE B. DURRANT, Southampton Statistical Sciences Research Institute (S3RI), University of Southampton, Southampton, UK

STEPHANIE ECKMAN, Institute for Employment Research (IAB), Nuremberg, Germany

MATT JANS, University of California Los Angeles, Los Angeles, California, USA

NICOLE G. KIRGIS, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA

FRAUKE KREUTER, Institute for Employment Research (IAB), Nuremberg, Germany; University of Maryland, College Park, Maryland, USA; Ludwig Maximilian University, Munich, Germany

JAMES M. LEPKOWSKI, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA

DAVID MORGAN, U.S. Census Bureau, Washington, DC, USA

GERRIT MÜLLER, Institute for Employment Research (IAB), Nuremberg, Germany

KRISTEN OLSON, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
BRYAN PARKHURST, University of Nebraska-Lincoln, Lincoln, Nebraska, USA

JOSEPH W. SAKSHAUG, Institute for Employment Research (IAB), Nuremberg, Germany

JOSEPH L. SCHAFER, Center for Statistical Research and Methodology, U.S. Census Bureau, Washington, DC, USA

BARRY SCHOUTEN, Statistics Netherlands, Den Haag and University of Utrecht, NL

JENNIFER SINIBALDI, Institute for Employment Research (IAB), Nuremberg, Germany

ROBYN SIRKIS, U.S. Census Bureau, Washington DC, USA

JAMES WAGNER, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan

BRADY T. WEST, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA

TING YAN, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPOR</td>
<td>American Association for Public Opinion Research</td>
</tr>
<tr>
<td>ACASI</td>
<td>Audio Computer-Assisted Self-Interview</td>
</tr>
<tr>
<td>ACS</td>
<td>The American Community Survey</td>
</tr>
<tr>
<td>AHEAD</td>
<td>Assets and Health Dynamics Among the Oldest Old</td>
</tr>
<tr>
<td>ANES</td>
<td>American National Election Studies</td>
</tr>
<tr>
<td>BCS</td>
<td>British Crime Survey</td>
</tr>
<tr>
<td>CAI</td>
<td>Computer-Assisted Interviewing</td>
</tr>
<tr>
<td>CAPI</td>
<td>Computer-Assisted Personal Interviews</td>
</tr>
<tr>
<td>CARI</td>
<td>Computer-Assisted Recording of Interviews</td>
</tr>
<tr>
<td>CASRO</td>
<td>Council of American Survey Research Organizations</td>
</tr>
<tr>
<td>CATI</td>
<td>Computer-Assisted Telephone Interviews</td>
</tr>
<tr>
<td>CE</td>
<td>Consumer Expenditure Interview Survey</td>
</tr>
<tr>
<td>CHI</td>
<td>Contact History Instrument</td>
</tr>
<tr>
<td>CHUM</td>
<td>Check for Housing Unit Missed</td>
</tr>
<tr>
<td>CPS</td>
<td>Current Population Survey</td>
</tr>
<tr>
<td>CSP</td>
<td>Client-side Paradata</td>
</tr>
<tr>
<td>ESOMAR</td>
<td>European Society for Opinion and Market Research</td>
</tr>
<tr>
<td>ESS</td>
<td>European Social Survey</td>
</tr>
<tr>
<td>FRS</td>
<td>Family Resources Survey</td>
</tr>
<tr>
<td>GSS</td>
<td>General Social Survey</td>
</tr>
<tr>
<td>HINTS</td>
<td>Health Information National Trends Study</td>
</tr>
<tr>
<td>HRS</td>
<td>Health and Retirement Study</td>
</tr>
<tr>
<td>IAB</td>
<td>Institute for Employment Research</td>
</tr>
<tr>
<td>IVR</td>
<td>Interactive Voice Response System</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicators</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>LAFANS</td>
<td>Los Angeles Family and Neighborhood Study</td>
</tr>
<tr>
<td>LCL</td>
<td>Lower Control Limits</td>
</tr>
<tr>
<td>LFS</td>
<td>Labour Force Survey</td>
</tr>
<tr>
<td>LISS</td>
<td>Dutch Longitudinal Internet Studies for the Social Sciences</td>
</tr>
<tr>
<td>LMU</td>
<td>Ludwig Maximilian University Munich</td>
</tr>
<tr>
<td>NCHS</td>
<td>National Center for Health Statistics</td>
</tr>
<tr>
<td>NHANES</td>
<td>National Health and Nutrition Examination Survey</td>
</tr>
<tr>
<td>NHEFS</td>
<td>The NHANES Epidemiologic Follow-up Study</td>
</tr>
<tr>
<td>NHIS</td>
<td>National Health Interview Survey</td>
</tr>
<tr>
<td>NSDUH</td>
<td>National Survey of Drug Use and Health</td>
</tr>
<tr>
<td>NSFG</td>
<td>National Survey of Family Growth</td>
</tr>
<tr>
<td>NSHAP</td>
<td>National Social Life, Health, and Aging Project</td>
</tr>
<tr>
<td>NSR</td>
<td>Non-self Representing</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>PASS</td>
<td>Panel Study of Labour Market and Social Security</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PSU</td>
<td>Primary Sampling Units</td>
</tr>
<tr>
<td>RDD</td>
<td>Random Digit Dial</td>
</tr>
<tr>
<td>RECS</td>
<td>Residential Energy Consumption Survey</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Squared Error</td>
</tr>
<tr>
<td>RO</td>
<td>Regional Office</td>
</tr>
<tr>
<td>SCA</td>
<td>Survey of Consumer Attitudes</td>
</tr>
<tr>
<td>SCF</td>
<td>Survey of Consumer Finances</td>
</tr>
<tr>
<td>SHS</td>
<td>Survey of Household Spending</td>
</tr>
<tr>
<td>SPC</td>
<td>Statistical Process Control</td>
</tr>
<tr>
<td>SQC</td>
<td>Statistical Quality Control</td>
</tr>
<tr>
<td>SR</td>
<td>Self-Representing Areas</td>
</tr>
<tr>
<td>UCL</td>
<td>Upper Control Limits</td>
</tr>
<tr>
<td>UCSP</td>
<td>Universal Client Side Paradata</td>
</tr>
</tbody>
</table>
CHAPTER 1

IMPROVING SURVEYS WITH PARADATA: INTRODUCTION

FRAUKE KREUTER
University of Maryland and IAB/LMU

1.1 INTRODUCTION

Good quality survey data are hard to come by. Errors in creating proper representation of the population and errors in measurement can threaten the final survey estimates. Survey methodologists work to improve survey questions, data entry interfaces, frame coverage, sampling procedures, respondent recruitment, data collection, data editing, weighting adjustment procedures, and many other elements in the survey data production process to reduce or prevent errors. To study errors associated with different steps in the survey production process, researchers have used experiments, benchmark data, or simulation techniques as well as more qualitative methods, such as cognitive interviewing or focus groups. The analytic use of paradata now offers an additional tool in the survey researcher’s tool box to study survey errors and survey costs. The production of survey data is a process that involves many actors, who often must make real time decisions informed by observations from the ongoing data collection process. What observations are used for decision making and how those decisions are made are currently often outside the researchers’ direct control. A few examples: Address listers walk or drive around neighborhoods, making decisions about the inclusion or exclusion of certain housing units based on their perceptions of the housing and neighborhood characteristics. Field managers use personal experience and subjective judgment to instruct interviewers to intensify or reduce their efforts on specific cases. Interviewers approach households and conduct interviews in idiosyncratic ways; doing so they might use observations about the sampled households to tailor their approaches. Respondents answer survey questions in settings unknown to the researcher but which affect their responses; they might be interrupted when answering a web survey, or other family members might join the conversation the respondent is having with the interviewer. Wouldn’t we like to have a bird’s eye
view to know what was going on in each of these situations? What information does a particularly successful field manager use when assigning cases? Which strategy do particularly successful interviewers use when recruiting respondents? What struggles does a respondent have when answering a survey question? With this knowledge we could tweak the data collection process or analyze the data differently. Of course, we could ask each and every one of these actors involved, but aside from the costs of doing so, much of what is going on is not necessarily a conscious process, and might not be stored in a way that it can be easily recalled (Tourangeau et al., 2000).

At the turn of the twenty-first century much of this process information became available, generated as a by-product of computer-assisted data collection. Mick Couper referred to these data as “paradata” in a presentation at the Joint Statistical Meeting in Dallas (Couper, 1998). Respondents in web surveys leave electronic traces as they answer survey questions, captured through their keystrokes and mouse clicks. In telephone surveys, automated call scheduling systems record the date and time of every call. In face-to-face surveys, interviewers’ keystrokes are easily captured alongside the interview and so are audio or even video recordings of the respondent–interviewer interactions. Each of these is an example of paradata available through the computerized survey software.

Some survey organizations have collected such information about the data collection process long before the rise of computer-assisted interviewing and the invention of the word paradata. However, a rapid growth in the collection and use of paradata can be seen in recent years (Scheuren, 2005). It is facilitated first, by the increase in computer-aided data collection around the world, second, by the increasing ease with which paradata are accessed, and third, by an increasing interest among survey sponsors in process quality and the quantification of process errors. Thus, while process quality and paradata are not new, a more structured approach in choosing, measuring, and analyzing key process variables is indeed a recent development (Couper and Lyberg, 2005). This book takes this structured approach and provides a summary of what we know to date about how paradata should be collected and used to improve survey quality, in addition to introducing new research results.

The chapters in the first part of this book review the current use of paradata and make general suggestions about paradata design principles. The second section includes several case studies for the use of paradata in survey production, either concurrently or through post hoc evaluations of production features. Chapters in the last section discuss challenges involved in the collection and use of paradata, including the collection of paradata in web surveys.

Before reading the individual book chapters, it is helpful to discuss some common definitions and to gain an overview of the framework that shaped the structure of this book and the write-up of the individual chapters.

1.2 PARADATA AND METADATA

There is no standard definition in the literature of what constitutes paradata. Papers discussing paradata vary in terminology from one to another (Scheuren, 2000; Couper
and Lyberg, 2005; Scheuren, 2005; O’Reilly, 2009), but for the purpose of the book we define paradata as additional data that can be captured during the process of producing a survey statistic. Those data can be captured at all stages of the survey process and with very different granularities. For example, response times can be captured for sets of questions, one question and answer sequence, or just for the answer process itself.

There is some debate in the literature over how paradata differ from metadata. Metadata are often described as data about data, which seems to greatly overlap with our working definition of paradata. Let us step back for a moment and consider an analogy to digital photography which may make the paradata–metadata distinction clearer. Digital information such as the time and day a picture was taken is often automatically added by cameras to the file. Similarly, the lens and exposure time and other settings that were used can be added to the file by the photographer. In the IT setting, this information is called metadata or data about data.

Paradata are instead data about the process of generating the final product, the photograph or the survey dataset. In the photography example, the analogy to paradata would be data that capture which lenses were tried before the final picture was taken, information about different angles the photographer tried before producing the final shot, and the words she called out before she was able to make the subject smile.

In the digital world, metadata have been a common concept for quite a while. In the social sciences, the interest in metadata is newer but heavily promoted through efforts like the Data Documentation Initiative or DDI (http://www.ddialliance.org/), which is a collaboration between European and U.S. researchers to develop standards for social science data documentation. Metadata are the core of this documentation and can be seen as macro-level information about survey data; examples are information about the sampling frame, sampling methods, variable labels, value labels, percentage of missing data for a particular variable, or the question text in all languages used for the survey. Metadata allow users to understand the structure of a dataset and can inform analysis decisions.

Paradata capture information about the data collection process on a more micro-level. Some of this information forms metadata if aggregated, for example, the response rate for a survey (a piece of metadata) is an aggregated value across the case-level final result codes. Or, using the examples given above, time measurements could be aggregated up to become metadata. Paradata that capture the minutes needed to interview each respondent or even the seconds it took to administer a single question within the survey would become the metadata information on the average time it took to administer the survey.

1.3 AUXILIARY DATA AND PARADATA

Paradata are not the only source of additional data used in survey research to enrich final datasets and estimates. Researchers also use what they call ‘auxiliary data’, but the definition of this term has not quite been settled upon. The keyword auxiliary data has been used to encompass all data outside of the actual survey data itself, which
would make all paradata also auxiliary data. Also contained under auxiliary data are variables from the sampling frame and data that can be linked from other sources. The other sources are often from the Census or American Community Survey, or other government agencies and private data collectors. They are typically available on a higher aggregate level than the individual sampling unit, for example, city blocks or block groups or tracts used for Census reports or voting registries. Unlike paradata, they tend to be fixed for a given sampling unit and available outside of the actual data collection process. A typical example would be the proportion of minority households in a given neighborhood or block according to the last Census.

Paradata, as we define them here, are not available prior to data collection but generated within, and they can change over the course of the data collection. A good example is interviewer experience within the survey. If the sequence of contact attempts is analyzed and interviewer experience is added to the model, it would form a time varying covariate, for the experience changes with every case the interviewer worked on. Data on interviewer demographic characteristics are not always easily classified as either paradata or auxiliary variables. Technically, those data collected outside the survey are auxiliary data that can be merged to the survey data. However, if we think of the process of recruiting respondents, there might be changes throughout the survey in which cases are re-assigned to different interviewers, so the characteristics associated with the case (which include interviewer characteristics) might change because the interviewer changes.

A large set of different auxiliary data sources available for survey researchers was discussed at the 2011 International Nonresponse Workshop (Smith, 2011), where paradata were seen as one of many sources of auxiliary data. In the context of this book, we focus on paradata, because compared to other auxiliary data sources, their collection and use is more likely under the control of survey practitioners.

1.4 PARADATA IN THE TOTAL SURVEY ERROR FRAMEWORK

Paradata can help researchers understand and improve survey data. When we think about the quality of survey data, or more specifically a resulting survey statistic, the Total Survey Error Framework is a helpful tool. Groves et al. (2004) visualized the data collection process in two strands, one reflecting steps necessary for representation, the other steps necessary for measurement (see Figure 1.1). Each of the steps carries the risk of errors. When creating a sampling frame, there is a chance to miss some members of the population or to include those that do not belong, both of which can lead to coverage error. Sampling errors refer to the imprecision resulting from surveying only a sample instead of the population, usually reflected in standard error estimates. If selected cases refuse to participate in the survey, methodologists talk about nonresponse error, and any failure to adjust properly for such selection processes will result in adjustment error. On the measurement side, if questions fail to reflect the underlying concepts of interest, they suffer from low validity. Even when questions perfectly measure what is of interest to the researcher, failures can occur in the response process, leading to measurement error. Survey production often includes
FIGURE 1.1 Survey process and process data collected to inform each of the total survey error components (graph modified from Groves et al. (2004), and expanded from Kreuter and Casas-Cordero (2010)). Solid lines mark paradata collected at a particular step; dashed lines (leaving the ovals) indicate that paradata are used to evaluate errors at the particular step, even though they are not collected during this step.

A phase of editing involving important consistency checks, and things can go wrong at this step too. Paradata can inform researchers about such errors that can happen along the way. In some instances, they can point to problems that can be solved during data collection; in other instances, paradata capture the information needed to model the errors alongside the actual survey data. Figure 1.1 depicts, within the survey data production process and the associated survey errors, some examples of paradata that are either collected at the respective steps (marked with a solid arrow) or used to evaluate a given error source (marked with a dashed arrow).

The chapters in the first section of this book are designed to introduce paradata within the Total Survey Error Framework. So far, paradata related to nonresponse are featured most prominently in the survey literature. The findings in these areas are discussed in detail by Frauke Kreuter, Kristen Olson, Bryan Packhurst, and Ting Yan. Paradata which inform us about coverage error are of increasing interest in a world with multiple frame creation methods, and are discussed by Stephanie Eckman. Unfortunately, the literature on paradata to inform data processing and related errors is very sparse so far. Thus, there is no chapter addressing this error source, though the general logic of designing and capturing paradata for the other error sources applies
here too. Sampling errors and adjustment errors have been widely discussed in the literature, but as with coverage error, much less is done in terms of evaluating the process of sampling or adjustment through paradata. The same holds for the issue of validity, though one could imagine process information about questionnaire creation.

1.5 PARADATA IN SURVEY PRODUCTION

Paradata are not just used to evaluate survey errors after data collection is done. In some instances, paradata are available during data collection and can be used to monitor and inform the collection process in (almost) real time. Survey methodologists have started to explore using paradata to guide data collection procedures, a process called responsive or adaptive design. The chapter by Nicole Kirgis and James Lepkowski shares experiences using such an approach in the National Survey of Family Growth. Similar in spirit is the use of paradata to predict responses to within-survey requests, suggested by Joseph Sakshaug in Chapter 8. James Wagner reports paradata-driven experiments he carried out to try to increase response rates in both telephone and face-to-face surveys.

In order to monitor incoming data and to make useful design decisions, the field needs tools that display and summarize the large amount of incoming information. Some survey organizations, including the U.S. Census Bureau, have applied theories and methods from the quality control literature to their survey processes. These efforts are summarized in Chapter 9 by Matt Jans, Roby Sirkis, and David Morgan. Statistics Netherlands is now heavily engaged in using metrics to monitor representativeness in respondent composition as Barry Schouten and Melania Calinescu explain in Chapter 10.

1.6 SPECIAL CHALLENGES IN THE COLLECTION AND USE OF PARADATA

Despite the promise and hope of paradata, this new data source does present several challenges with which researchers are grappling. A few are mentioned here and are discussed in detail in the respective chapters. Others can only be touched on in this book, but are equally important.

1.6.1 Mode-Specific Paradata

The type of paradata that can be collected in a given survey or that is already available for a particular survey varies with the survey mode. Most examples discussed throughout this edited volume come from face-to-face surveys, and some from telephone surveys. Most self-administered surveys involve no interviewers and thus are stripped of one important vehicle for paradata collection. This is, however, not to say that self-administered surveys cannot be paradata rich. Web surveys, for example, are rich in paradata for measurement error evaluation, as Chapter 11 by Mario