LITHIUM BATTERIES
A complete list of the titles in this series appears at the end of this volume.
CONTENTS

CONTRIBUTORS vii

PREFACE ix

CHAPTER 1 ELECTROCHEMICAL CELLS: BASICS 1
Hubert Gasteiger, Katharina Krischer, and Bruno Scrosati

CHAPTER 2 LITHIUM BATTERIES: FROM EARLY STAGES TO THE FUTURE 21
Bruno Scrosati

CHAPTER 3 ADDITIVES IN ORGANIC ELECTROLYTES FOR LITHIUM BATTERIES 39
Susanne Wilken, Patrik Johansson, and Per Jacobsson

CHAPTER 4 ELECTROLYTES FOR LITHIUM-ION BATTERIES WITH HIGH-VOLTAGE CATHODES 71
Mengqing Xu, Swapnil Dalavi, and Brett L. Lucht

CHAPTER 5 CORE–SHELL STRUCTURE CATHODE MATERIALS FOR RECHARGEABLE LITHIUM BATTERIES 89
Seung-Taek Myung, Amine Khalil, and Yang-Kook Sun

CHAPTER 6 PROBLEMS AND EXPECTANCY IN LITHIUM BATTERY TECHNOLOGIES 107
K. Kanamura

CHAPTER 7 FLUORINE-BASED POLYANIONIC COMPOUNDS FOR HIGH-VOLTAGE ELECTRODE MATERIALS 127
P. Barpanda and J.-M. Tarascon

CHAPTER 8 LITHIUM–AIR AND OTHER BATTERIES BEYOND LITHIUM-ION BATTERIES 161
K. M. Abraham

CHAPTER 9 AQUEOUS LITHIUM–AIR SYSTEMS 191
Owen Crowther and Mark Salomon
CHAPTER 10 POLYMER ELECTROLYTES FOR LITHIUM–AIR BATTERIES 217
Nobuyuki Imanishi and Osamu Yamamoto

CHAPTER 11 KINETICS OF THE OXYGEN ELECTRODE IN LITHIUM–AIR CELLS 233
Michele Piana, Nikolaos Tsiouvaras, and Juan Herranz

CHAPTER 12 LITHIUM-ION BATTERIES AND SUPERCAPACITORS FOR USE IN HYBRID ELECTRIC VEHICLES 265
Catia Arbizzani, Libero Damen, Mariachiara Lazzari, Francesca Soavi, and Marina Mastragostino

CHAPTER 13 Li4Ti5O12 FOR HIGH-POWER, LONG-LIFE, AND SAFE LITHIUM-ION BATTERIES 277
Zonghai Chen, I. Belharouak, Yang-Kook Sun, and Khalil Amine

CHAPTER 14 SAFE LITHIUM RECHARGEABLE BATTERIES BASED ON IONIC LIQUIDS 291
A. Guerfi, A. Vijh, and K. Zaghib

CHAPTER 15 ELECTROLYTIC SOLUTIONS FOR RECHARGEABLE MAGNESIUM BATTERIES 327
Y. Gofer, N. Pour, and D. Aurbach

CHAPTER 16 RECHARGEABLE SODIUM AND SODIUM-ION BATTERIES 349
K. M. Abraham

INDEX 369
CONTRIBUTORS

K. M. Abraham, Northeastern University Center of Renewable Energy Technology, Boston, Massachusetts

Khalil Amine, Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois

Catia Arbizzani, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, University of Bologna, Bologna, Italy

D. Aurbach, Bar-Ilan University, Ramat-Gan, Israel

P. Barpanda, Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan

I. Belharouak, Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois

Zonghai Chen, Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois

Owen Crowther, MaxPower, Inc., Harleysville, Pennsylvania

Swapnil Dalavi, Department of Chemistry, University of Rhode Island, Kingston, Rhode Island

Libero Damen, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, University of Bologna, Bologna, Italy

Hubert Gasteiger, Chemistry Department, Technische Universität München, Munich, Germany

Y. Gofer, Bar Ilan University, Ramat-Gan, Israel

A. Guerfi, Institut de Recherche d’Hydro-Québec, Varennes, Québec, Canada

Juan Herranz, Chemistry Department, Technische Universität München, Munich, Germany

Nobuyuki Imanishi, Mie University, Tsu, Japan

Per Jacobsson, Department of Applied Physics, Chalmers University of Technology, Goteborg, Sweden

Patrik Johansson, Department of Applied Physics, Chalmers University of Technology, Goteborg, Sweden
K. Kanamura, Tokyo Metropolitan University, Tokyo, Japan

Amine Khalil, Electrochemical Technology Program, Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois

Katharina Krischer, Physics Department, Technische Universität München, Munich, Germany

Mariachiara Lazzari, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, University of Bologna, Bologna, Italy

Brett L. Lucht, Department of Chemistry, University of Rhode Island, Kingston, Rhode Island

Marianna Mastragostino, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, University of Bologna, Bologna, Italy

Seung-Taek Myung, Department of Nano Engineering, Sejong University, Seoul, South Korea

Michele Piana, Chemistry Department, Technische Universität München, Munich, Germany

N. Pour, Bar-Ilan University, Ramat-Gan, Israel

Mark Salomon, MaxPower, Inc., Harleysville, Pennsylvania

Bruno Scrosati, Department of Chemistry, University of Rome, Sapienza, Italy

Francesca Soavi, Dipartimento di Scienza dei Metalli, Elettrochimica e Tecniche Chimiche, University of Bologna, Bologna, Italy

Yang-Kook Sun, Department of WCU Energy Engineering and Department of Chemical Engineering, Sejong University, Seoul, South Korea

J.-M. Tarascon, Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, Amiens, France

Nikolaos Tsiouvaras, Chemistry Department, Technische Universität München, Munich, Germany

A. Vijh, Institut de Recherche d’Hydro-Québec, Varennes, Québec, Canada

Susanne Wilken, Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden

Mengqing Xu, Department of Chemistry, University of Rhode Island, Kingston, Rhode Island

Osamu Yamamoto, Mie University, Tsu, Japan

K. Zaghib, Institut de Recherche d’Hydro-Québec, Varennes, Québec, Canada
Lithium-ion batteries are indispensable for everyday life as power sources for laptop and tablet computers, cellular telephones, e-book readers, digital cameras, power tools, electric vehicles, and numerous other portable devices. The exponential evolution of these batteries from being a laboratory curiosity only three decades ago to multibillion-dollar consumer products today has been nothing short of spectacular. This success has come from the contributions of many scientists and engineers from research laboratories around the world on electrode materials, nonaqueous electrolytes, membrane separators, and engineering and manufacturing of cells and battery packs. Early research on rechargeable lithium batteries focused on systems based on lithium metal anodes (negative electrodes) and lithium intercalation cathodes (positive electrodes). Progress to develop a lithium metal anode-based practical rechargeable battery was slow, due to the less than satisfactory rechargeability of the lithium metal anode coupled with its safety hazards. While it was recognized early on that many of the problems of the rechargeable lithium metal anode could be solved by replacing it with a lithium intercalation anode, a practically attractive solution had to wait for the discovery that lithiated carbon could be charged and discharged in an appropriate organic electrolyte solution that produced a stable surface film, known as the solid electrolyte interphase, on the graphite electrode. Thus, lithium-ion batteries emerged with graphite anodes (negative electrodes) and lithiated metal dioxide cathodes in which complementary lithium intercalation (insertion) and deintercalation (extraction) processes occur in the anode and cathode during charge–discharge cycling.

Rapid progress in the development of new electrode and electrolyte materials followed, with a concomitant increase in the energy density of commercial lithium-ion cells, which has more than doubled in the last two decades. Commercial 18650 cells today have gravimetric energy densities of about 250 Wh/kg and volumetric energy densities approaching 650 Wh/L. Lithium-ion battery cells and packs are now manufactured and sold with a variety of cathode materials tailored to myriad applications. Commercial lithium-ion batteries are available with three classes of cathode materials: lithiated layered transition metal dioxides, Li$_x$MO$_2$, where M = Co, Ni, Mn, or their mixtures; transition metal spinel oxides, LiM$_2$O$_4$, in which M = Mn or mixtures of Mn, Co, and Ni; and transition metal phosphates, LiMPO$_4$, where M = Fe. A variety of other cathode materials, which are variations of these or altogether new materials, aimed at higher capacity, longer cycle life, and improved cell safety are being developed, although they are not yet available in commercial cells. The anode material in all commercial lithium-ion cells today is graphite with different manufacturers using different types of graphite for proprietary advantages. Progress is being made in developing higher-capacity anode materials, such as silicon,
Germanium, and other metal alloys of lithium, as higher-capacity anodes. There is also active research and development of improved electrolytes for longer cycle and shelf life, and better low-temperature performance and safety in lithium-ion batteries.

It is now recognized that despite the spectacular progress in the last two decades in lithium-ion battery materials, engineering, and manufacturing, the energy density of today’s lithium-ion batteries are inadequate to meet the energy and power demands of many present and future power-hungry applications of consumer communication devices, power tools, and electric vehicles. Electrode materials and battery chemistries having a step change in energy density and performance must be identified and developed to meet these demands. The goal of this book is to bring attention to this need, with a focus on identifying battery chemistry and electrode and electrolyte materials for future high-energy-density rechargeable batteries. A group of recognized leaders in the various aspects of advanced battery chemistry and materials have contributed to this book, which is directed to university students and to researchers, engineers, and decision makers in academia and in industry. Such a book is not currently available.

Chapter 2 provides a brief account of the history of rechargeable lithium batteries and sets the stage for subsequent chapters. Its evolution from the early lithium metal anode systems to today’s lithium-ion batteries is outlined and the key materials and developments in chemistry that have made lithium-ion batteries a household word are identified. To significantly increase the energy density of lithium-ion batteries, new electrode materials, particularly cathode materials, with significantly higher specific capacities are required. Presently, lithium-ion battery cathode materials are approaching capacity limits equivalent to the transfer of one electron per transition metal atom or about 250 mAh/g, which is expected to yield 18650 cells with nearly 4 Ah or approximately 300 Wh/kg. As shown in Chapter 8, rechargeable batteries with twice this energy density are needed for electric vehicles capable of a 300-mile driving range on a single charge. Clearly, a paradigm shift in battery chemistry and materials is required to achieve this step change in energy density. Work on advanced cathode materials for lithium-ion batteries is summarized in Chapter 5. Discussed in Chapter 7 is the research being carried out on lithium intercalation electrodes with cathode materials such as transition metal fluorosulfates capable of multielectron transfer per transition metal atom to achieve a potential doubling of the energy density of lithium-ion batteries. However, such lithium intercalation/deintercalation reactions are often fraught with thermodynamic and kinetic difficulties that limit electrode capacity. These limitations must be understood to realize the full capabilities of lithium intercalation electrodes capable of multielectron reactions. Very high-energy-density lithium-ion batteries will ultimately be based not only on these new high-energy-density cathodes but will also utilize high-capacity anodes such as lithium alloys of tin and silicon, as discussed in Chapter 6.

The search for ultrahigh-energy-density rechargeable batteries is focused beyond intercalation cathodes to materials that exhibit displacement-type reactions, such as sulfur and oxygen. Indeed, the Li–O₂ battery, commonly called the lithium–air battery, is perhaps the highest-energy-density rechargeable practical battery that could be envisioned. There is a worldwide effort to develop various types of rechargeable lithium–air batteries, as discussed in Chapters 8, 9, 10, and 11. The anode in the lithium–air cell and its close relative with a lower energy density, the lithium–sulfur
cell, is lithium metal, which is characterized by recognized shortcomings of cycle life and safety that must be understood and solved.

The discharge–charge rates, rechargeability, and cycle and calendar life of batteries are strongly influenced by electrolytes. Advanced organic and ionic liquid electrolytes are described in Chapters 3, 4 and 14. Utilization of such electrolytes for battery applications is discussed in Chapters 12 and 14.

Finally, alternative anode rechargeable batteries are sought for new, lower-cost battery technologies. Two types of such batteries are the magnesium and sodium anode systems. A review of their state of the art and advantages and limitations are the topics of Chapters 15 and 16.

Although there are other books dealing with the chemistry and materials for various types of lithium-ion batteries, this is the first book devoted exclusively to future rechargeable battery technologies. We expect this book to serve both as a textbook for graduate students and as a general reference book for the wider battery community.

Bruno Scrosati

K. M. Abraham

Walter van Schalkwijk

Jusef Hassoun
1 ELECTROCHEMICAL CELLS AND ION TRANSPORT

An electrochemical cell is a device with which electrical energy is converted into chemical energy, or vice versa. We can consider two types: electrolytic cells, in which electric energy is converted into chemical energy (corresponding to the charging of a battery), and galvanic cells, in which chemical energy is converted into electric energy (corresponding to a battery in discharge). In its most basic structure, an electrochemical cell is formed by two electrodes, one positive and one negative, separated by an ionically conductive and electronically insulating electrolyte, which may be a liquid, a liquid imbibed into a porous matrix, an ionomeric polymer, or a solid. At the negative electrode, an oxidation or anodic reaction occurs during discharge (e.g., the release of electrons and lithium ions from a graphite electrode: \(\text{LiC}_6 \rightarrow \text{C}_6 + \text{Li}^+ + \text{e}^- \)), while the process is reversed during charge, when a reduction or cathodic reaction occurs at the negative electrode (e.g., \(\text{C}_6 + \text{Li}^+ + \text{e}^- \rightarrow \text{LiC}_6 \)). Even though the negative electrode is in principle an anode during discharge and a
CHAPTER 1 ELECTROCHEMICAL CELLS: BASICS

\[2H^+ + 2e^- \rightarrow H_2 \]

\[2Cl^- \rightarrow Cl_2 + 2e^- \]

FIGURE 1 Electrolytic cell, illustrating the decomposition of aqueous hydrochloric acid into hydrogen and chlorine. Here, aqueous HCl serves as an ionically conducting and electronically insulating electrolyte, facilitating the overall reaction:

\[2HCl \rightarrow Cl_2 + H_2. \]

cathode during charge, the **negative electrode is commonly referred to as an anode** in the battery community (i.e., the discharge process is taken as the nominal defining process). Similarly, a reduction or cathodic reaction occurs at the positive electrode during discharge (e.g., the uptake of lithium ions and electrons by iron phosphate: \(FePO_4 + Li^+ + e^- \rightarrow LiFePO_4 \)), and thus the **positive electrode is commonly referred to as a cathode**, even though, of course, an anodic process occurs on the positive electrode during charge. Since this convention can be somewhat confusing, referring to the electrodes as a negative or positive electrode would eliminate the ambiguity introduced by using the terms **anode** and **cathode**.

Figure 1 schematizes an HCl/H\(_2\)/Cl\(_2\) electrolytic cell. The electrochemical processes are the cathodic reduction of hydrogen ions (protons) at the negative electrode \((2H^+ + 2e^- \rightarrow H_2)\) and the anodic oxidation of the chloride ions at the positive electrode \((2Cl^- \rightarrow Cl_2 + 2e^-)\). These two **half-cell reactions** can be added up to the overall reaction of this electrolytic cell: namely, the evolution of chlorine and hydrogen from hydrochloric acid (used industrially to recycle waste HCl in chemical plants): \(2HCl \rightarrow H_2 + Cl_2\). As illustrated in Figure 1, an electrochemical reaction leads to a flow of electrons in the external circuit which is balanced by the migration of positive ions (cations) to the cathode and of negative ions (anions) to the anode; the principle of electroneutrality demands that the external electronic current must be matched by an internal ionic current (i.e., by the sum of the cation flow to the cathode and the anion flow to the anode).

The reversible cell voltage, \(E_{cell,rev}\), also referred to as the **electromotoric force** (emf), can be obtained from the Gibbs free energy change of the reaction, \(\Delta G_R\):

\[E_{cell,rev} = -\frac{\Delta G_R}{nF} \]

(1)

where \(n\) is the number of electrons involved in the electrochemical reaction (for Fig. 1, \(n = 2\)) and \(F\) is the Faraday constant, equal to 96,485 As/mol. The standard Gibbs free energy of reaction, \(\Delta G_R^0\), can readily be obtained from the standard Gibbs free energies of formation, \(\Delta G_f^0\), as is shown for the HCl electrolysis process above:

\[\Delta G_R^0 = \Delta G_f^0(H_2) + \Delta G_f^0(Cl_2) - 2 \cdot \Delta G_f^0(HCl) \]

(2)
ELECTROCHEMICAL CELLS AND ION TRANSPORT

1 ELECTROCHEMICAL CELLS AND ION TRANSPORT

H₂ → 2H⁺ + 2e⁻

Cl₂ + 2e⁻ → 2Cl⁻

FIGURE 2 Galvanic cell, illustrating the reaction between hydrogen and chlorine to yield aqueous hydrochloric acid: Cl₂ + H₂ → 2HCl.

Considering that ΔG^0_f(H₂) and ΔG^0_f(Cl₂) are defined to be zero under standard conditions (conventionally defined as 25°C and gas partial pressures of 100 kPa) and taking a value of −131.1 kJ/mol for ΔG^0_f(HCl) at the standard condition for species dissolved in water (conventionally, 1 M solution at 25°C), one can determine the standard Gibbs free energy of reaction of 262.2 kJ/mol. If the reaction is run under these standard conditions, the reversible cell voltage can be calculated from ΔG_R using equation (1):

\[E_{cell,rev}^0 = -\frac{262.2 \text{ kJ/mol}}{2 \times 96,485 \text{ As/mol}} = -1.36 \text{ V} \] (3)

Since ΔG_R is greater than 0, energy is required to decompose HCl into H₂ and Cl₂; a negative emf value (i.e., \(E_{cell,rev} \) is < 0) therefore means that electric energy is needed to drive the electrochemical reaction, as in fact is expected for an electrolytic cell, which also corresponds to a battery cell during charge.

Figure 2 schematizes an HCl/H₂/Cl₂ galvanic cell. The electrochemical half-cell reactions are the anodic oxidation of hydrogen molecules at the negative electrode (H₂ → 2H⁺ + 2e⁻) and the cathodic reduction of chlorine molecules at the positive electrode (Cl₂ + 2e⁻ → 2Cl⁻), resulting in the overall formation of HCl from hydrogen and chlorine (H₂ + Cl₂ → 2HCl), just the opposite reaction to that of an electrolytic cell. A comparison of Figures 1 and 2 once more illustrates that, for example, the hydrogen electrode is always the negative electrode and that irrespective of whether the cell is operated as an electrolytic or a galvanic cell, the half-cell reaction at the hydrogen electrode is either anodic (Fig. 2) or cathodic (Fig. 1). As discussed for the electrolytic cell (Fig. 1), the flow of electrons through the external circuit has to be exactly balanced by the flow of cations to the cathode and anions to the anode.

The standard Gibbs free energy of reaction for the galvanic cell in Figure 2 is given by

\[\Delta G_R^0 = 2 \cdot \Delta G^0_f(HCl) - (\Delta G^0_f(H_2) + \Delta G^0_f(Cl_2)) = -262.2 \text{ kJ/mol} \] (4)

equating to a reversible cell voltage of \(E_{cell,rev} = +1.36 \text{ V} \) [see equation (1)] under standard conditions. The fact that \(\Delta G_R \) is < 0 and \(E_{cell,rev} \) is > 0 signifies that
the reaction proceeds spontaneously by converting chemical energy into electrical energy, as in fact is expected for a galvanic cell or for a battery during discharge.

The rate of energy conversion in galvanic or electrolytic cells is typically expressed as current (in units of amperes, A) or as current density (in units of A/cm²). It depends on the kinetics of the half-cell reactions as well as on many other materials (e.g., ionic conductivity of the electrolyte) and design parameters (thickness of the electrolyte-gap between positive and negative electrodes). Clearly, the actual size of a galvanic or electrolytic device for a required energy or materials conversion rate decreases with increasing current density, so that the maximum power density of galvanic (e.g., fuel cells) and electrolytic (e.g., chlorine–alkaline electrolyzer) cells is an important figure of merit:

\[P_{\text{electric}} (\text{W/cm}^2) = E_{\text{cell}} (\text{V}) \times i (\text{A/cm}^2) \quad (5) \]

Power densities vary from \(\approx 0.1 \text{ W/cm}^2 \) for high-power lithium-ion batteries at discharge C rates of \(\approx 10 \text{ h}^{-1} \) [the C rate is defined as the number of times the full capacity of the battery is (dis)charged per hour] to \(\approx 1 \text{ W/cm}^2 \) for proton-exchange membrane (PEM) fuel cells. Obviously, the higher the achievable power density, the lower the necessary electrode area and, generally, the smaller the device. The efficiency of galvanic and electrolytic cells is often given in terms of the cell voltage efficiency, \(\eta \), which relates the actual cell voltage to the reversible cell voltage of a galvanic or electrolytic cell:

\[\eta_{\text{cell, galvanic}} = \frac{E_{\text{cell}}}{E_{\text{cell, rev}}} \quad \text{and} \quad \eta_{\text{cell, electrolytic}} = \frac{E_{\text{cell, rev}}}{E_{\text{cell}}} \quad (6) \]

For all galvanic and electrolytic cells, the deviation between the actual cell voltage and the reversible cell voltage increases with increasing current density, which means that \(\eta \) increases with current and power density.

The ionic conductivity, \(\kappa \), of an electrolyte solution derives from the movement of anions and cations in the electrolyte solution caused by an electric field, that is, by a gradient of the electrostatic potential in the electrolyte solution phase, \(\nabla \phi_s \). The flow of ions produces an electric current which can be expressed in terms of the ionic mobility \(u \), the ion concentration \(c \), and the charge number \(z \):

\[i = -F(z_+c_+u_+ + z_-c_-u_-)\nabla \phi_s = -\kappa \nabla \phi_s \quad (7) \]

where the subscripts \(+ \) and \(- \) refer to the cations and anions, respectively, and \(F \) is the Faraday constant; the ionic mobility quantifies the terminal velocity of an ion in an electric field and has units of \((\text{cm/s})/(\text{V/cm})\). The ionic conductivity is most commonly expressed in units of S/cm (a siemens, S, is a reciprocal ohm). The conductivity of typical battery electrolytes is on the order of 1 to 10 mS/cm (see Table 1), while the conductivity of aqueous or ionomeric electrolytes used in fuel cells and electrolyzers is on the order of 100 mS/cm.

2 CHEMICAL AND ELECTROCHEMICAL POTENTIAL

2.1 Temperature Dependence of the Reversible Cell Voltage

The temperature dependence of the Gibbs free energy change of a reaction under isobaric conditions is proportional to the entropy change of reaction, ΔS_R:

$$\left(\frac{\partial \Delta G_R}{\partial T}\right)_{p,n_i} = -\Delta S_R$$ \hspace{1cm} (8)

where ΔS_R is the entropy change of the reaction. Combining equation (8) with equation (1) yields the temperature dependence of the reversible cell voltage:

$$\left(\frac{\partial E_{cell,rev}}{\partial T}\right)_{p,n_i} = \frac{\Delta S_R}{nF}$$ \hspace{1cm} (9)

2.2 Chemical Potential

Let us consider a generic chemical reaction: $v_A A + v_B B \rightarrow v_C C + v_D D$. The Gibbs free energy change of reaction, ΔG_R, is given by

$$\Delta G_R = v_C \mu_C + v_D \mu_D - (v_A \mu_A + v_B \mu_B)$$ \hspace{1cm} (10)

where μ_i is the chemical potential of species i. The chemical potential defines the change of the Gibbs free energy when an infinitesimal number of moles of species i is added to a mixture, with all other components remaining constant:

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{p,T,n_j \neq i}$$ \hspace{1cm} (11)

The concentration dependence of the chemical potential is

$$\mu_i = \mu_i^0 + RT \ln(a_i)$$ \hspace{1cm} (12)

where μ_i^0 is the standard chemical potential (conventionally defined at 25°C and 100 kPa(abs)), R is the gas constant (8.314 J/(mol·K)), and T is the temperature in Kelvin. In the case of chemical activity, a_i, one has to distinguish between the activity of pure solid substances ($a_i = 1$), of gases ($a_i = f_i p_i/p_i^0$, where f_i is the fugacity coefficient, p_i is the partial pressure, and p_i^0 is the standard pressure); for ideal gases, $f_i = 1$), of dissolved species ($a_i = \gamma_i c_i/c_i^0$, where γ_i is the activity coefficient, c_i is the

Table 1: Conductivities of Typical Lithium Ion Battery Electrolytes at 25°C and 1 M Salt Concentration

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Mixing ratio (g/g)</th>
<th>Salt</th>
<th>Conductivity, κ (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC/DMC</td>
<td>1 : 1</td>
<td>LiAsF$_6$</td>
<td>11</td>
</tr>
<tr>
<td>EC/DMC</td>
<td>1 : 1</td>
<td>LiPF$_6$</td>
<td>11</td>
</tr>
<tr>
<td>EC/DMC/DEC</td>
<td>1 : 1 : 1</td>
<td>LiPF$_6$</td>
<td>10</td>
</tr>
<tr>
<td>EC/PC</td>
<td>3 : 2</td>
<td>LiBF$_4$</td>
<td>2.7</td>
</tr>
</tbody>
</table>

EC, ethylene carbonate; DMC, dimethyl carbonate; DEC, diethyl carbonate; PC, propylene carbonate.
concentration, and \(c^0 \) is the standard concentration of 1 mol/L; for ideal solutions, \(\gamma_i = 1 \), and of pure solvents (\(a_i = 1 \); e.g., water in aqueous electrolytes).

If two phases (I and II) with a common species \(i \) are brought into contact, \(i \) is exchanged between the two phases until

\[
\mu_i(I) = \mu_i(II)
\]

Thus, equation (13) is the thermodynamic condition for phase equilibrium in the absence of charge separation at the interface between the two phases.

2.3 Electrochemical Potential

When a metal (Me) electrode (e.g., Cu) is brought into contact with a solution of its Me\(^{z+}\) ions (e.g., an aqueous solution of Cu\(^{2+}\)), the following reactions will occur until equilibrium is attained:

\[
\text{Cu}^0(M) \rightleftharpoons \text{Cu}^{2+}(s) + 2e^-(M)
\]

(14)

This reaction leads to a charge separation between the electrolyte phase (s) and the metal phase (M), which occurs spontaneously when equilibrium is being established between the two phases. As can be seen in Figure 3, two different processes are conceivable when pure copper (Cu\(^0\)) is brought into contact with a dissolved copper salt (Cu\(^{2+}\)); on the left-hand side, partial dissolution of copper, leading to the accumulation of negative charges in the metal at the metal–solution interface which are counterbalanced by positive ionic charges on the solution side of the interface; on the right-hand side, partial plating of copper, leading to the accumulation of positive charges in the metal at the metal–solution interface which are counterbalanced by negative ionic charges on the solution side of the interface. The accumulation of charges on each side of the metal–solution interface can be described in terms

![FIGURE 3 Charge separation between the electrode phase (Me phase) and the electrolyte solution phase (Me\(^{z+}\) phase) for cases of spontaneous metal dissolution (left-hand side) and of spontaneous metal deposition (right-hand side). In each case, a potential difference between the metal phase potential, \(\phi_M \), and the solution phase potential, \(\phi_s \), is being created. (Adapted from [1].)
of the electrostatic potential in both the metal, ϕ_M, and the electrolyte solution, ϕ_s (see Fig. 3).

In contrast to the simple chemical phase equilibrium described by equation (13), which considers only the chemical equilibrium between species in the two different phases in the absence of charge separation at the interface, description of the electrochemical phase equilibrium for electrochemical reactions where a charge separation across the interface is established requires that the energy of formation of the charge accumulation or depletion at the interface be included in the chemical potential. Therefore, a complete description of the electrochemical equilibrium has to consider the electrostatic potential ϕ in each phase, in addition to the chemical potentials of species i in the two phases. With the definition of the electrochemical potential $\tilde{\mu}_i$,

$$\tilde{\mu}_i = \mu_i^0 + RT \ln(a_i) + z_i F \phi$$ \hspace{1cm} (15)

the electrochemical phase-equilibrium condition reads

$$\tilde{\mu}_i(I) = \tilde{\mu}_i(II)$$ \hspace{1cm} (16)

The electrochemical potential difference between the solid and the solution phase is illustrated in Figure 3 for the copper dissolution/plating example: (1) if $\tilde{\mu}_{Cu}^{2+}(M) = \tilde{\mu}_{Cu}(M) - 2\tilde{\mu}_e^{-}(M) > \tilde{\mu}_{Cu^{2+}}(s)$ equilibrium will be established via copper dissolution (left-hand side); and (2) if $\tilde{\mu}_{Cu}(M) < \tilde{\mu}_{Cu^{2+}}(s) + 2\tilde{\mu}_e^{-}(M)$, equilibrium is reached via copper plating (right-hand side). Establishing equilibrium gives rise to the charge separation illustrated in Figure 3 for both copper plating and copper dissolution, creating an electrical potential difference between the two phases which is referred to as the Galvani potential difference: $\Delta \phi = \phi_M - \phi_s$. Consequently, the electrochemical equilibrium condition based on equation (16) and using equation (15) for each phase can be written as

$$\mu_{Cu}(M) = \mu_{Cu^{2+}}(s) + 2F\phi_M + 2\mu_{e^-}(M) - 2F\Delta \phi$$ \hspace{1cm} (17)

Inserting the activity dependence of the chemical potential, μ_i, from equation (15), equation (17) can be expanded to

$$\mu_{Cu}^0(M) + RT \ln(a_{Cu}(M)) = \mu_{Cu^{2+}}^0(s) + RT \ln(a_{Cu^{2+}}(s)) + 2\mu_{e^-}^0(M) + RT \ln(a_{e^-}(M)) - 2F\Delta \phi$$ \hspace{1cm} (18)

In summary, equation (18) represents a detailed description of the electrochemical phase equilibrium between a copper metal electrode and copper ions in solution, including the Galvani potential difference which is produced during the phase equilibrium process.

2.4 The Nernst Equation

Equation (18) can be simplified further by considering that the activity of a pure solid phase is 1 [i.e., $a_{Cu}(M) \equiv 1$] and that the activity of electrons in the metal phase, $a_{e^-}(M)$, will not be affected by establishing the electrochemical phase equilibrium due to the high and essentially unperturbed electron concentration in the metal,
so that we can define $a_e^-(M) \equiv 1$. Under these assumptions, equation (18) can be rewritten as

$$\Delta \phi - \frac{\mu_e^0(M)}{F} = \frac{\mu_{Cu^{2+}}^0(s) - \mu_{Cu^2+}^0(M)}{2F} + \frac{RT}{2F} \ln[a_{Cu^{2+}}(s)]$$ \hspace{0.5cm} (19)$$

By defining the electrode potential E and the standard potential E^0 for the case when the activity of Cu$^{2+}$ ions is 1 (i.e., under standard conditions), equation (19) becomes the well-known Nernst equation applied to the Cu/Cu$^{2+}$ redox couple:

$$E \equiv \Delta \phi - \frac{\mu_e^0(M)}{F} = E^0 + \frac{RT}{2F} \ln[a_{Cu^{2+}}(s)]$$ \hspace{0.5cm} (20)$$

The specific Nernst equation derived above for the Cu/Cu$^{2+}$ redox couple can also be generalized for a generic half-cell reaction:

$$v_A A + v_B B + \cdots + n e^- \rightarrow v_C C + v_D D + \cdots$$ \hspace{0.5cm} (21)$$

yielding the general Nernst equation:

$$E = E^0 - \frac{RT}{nF} \ln \frac{(a_C)^{v_C}(a_D)^{v_D}}{(a_A)^{v_A}(a_B)^{v_B}} = E^0 + \frac{RT}{nF} \ln \prod_{\text{oxidized}} \frac{a_i^{v_i}}{a_i^{v_i}} \prod_{\text{reduced}} \frac{a_i^{v_i}}{a_i^{v_i}}$$ \hspace{0.5cm} (22)$$

whereby the species on the reduced side of the half-cell reaction (i.e., the side where the electrons are written) are placed in the denominator in the logarithic term and the species on the oxidized side of the half-cell reaction are placed in the numerator. The activity a_i of nonionic species is related to their concentration c_i by the activity coefficient γ_i and the standard concentration c^0 according to $a_i = \gamma_i c_i / c^0$. For ionic species, one often uses the mean ionic activity coefficient, γ_{\pm}, instead of γ (γ_{\pm} is defined for neutral cation–anion pairs, since the activity coefficient of single ions cannot be measured). The activity of a solvent is given in terms of the mole fraction x_i and the activity coefficient, which is usually also denoted by γ_i (i.e., $a_i = \gamma_i x_i$). The activity of pure solvents (e.g., of water) is always equal to 1. Finally, for gaseous species the activity is linked to the partial pressure p_i of the species through the fugacity coefficient f_i and the standard pressure p^0 (100 kPa), $a_i = f_i p_i / p^0$. For ideal gases the fugacity becomes the partial pressure of the gas p_i. E^0 is, as described above, the standard half-cell potential of the reaction, that is, the potential at which each of the species involved is present at an activity equal to 1.

It is common to list standard half-cell potentials, E^0, as to standard reduction potentials, that is, for half-cell reactions written as reduction reactions, as done in equation (21). A series of half-cell reactions and their standard reduction potentials are listed in Table 2.

For example, in the case of the hydrogen electrode reaction with the reduction reaction written on the left side of the electrochemical equation,

$$2H^+(s) + 2e^- (M) \rightarrow H_2(g)$$ \hspace{0.5cm} (23)$$
TABLE 2 Examples of the Electrochemical Standard Reduction Potentials of Some Common Half-Cell Reactions

<table>
<thead>
<tr>
<th>Electrode reaction</th>
<th>E^0 (V)</th>
<th>Electrode reaction</th>
<th>E^0 (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li$^+$ + e ⇌ Li</td>
<td>-3.01</td>
<td>Tl$^+$ + e ⇌ Tl</td>
<td>-0.34</td>
</tr>
<tr>
<td>Rb$^+$ + e ⇌ Rb</td>
<td>-2.98</td>
<td>Co$^{2+}$ + 2e ⇌ Co</td>
<td>-0.27</td>
</tr>
<tr>
<td>Cs$^+$ + e ⇌ Cs</td>
<td>-2.92</td>
<td>Ni$^{2+}$ + 2e ⇌ Ni</td>
<td>-0.23</td>
</tr>
<tr>
<td>K$^+$ + e ⇌ K</td>
<td>-2.92</td>
<td>Sn$^{2+}$ + 2e ⇌ Sn</td>
<td>-0.14</td>
</tr>
<tr>
<td>Ba$^{2+}$ + 2e ⇌ Ba</td>
<td>-2.92</td>
<td>Pb$^{2+}$ + 2e ⇌ Pb</td>
<td>-0.13</td>
</tr>
<tr>
<td>Ca$^{2+}$ + 2e ⇌ Ca</td>
<td>-2.84</td>
<td>H$^+$ + e ⇌ 1/2H$_2$</td>
<td>0.000</td>
</tr>
<tr>
<td>Na$^+$ + e ⇌ Na</td>
<td>-2.71</td>
<td>Cu$^{2+}$ + 2e ⇌ Cu</td>
<td>0.34</td>
</tr>
<tr>
<td>Mg$^{2+}$ + 2e ⇌ Mg</td>
<td>-2.38</td>
<td>1/2O$_2$ + H$_2$O + 2e ⇌ 2OH$^-$</td>
<td>0.40</td>
</tr>
<tr>
<td>Ti$^{2+}$ + 2e ⇌ Ti</td>
<td>-1.75</td>
<td>Cu$^+$ + e ⇌ Cu</td>
<td>0.52</td>
</tr>
<tr>
<td>Be$^{2+}$ + 2e ⇌ Be</td>
<td>-1.70</td>
<td>Hg$^{2+}$ + 2e ⇌ Hg</td>
<td>0.80</td>
</tr>
<tr>
<td>Al$^{3+}$ + 3e ⇌ Al</td>
<td>-1.66</td>
<td>Ag$^+$ + e ⇌ Ag</td>
<td>0.80</td>
</tr>
<tr>
<td>Mn$^{2+}$ + 2e ⇌ Mn</td>
<td>-1.05</td>
<td>Pd$^{2+}$ + 2e ⇌ Pd</td>
<td>0.83</td>
</tr>
<tr>
<td>Zn$^{2+}$ + 2e ⇌ Zn</td>
<td>-0.76</td>
<td>Ir$^{3+}$ + 3e ⇌ Ir</td>
<td>1.00</td>
</tr>
<tr>
<td>Ga$^{3+}$ + 3e ⇌ Ga</td>
<td>-0.52</td>
<td>Br$_2$ + 2e ⇌ 2Br$^-$</td>
<td>1.07</td>
</tr>
<tr>
<td>Fe$^{2+}$ + 2e ⇌ Fe</td>
<td>-0.44</td>
<td>O$_2$ + 4H$^+$ + 4e ⇌ 2H$_2$O</td>
<td>1.23</td>
</tr>
<tr>
<td>Cd$^{2+}$ + 2e ⇌ Cd</td>
<td>-0.40</td>
<td>Cl$_2$ + 2e ⇌ 2Cl$^-$</td>
<td>1.36</td>
</tr>
<tr>
<td>In$^{3+}$ + 3e ⇌ In</td>
<td>-0.34</td>
<td>F$_2$ + 2e ⇌ F$^-$</td>
<td>2.87</td>
</tr>
</tbody>
</table>

the Nernst equation would be written

$$E_{H_2/H^+} = E_{H_2/H^+}^0 + \frac{RT}{2F} \ln \left(\frac{a_{H^+}}{a_{H_2}} \right)$$

where the H$_2$ fugacity coefficient is often assumed to be 1 (ideal gas behavior, i.e., $a_{H_2} = p_{H_2}/p_0^0$) and where the proton activity is often written in terms of pH [i.e., $pH = -\log(a_{H^+})$]. In the example above of the copper electrode, the corresponding half-cell reaction reads

$$\text{Cu}^{2+} (\text{aq}) + 2e^- (\text{M}) \rightleftharpoons \text{Cu} (s)$$

and the Nernst equation can be written

$$E_{\text{Cu/Cu}^{2+}} = E_{\text{Cu/Cu}^{2+}}^0 + \frac{RT}{2F} \ln \left(\frac{a_{\text{Cu}^{2+}}}{a_{\text{Cu}}^0} \right)$$

E cannot be determined experimentally since measurement requires the use of a suitable instrument (e.g., a voltmeter) that necessarily has a second terminal to which a second electrode has to be connected. Commonly, the material of the second electrode will differ from that of the first one. In Figure 4 we assume that the two electrodes are made of metal M and M$_1$, respectively, and for simplicity we assume that the electrical connections in our voltmeter are made from M$_1$. Then the voltage measured is equal to the potential drop across three interfaces, the two metal solution interfaces M/S and M$_1$/S with potential drops $\Delta \phi(M)$ and $\Delta \phi(M_1)$, respectively, and the metal–metal interface M/M$'$, where the prime indicates that the electrostatic potential of M$_1$, ϕ_{M_1}, at the two terminals is, in general, different.
The potential read at the voltmeter is thus given by

$$V = \Delta \phi(M_1) - \Delta \phi(M) + (\phi_M - \phi_{M_1})$$ \hspace{1cm} (27)

At the metal–metal interface, the electrochemical potentials adjust, and hence

$$\tilde{\mu}_e(M_1) = \mu_e(M_1) - F \phi_{M_1} = \mu_e(M) - F \phi_M = \tilde{\mu}_e(M)$$ \hspace{1cm} (28)

Combining equations (27) and (28), we obtain

$$V = \left[\Delta \phi(M_1) + \frac{\mu_e(M_1)}{F} \right] - \left[\Delta \phi_M(M) - \frac{\mu_e(M)}{F} \right]$$ \hspace{1cm} (29)

Furthermore, when comparing equation (28) with Nernst equation (21), it is obvious that the measured voltage is equal to the difference between the Nernst potentials of the two electrodes:

$$V = E(M_1) - E(M)$$ \hspace{1cm} (30)

Since we cannot measure individual electrode potentials, we can compare electrode potentials of two different electrodes only when they have been measured with respect to the same reference electrode (i.e., electrode M_1 in Fig. 4 would be replaced by a reference electrode).

The zero of the electrode potential scale has been chosen arbitrarily as the electrode potential of the standard hydrogen electrode (SHE), with the potential being determined by the H_2/H^+ reaction equation (23) at standard conditions. In practice, this typically involves the use of a Pt electrode immersed in a solution of unit activity of protons in equilibrium with H_2 gas bubbling at a pressure of 100 kPa (see Fig. 5). Electrode potentials given with respect to this zero point are reported “versus SHE.”

In addition to the SHE, other reference electrodes can be used. One of the most common is the saturated calomel electrode (SCE) formed by mercury in contact with an insoluble Hg_2Cl_2 paste and a saturated KCl solution (see Fig. 6). Here the electrode potential is determined by the reaction

$$2Hg \rightleftharpoons Hg_2^{2+} + 2e^-$$ \hspace{1cm} (31)
The Hg_2^{2+} ions are in equilibrium with insoluble calomel, Hg_2Cl_2, which, to a small extent, is dissociated in Hg_2^{2+} and Cl^- ions. The electrode potential can, therefore, be expressed through the Cl^- concentration:

$$ E = E^0_{\text{Hg}/\text{Hg}_2\text{Cl}_2} - \frac{RT}{F} \ln(a^-_{\text{Cl}}) = 0.241 \text{ V vs. SHE} \quad (32) $$

It is always possible to reconvert the electrode potential from the scale based on the chosen reference electrode (e.g., SCE) to that of the SHE:

$$ E_{\text{SHE}} = E_{\text{SCE}} + 0.241 \text{ V} \quad (33) $$

2.5 Electrochemical Double Layer

The interfacial region in which the excess charges on the electrode and in the solution accumulate (see, e.g., Fig. 3) is called the **electrochemical double layer** (DL). On the metal electrode, the excess charge resides in a thin layer ($<0.1\text{Å}$) at the electrode surface. The charge is counterbalanced by the accumulation of ion in the electrolyte close to the electrode (i.e., cations in the case of negative excess charge on the electrode, anions in the case of positive excess charge on the
CHAPTER 1 ELECTROCHEMICAL CELLS: BASICS

electrode). The driving forces for the formation of this space charge layer in the electrolyte are primarily coulombic forces but are also chemical interactions with the electrode surface and entropic forces which determine the distribution of ions in the DL.

Figure 7 is a model of the double layer. It can be seen that the ions in the electrolyte arrange themselves in a layered structure. The layer closest to the electrode surface is formed by ions that interact strongly with the electrode surface. These are mainly anions (e.g., halide anions) that tend to lose part of their solvation shell to adsorb directly at the electrode surface, even if the surface carries the same charge. The center of charge of these chemisorbed ions coincides approximately with the radius of the adsorbing species. The plane through the center of these specifically adsorbed ions is called the inner Helmholtz plane (IHP). Ions that are attracted to the electrode electrostatically (i.e., those with only minor chemical interactions with the electrode surface) keep their hydration shell. Thus, they approach the electrode at most up to a distance that corresponds to the radius of the hydrated ions. The center of charge of these hydrated ions (cations in the example in Fig. 7) is called the outer Helmholtz plane (OHP).
Counteracting the electrostatic force is an entropic force that entails a continuous decay of the concentration of the excess ions from the OHP into the bulk, with increasing distance to the electrode until the bulk concentration is reached. The extension of this diffuse layer depends on the ion concentrations of the electrolyte solution, being negligible for concentrated solutions (~1 M) but reaching several tens of nanometers for dilute electrolytes (~10^{-3} M).

The electrochemical double layer behaves like a capacitor (hence the name), whereby in concentrated solutions the metal surface and the OHP take the role of capacitor plates, with the gap between them filled by water molecules that because they possess a permanent dipole moment behave as a high-dielectric-constant medium. Due to the microscopic distance between the plates (i.e., a few tens of angstroms), the DL capacitance is much higher than that of common electronic devices, typically on the order of 10 to 40 \(\mu F/cm^2 \). As in a capacitor, the DL can be charged or discharged by changing the electrode–electrolyte potential difference, keeping the charge on the electrode surface always equal to that of the space charge layer in the electrolyte solution.

3 OHMIC LOSSES AND ELECTRODE KINETICS

Whereas in Section 2 we considered the thermodynamic description of electrolytic and galvanic electrochemical cells as well as of half-cell reactions, in this section we detail the various potential losses that are caused by the ion transport resistance in the electrolyte and the kinetics of the electrode reactions. Potential losses caused by
concentration gradients in the electrolyte (diffusion overpotentials) which can arise at high current densities are not discussed here.

3.1 Ohmic Potential Losses

When a current is drawn from an electrochemical cell through an external load, represented by an ohmic resistor, R_{ext}, the externally flowing electronic current must be balanced by an ionic current through the electrolyte between the two electrodes. In the simplified case in which kinetic and diffusion resistances are negligible, the behavior of the electrochemical cell can be approximated by an equivalent electronic circuit as shown in Figure 8, where R_Ω represents the ionic electrolytic resistance and is most commonly expressed as areal resistance in units of $\Omega \cdot \text{cm}^2$. For an electrolytic cell, where external voltage has to be applied to drive the reaction (see Fig. 1), the external cell voltage that must be applied to the cell, $E_{\text{cell,electrolytic}}$, is the sum of the reversible cell voltage $E_{\text{cell,rev}}$ and the ohmic potential loss ΔE_Ω across the electrolyte between the electrodes:

$$E_{\text{cell,electrolytic}} = E_{\text{cell,rev}} + iR_\Omega = E_{\text{cell,rev}} + \Delta E_\Omega$$ \hspace{1cm} (34)

where i is the current density (in units of A/cm2; i.e., the total current divided by the cross-sectional area of the electrodes). For a galvanic cell (see Fig. 2), the cell voltage obtained, $E_{\text{cell,galvanic}}$, is reduced by the internal ionic resistance:

$$E_{\text{cell,galvanic}} = E_{\text{cell,rev}} - iR_\Omega = E_{\text{cell,rev}} - \Delta E_\Omega$$ \hspace{1cm} (35)

The resulting current density/potential relationship (i vs. E curve) is illustrated in Figure 8.

Using the approximation above, we can estimate the ohmic potential loss in a lithium-ion battery at high charge–discharge rates. The latter are commonly not given in terms of current density but as a C rate, which describes how many times the battery capacity is being charged or discharged per hour. For high-power batteries (e.g., in hybrid electric vehicles), C rates can be as high as 20 h$^{-1}$ (i.e., the battery is
fully charged or discharged in $1/20$ of an hour. Considering a typical areal capacity of $\approx 1 \text{ mAh/cm}^2$ for high-power lithium-ion batteries, the corresponding current density would be $\approx 20 \text{ mA/cm}^2$. As illustrated in Figure 9., the electrode area of lithium-ion batteries (x/y-dimension) is very large (tens of centimeters) compared to the thickness of the electrolyte layer between the electrodes, $t_{\text{electrolyte}}$ (z-dimension; tens of micrometers), so that the ohmic resistance R_Ω between the two electrodes is well described by a simple one-dimensional relationship:

$$R_\Omega = \frac{t_{\text{electrolyte}}}{\kappa \varepsilon / \tau} \approx \frac{t_{\text{electrolyte}}}{\kappa \varepsilon^{1.5}}$$

where κ is the electrolyte conductivity, ε is the electrolyte volume fraction in the typically used electrolyte-imbibed porous separator materials used to separate the two electrodes, and τ is the tortuosity of the ionic conduction path within the separator. The latter is often approximated by the Bruggeman relationship ($\varepsilon/\tau \approx \varepsilon^{1.5}$), as shown in equation (36). For a typical electrolyte conductivity of 10 mS/cm (see Table 1), a separator thickness of $25 \mu \text{m}$, and a electrolyte volume fraction of 0.5, equation (36) yields $R_\Omega \approx 0.7 \Omega \cdot \text{cm}^2$. This would result in an ohmic potential loss at 20 mA/cm^2 of $\Delta E_\Omega \approx 14 \text{ mV}$, which is rather modest compared to the average cell voltage of $\approx 4 \text{ V}$ for most lithium-ion batteries.

3.2 Kinetic Overpotential

Additional potential losses are usually caused by the fact that the electrode reactions are not infinitely fast, so that an additional driving force is required to sustain a given reaction rate. This required driving force is an additional potential loss. Let us consider first the equilibrium condition of a generic electrochemical reaction:

$$\text{Ox} + n\text{e}^{- \text{cathodic}} \xrightarrow{\text{anodic}} \text{Red}$$

where
The half-cell reaction above represents a dynamic state in which there is a continuous and reversible exchange between the oxidized and the reduced species, referred to as dynamic equilibrium. For example, for the equilibrium between copper metal and its copper ions in solution shown in equation (14), equilibrium is reached when the anodic copper dissolution \((\text{Cu} \rightarrow \text{Cu}^{+2} + 2\text{e}^-)\) occurs as fast as the cathodic copper deposition \((\text{Cu}^{+2} + 2\text{e}^- \rightarrow \text{Cu})\). In this example, electrochemical equilibrium implies a flow of electrons out of the copper electrode for the copper dissolution reaction (anodic current) which is simultaneously counterbalanced by an equal flow of electrons into the copper electrode from the copper deposition reaction (cathodic current). Thus, in equilibrium, the anodic current, \(i_{\text{anodic}}\), and the cathodic current, \(i_{\text{cathodic}}\), are equal in magnitude and correspond to the exchange current density, \(i_0\):

\[
i_0 = i_{\text{anodic}} = |i_{\text{cathodic}}|
\]

(38)

Most commonly, anodic currents are defined as positive currents and cathodic currents are defined as negative currents (note, however, that in the older literature the opposite sign convention is often used). Since anodic (positive) and cathodic (negative) currents are equal in magnitude and opposite in sign, no externally observable net current is flowing in equilibrium. A net external current is obtained when deviating from equilibrium in either the anodic (positive current) or cathodic (negative current) direction, whereby the equilibrium in equation (37) is shifted to the right if \(|i_{\text{cathodic}}| > i_{\text{anodic}}\) or to the left if \(i_{\text{anodic}} > |i_{\text{cathodic}}|\).

A net current flow across an electrode is accompanied by deviations of the electrode potential from its equilibrium half-cell potential value, \(E_{\text{rev}}\), described by a kinetic overpotential, \(\eta\). To sustain a net anodic current, a positive deviation from the equilibrium potential is required, i.e., an anodic overpotential, \(\eta_{\text{anodic}}\). On the other hand, to sustain a net cathodic current, a negative deviation from the equilibrium potential is required, i.e., a cathodic overpotential, \(\eta_{\text{cathodic}}\). In summary, the electrode potential for an anodic net current can be described as \(E_{\text{electrode}} = E_{\text{rev}} + \eta_{\text{anodic}}\) and as \(E_{\text{electrode}} = E_{\text{rev}} - |\eta_{\text{cathodic}}|\) in the case of a net cathodic current. The implications of overpotentials for an electrochemical cell consisting of two electrodes can now be determined for an electrolytic cell and for a galvanic cell. For an electrolytic cell (see Fig. 1) with a net current flow, a cathodic reaction occurs on the negative electrode, and its potential is thus decreased by \(|\eta_{\text{cathodic}}|\), while an anodic reaction occurs on the positive electrode, so that its potential increases by \(\eta_{\text{anodic}}\). Therefore, when drawing a net current from an electrolytic cell, its potential, \(E_{\text{cell,electrolytic}}\), can be described as

\[
E_{\text{cell,electrolytic}} = E_{\text{cell,rev}} + \eta_{\text{anodic}} + |\eta_{\text{cathodic}}| + iR_\Omega
\]

(39)

On the other hand, for a current flow in a galvanic cell (see Fig. 2), an anodic reaction occurs on the negative electrode, and its potential is thus increased by \(\eta_{\text{anodic}}\), while a cathodic reaction occurs on the positive electrode, so that its potential decreases by \(|\eta_{\text{cathodic}}|\). Therefore, the overall cell voltage, \(E_{\text{cell,galvanic}}\), of a galvanic cell is

\[
E_{\text{cell,galvanic}} = E_{\text{cell,rev}} - \eta_{\text{anodic}} - |\eta_{\text{cathodic}}| - iR_\Omega
\]

(40)

The functionality between the anodic or cathodic overpotential and the current density is discussed below.