Bioenergy
Feedstocks
Breeding and Genetics
EDITED BY
Malay C. Saha
Hem S. Bhandari
Joseph H. Bouton
Bioenergy Feedstocks
Contents

The Editors xi
List of Contributors xiii
Preface xix

1 Introduction 1
 1.1 Historical Development 2
 1.2 Cultivar Development 2
 1.3 Breeding Approach 3
 1.4 Molecular Tools 3
 1.5 Future Outlook 4
References 4

2 Switchgrass Genetics and Breeding Challenges 7
 2.1 Introduction 7
 2.2 Origin and Distribution 9
 2.3 Growth and Development, Genome Structure and Cytogenetics 9
 2.3.1 Growth and Development 10
 2.3.2 Genome Structure and Cytogenetics 12
 2.4 Genetic Diversity 12
 2.5 Phenotypic Variability and Inheritance 13
 2.6 Conventional Breeding Approaches 14
 2.6.1 Early Work 15
 2.6.2 Systematic Recurrent Selection 15
 2.6.3 Heterosis 17
 2.7 Molecular Breeding 18
 2.7.1 Molecular Markers Used for Switchgrass and Other Polyploids 18
 2.7.2 Molecular Mapping 20
 2.7.3 Association Mapping 22
 2.7.4 Transgenic Approaches 23
 2.8 Conclusions and Future Directions 23
References 24

3 Switchgrass Genomics 33
 3.1 Introduction 33
 3.2 Genome Sequencing 34
 3.2.1 Other Available Sequence Resources 35
 3.3 Analysis of Expressed Sequences in Switchgrass 36
3.4 Linkage Mapping 40
3.5 Cytoplasmic Genome 42
3.6 Genome-enabled Improvement of Switchgrass 42
3.7 Conclusions 45
References 45

4 Germplasm Resources of Miscanthus and Their Application in Breeding 49
4.1 Introduction 49
4.2 Species Belonging to Miscanthus Genus, Their Characteristics, and Phylogenetic Relationships 50
4.2.1 Section: Eumiscanthus 50
4.2.2 Section: Triarrhena 53
4.2.3 Section: Kariyasu 54
4.3 Natural Hybrids between Miscanthus Species 55
4.4 Karyotype Analysis 55
4.5 Phylogenetic Relationships between Miscanthus Species 56
4.6 Genetic Improvement of Miscanthus 57
4.6.1 Germplasm Collection and Management 57
4.6.2 Artificial Hybridization 57
4.6.3 Polyploidization 58
4.7 Variations in Several Agronomical Traits Related to Yield and Plant Performance 58
4.7.1 Variation in Flowering Time 58
4.7.2 Variation in Cold Tolerance 58
4.7.3 Variation in Lignin, Cellulose, and Mineral Content 59
4.8 Molecular Resources 60
4.8.1 Development of Linkage Map for Miscanthus 60
4.8.2 QTL Analysis of Traits Related to Yield and Mineral Content 60
4.8.3 Molecular Markers for Hybrids Identification 61
4.9 Transgenic Miscanthus 61
4.10 Future Studies 62
References 62

5 Breeding Miscanthus for Bioenergy 67
5.1 Introduction 67
5.2 Miscanthus as a Biomass Crop 67
5.3 Breeding Strategy 68
5.3.1 Collection and Characterization 68
5.3.2 Hybridization 68
5.3.3 Ex Situ Phenotypic Characterization 69
5.3.4 Large-scale Demonstration Trials 69
5.4 Genetic Diversity 69
5.5 Breeding Targets 70
5.5.1 Biomass Yield 70
5.5.2 Morphological Traits Contributing to High Yield Potential 75
5.5.3 Seed Propagation: Crop Diversification and Reducing the Cost of Establishment 77
References 62
5.6 Incorporating Bioinformatics, Molecular Marker-Assisted Selection (MAS), and Genome-Wide Association Selection (GWAS) 77

5.7 Summary 78
Acknowledgments 79
References 79

6 Breeding Sorghum as a Bioenergy Crop 83
6.1 Introduction 83
6.2 Botanical Description and Evolution 84
 6.2.1 Basic Characteristics 84
 6.2.2 Evolution and Distribution 85
6.3 Traditional Breeding and Development 86
 6.3.1 Initial Sorghum Improvement 86
 6.3.2 Development of Hybrid Sorghum and Heterosis 86
 6.3.3 Current Sorghum Breeding Approaches 88
 6.3.4 Germplasm Resources 88
6.4 Approaches to Breeding Sorghum as a Bioenergy Crop 90
 6.4.1 Grain Sorghum 90
 6.4.2 Sweet Sorghum 90
 6.4.3 Biomass Sorghum 93
6.5 Composition in Energy Sorghum Breeding 93
6.6 Genetic Variation and Inheritance 95
 6.6.1 Grain Sorghum 95
 6.6.2 Grain Quality/Starch Composition 96
 6.6.3 Dual Purpose—Grain and Stalk 97
 6.6.4 Soluble Carbohydrates 97
 6.6.5 Breeding for Stress Tolerance 99
6.7 Wide Hybridization 106
 6.7.1 Interspecific Hybridization 106
 6.7.2 Intergeneric Hybridization 107
6.8 Conclusions 107
References 107

7 Energy Cane 117
7.1 Introduction 117
7.2 Sugar and Energy Production Systems 118
 7.2.1 Current Global Sugarcane Production 118
 7.2.2 Bioenergy Production from Sugarcane in Brazil 120
 7.2.3 Overview of Main Components in Existing Sugarcane Production Systems 120
 7.2.4 Overview and Potential Trends 123
7.3 Sugarcane Improvement 124
 7.3.1 Taxonomy and Crop Physiology 124
 7.3.2 History of Sugarcane Breeding 127
 7.3.3 Basic Features of Sugarcane Breeding Programs 128
 7.3.4 Composition of Cane for Sugar or Energy Production 130
 7.3.5 Application of Molecular Genetics in Developing Energy Cane 131
Contents

7.4 Selection of Sugarcane Genotypes for Energy Production 134
7.4.1 Overall Directions 134
7.4.2 Example of Economic Weightings for Selecting Sugarcane for Energy Products 136
7.4.3 Progress in Breeding for Energy Production 138
7.5 Conclusion 141
Acknowledgments 141
References 141

8 Breeding Maize for Lignocellulosic Biofuel Production 151
8.1 Introduction 151
8.2 General Attributes of Maize as a Biofuel Crop 151
8.3 Potential Uses of Maize Stover for Bioenergy 153
8.4 Breeding Maize for Biofuels 154
8.4.1 Selection Criteria 154
8.4.2 Stover Yield 157
8.4.3 Maximum Biomass Yield and the Effects of Time and Latitude 159
8.4.4 Stover Quality 161
8.4.5 Sustainability Parameters 163
8.4.6 Breeding Methods 164
8.5 Single Genes and Transgenes 165
8.6 Future Outlook 167
References 167

9 Underutilized Grasses 173
9.1 Introduction 173
9.2 Prairie Cordgrass 174
9.2.1 Importance 174
9.2.2 Genetic Variation and Breeding Methods 176
9.2.3 Future Goals 180
9.3 Bluestems 181
9.3.1 Importance 181
9.3.2 Genetic Variation and Breeding Methods 184
9.3.3 Future Goals 190
9.4 Eastern Gamagrass 191
9.4.1 Importance 191
9.4.2 Genetic Variation and Breeding Methods 192
9.4.3 Future Goals 196
References 197

10 Alfalfa as a Bioenergy Crop 207
10.1 Introduction 207
10.2 Biomass for Biofuels 208
10.2.1 Lignocellulose-based Biofuels 208
10.2.2 Plant Cell Wall Components 209
10.3 Why Alfalfa? 211
10.3.1 Background 211
10.3.2 Prospect as a Biofuel Feedstock 212
10.4 Breeding Strategies
 10.4.1 Germplasm Resources 213
 10.4.2 Cultivar Development 214
 10.4.3 Synthetic Cultivars and Heterosis 214
 10.4.4 Molecular Breeding 215
 10.4.5 Trait Integration Through Biotechnology 216

10.5 Breeding Targets 217
 10.5.1 Biomass Yield 217
 10.5.2 Forage Quality and Composition 218
 10.5.3 Stress Tolerance 219
 10.5.4 Winter Hardiness 220

10.6 Management and Production Inputs 221

10.7 Processing for Biofuels 222

10.8 Additional Value from Alfalfa Production
 10.8.1 Environmental Benefits 223
 10.8.2 Alfalfa Co-products 223

10.9 Summary 223

Acknowledgments 224

References 224

11 Transgenics for Biomass

11.1 Introduction 233
 11.1.1 Biomass for Biofuels 233
 11.1.2 Biofuels 234
 11.1.3 Lignocellulosic Biomass 234

11.2 Transgenic Approaches 235
 11.2.1 Biolistics Transformation 235
 11.2.2 Agrobacterium-mediated Transformation 236

11.3 Transgenic Approaches for Biomass Improvement 237
 11.3.1 Improving Biomass Yield 237
 11.3.2 Modifying Biomass Composition 240
 11.3.3 Regulatory Issues of Transgenic Bioenergy Crops 242

11.4 Summary 242

Acknowledgments 242

References 243

12 Endophytes in Low-input Agriculture and Plant
Biomass Production

12.1 Introduction 249

12.2 What are Endophytes? 249

12.3 Endophytes of Cool Season Grasses 251

12.4 Endophytes of Warm Season Grasses 251

12.5 Endophytes of Woody Angiosperms 253

12.6 Other Fungal Endophytes 253

12.7 Endophytes in Biomass Crop Production 254

12.8 The Use of Fungal Endophytes in Bioenergy Crop
Production Systems 256

12.9 Endophyte Consortia 256
Contents

12.10 Source of Novel Compounds 257
12.11 Endophyte in Genetic Engineering of Host Plants 258
12.12 Conclusions 258
Acknowledgments 259
References 259

Index 267

Color plate is located between pages 172 and 173.
The Editors

Malay C. Saha Forage Improvement Division (FID)
The Samuel Roberts Noble Foundation, Inc.
Ardmore, OK
mcsaha@noble.org

Hem S. Bhandari Department of Plant Sciences
University of Tennessee
Knoxville, TN
hsbhandari@utk.edu

Joseph H. Bouton Forage Improvement Division (FID)
The Samuel Roberts Noble Foundation, Inc.
Ardmore, OK
jhbouton@noble.org
List of Contributors

Laura Bartley
Department of Botany and Microbiology
University of Oklahoma Norman, OK

Kishor Bhattarai
Forage Improvement Division
The Samuel Roberts Noble Foundation
Ardmore, OK

Arvid Boe
South Dakota State University
Brookings, SD

John Clifton Brown
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK

E. Charles Brummer
Forage Improvement Division
The Samuel Roberts Noble Foundation
Ardmore, OK

Kelly D. Craven
Plant Biology Division
The Samuel Roberts Noble Foundation
Ardmore, OK

Chris Davey
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK

Natalia de Leon
Department of Agronomy
University of Wisconsin
Madison, WI

Iain Donnison
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK
List of Contributors

Maria Stefanie Dwiyanti
Energy Biosciences Institute
University of Illinois
Urbana, IL

Kerrie Farrar
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK

Sita R. Ghimire
Center for Agricultural and Environmental Biotechnology
RTI International
Research Triangle Park, NC

J. Gonzalez-Hernandez
South Dakota State University
Brookings, SD

C. Frank Hardin
Forage Improvement Division
The Samuel Roberts Noble Foundation
Ardmore, OK

Charlotte Hayes
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK

Maurice Hinton-Jones
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK

Lin Huang
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK

Elaine Jensen
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK

Phillips Jackson
CSIRO Plant Industry
Australian Tropical Science Innovation Precinct
Townsville, Australia

Laurence Jones
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shawn M. Kaeppler</td>
<td>Department of Agronomy
University of Wisconsin
Madison, WI</td>
</tr>
<tr>
<td>Joe G. Lauer</td>
<td>Department of Agronomy
University of Wisconsin
Madison, WI</td>
</tr>
<tr>
<td>D. K. Lee</td>
<td>University of Illinois
Urbana, IL</td>
</tr>
<tr>
<td>Anne Maddison</td>
<td>Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK</td>
</tr>
<tr>
<td>Heike Meyer</td>
<td>Julius Kühn-Institute (JKI)
Federal Research Centre for Cultivated Plants
Bundesallee, Germany</td>
</tr>
<tr>
<td>Maria J. Monteros</td>
<td>Forage Improvement Division
The Samuel Roberts Noble Foundation
Ardmore, OK</td>
</tr>
<tr>
<td>John Norris</td>
<td>Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK</td>
</tr>
<tr>
<td>Sarah Purdy</td>
<td>Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK</td>
</tr>
<tr>
<td>A. Lane Rayburn</td>
<td>University of Illinois
Urbana, IL</td>
</tr>
<tr>
<td>Paul Robson</td>
<td>Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK</td>
</tr>
<tr>
<td>W. L. Rooney</td>
<td>Department of Soil and Crop Sciences
Texas A&M University
College Station, Texas</td>
</tr>
<tr>
<td>Aaron Saathoff</td>
<td>Grain, Forage, and Bioenergy Research Unit
USDA-ARS and Department of Agronomy and Horticulture
University of Nebraska
Lincoln, NE</td>
</tr>
<tr>
<td>Name</td>
<td>Institution and Address</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Cosentino Salvatore</td>
<td>Department of Agriculture and Food Science University of Catania Via Valdisavoia, Catania, Italy</td>
</tr>
<tr>
<td>Gautam Sarath</td>
<td>Grain, Forage, and Bioenergy Research Unit USDA-ARS and Department of Agronomy and Horticulture University of Nebraska Lincoln, NE</td>
</tr>
<tr>
<td>Kai-Uwe Schwarz</td>
<td>Julius Kühn-Institute (JKI) Federal Research Centre for Cultivated Plants Bundesallee, Braunschweig, Germany</td>
</tr>
<tr>
<td>Gancho Slavov</td>
<td>Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan, Aberystwyth, Ceredigion, Wales, UK</td>
</tr>
<tr>
<td>Tim Springer</td>
<td>Southern Plains Range Research Station Woodward, OK</td>
</tr>
<tr>
<td>T. R. Stefaniak</td>
<td>Department of Soil and Crop Sciences Texas A&M University College Station, TX</td>
</tr>
<tr>
<td>J. Ryan Stewart</td>
<td>Brigham Young University Provo, UT</td>
</tr>
<tr>
<td>Charlie Rodgers</td>
<td>Ceres, Inc. Somerville, TX</td>
</tr>
<tr>
<td>Christian Tobias</td>
<td>USDA-ARS Western Regional Research Center Albany, CA</td>
</tr>
<tr>
<td>John Valentine</td>
<td>Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan, Aberystwyth, Ceredigion, Wales, UK</td>
</tr>
<tr>
<td>Zeng-Yu Wang</td>
<td>Forage Improvement Division The Samuel Roberts Noble Foundation Ardmore, OK</td>
</tr>
<tr>
<td>Richard Webster</td>
<td>Institute of Biological, Environmental and Rural Sciences (IBERS) Aberystwyth University Gogerddan, Aberystwyth, Ceredigion, Wales, UK</td>
</tr>
</tbody>
</table>
Yanqi Wu
Department of Plant and Soil Science
Oklahoma State University
Stillwater, OK

Toshihiko Yamada
Field Science Center for Northern Biosphere
Hokkaido University
Kita-ku, Sapporo, Hokkaido, Japan

Sue Youell
Institute of Biological, Environmental and Rural Sciences (IBERS)
Aberystwyth University
Gogerddan, Aberystwyth, Ceredigion, Wales, UK
Preface

The world energy use grew by 39% from 1990 to 2008. It is estimated that the global demand for energy will increase by at least 50% over the next 20 years. Energy consumption growth of several developing nations remains vigorous. Hydrocarbons, petroleum, coal, and natural gas are now the chief sources of energy. All are finite resources and their natural reserves are depleting every day. In addition, during their conversion and use several greenhouse gases are emitted with a potential for climatic warming.

Bioenergy, both biofuels and biopower, produced from renewable sources are sustainable alternatives to hydrocarbons. Bioenergy use has the potential to lower greenhouse gas emissions, boost rural economy, and ensure energy security. Interest in bioenergy began in early 20th century but it was reinforced in the recent decades. Biopower includes co-firing bioenergy feedstocks with coal to reduce problem emissions. Due to government incentives during 1995–2005, commercial scale biofuels, mainly ethanol, became available in the European Union, UK, USA, Brazil, and many other countries around the world. Most of the biofuels are derived from corn grain, sugarcane, and vegetable oil feedstocks thus creating a food versus fuel controversy. Second-generation biofuels are now being made from nonfood, lignocellulosic materials such as municipal waste and wood chips, along with dedicated crops such as switchgrass and Miscanthus.

Plant breeding is critical for crop improvement. Due to intensive breeding efforts in both public and private sectors average maize grain yield has increased by 745% since 1930. Several of the dedicated feedstock crops, for example, switchgrass and Miscanthus, are only recently removed from the wild and need serious breeding efforts for improvement. Increased biomass yield and improved quality through breeding efforts can make feedstock more economical and attractive. This book on *Bioenergy Feedstocks: Breeding and Genetics* should greatly contribute to these breeding efforts.

We are grateful to John Wiley & Sons, Inc. for their prudence and supporting us in publishing this book. Contribution from many prominent scientists on bioenergy research has greatly enhanced this publication. We extend our sincere appreciation to all the chapter contributors for their invaluable contribution. We also appreciate the efforts of all who directly or indirectly supported our endeavor. We sincerely believe that this book will be a useful reference for cultivar improvement of lignocellulosic biomass feedstock crops.

Malay C. Saha
Hem S. Bhandari
Joseph H. Bouton
By most estimates, world population growth has more than tripled during the past 100 years, going from approximately 2–7 billion persons (Anonymous, 2012). To sustain the economies needed to support this type of unprecedented population growth, readily available, cheap, scalable, and efficient energy sources were required. These sources turned out to be hydrocarbons, both oil and coal, and after the Second World War, nuclear power. Heavy hydrocarbon use resulted in their depletion and increased cost and a concurrent increase in environmental problems due to gas emissions. Although “clean” as far as gas emissions, nuclear power has its own problems associated with safety and disposal of its highly toxic waste products. Therefore, alternative energy sources such as wind, solar, and bioenergy that are capable of offsetting some of the hydrocarbons and nuclear use and mitigating their environmental problems are now being investigated and, in some cases, implemented on a commercial scale.

Lignocellulosic feedstocks derived from plant biomass emerged as a sustainable and renewable energy source that underpins the bioenergy industry (McLaughlin, 1992; Sanderson et al., 2006). Bioenergy, both biopower and biofuels, could contribute significantly to meet growing energy demand while mitigating the environmental problems. The Energy Independence and Security Act RFS2 in the United States mandates that annual biofuels’ use increase to 36 billion gallons per year by 2022, of which 21 billion gallons should come from advanced biofuels (EISA, 2007). Waste products, both agricultural and forest residues, are obvious choices as base feedstocks; however, it is the use of “dedicated” energy crops where the ability to achieve the billion tons of biomass USA goals will be realized (Perlack et al., 2005). Several plant species such as switchgrass, Miscanthus, corn fodder, sorghum, energy canes, and other grass and legume species have demonstrated tremendous potential for use as dedicated bioenergy feedstocks especially for the production of advanced biofuels. Their adaptation patterns along most agro-ecological gradients also offer options for optimizing a crop species mix for any bioenergy feedstock production system.
1.1 Historical Development

The concept of bioenergy is not new. Early human civilization witnessed energy potential of plant biomass and used it in cooking and as a source of light. By 1912, Rudolf Diesel demonstrated that diesel obtained from plant biomass can be used in automobile operation (Korbitz, 1999). The shortage of crude oil during the 1970s reinforced the world’s motivation toward plant biomass as alternative energy source. In Brazil, use of ethanol to power automobile dates back to the late 1920s. Brazil’s National Alcohol Program under government funding was launched in 1975 to promote ethanol production from sugarcane. In 2007, Brazil produced more than 16 billion liters of ethanol (Goldemberg, 2007).

In the United States, during the past decade, billions of dollars were invested annually by the federal and state governments, venture capitalists, and major private companies for the development of new technology to convert feedstock species into renewable biofuels. Major breakthroughs have happened during the past few years and the biofuel production increased significantly. Significant improvements have also noticed on conversion technologies thus moving the biofuel from pilot scale to near-commercial scale.

At present, biofuels are produced from corn grain, sugar cane, and vegetable oil. In the United States, corn is the main feedstock used to produce ethanol. In 2010, corn-based ethanol production was about 50 billion liters (USDOE, 2011). With the increasing world’s food demand there is serious economic (animal feed costs are rising) and even ethical concern with using corn grain in ethanol production. In the mid-1980s, U.S. Department of Energy (DOE) Herbaceous Energy Crops Program (HECP), coordinated by Oakridge National Laboratory (ORNL), funded research to identify potential herbaceous species as potential bioenergy feedstock. Over 30 plant herbaceous crop species including grasses and legumes were studied, and consequently switchgrass was chosen as the “model bioenergy species” (McLaughlin and Kszos, 2005). Under optimum conditions, switchgrass demonstrated annual biomass yield as high as 24 Mg ha\(^{-1}\), and each ton of biomass can produce about 380 L of ethanol (Schmer et al., 2008). Carbon sequestration by 5-year-old switchgrass stand can add 2.4 Mg C ha\(^{-1}\) year\(^{-1}\) for 10,000 Mg ha\(^{-1}\) of soil mass (Schmer et al., 2011). Other plant species with high bioenergy potential include Miscanthus, corn fodder, sorghum, sugarcane, prairie cordgrass, bluestems, eastern gamagrass, and alfalfa. Miscanthus hybrids have the potential to produce high biomass and can make a significant contribution to biofuel production and to the mitigation of climate change. Plant breeding will play an important role in improving the genetic potential of these species, as well as other potential species, and make them suitable as bioenergy feedstock.

1.2 Cultivar Development

Genetic improvement of plant species targeting biomass feedstock production, particularly the dedicated energy crops such as switchgrass and Miscanthus, is in a very early stage, posing both challenges and opportunities for genetic improvement. The current emphasis of most biomass feedstock cultivar development research is based on biomass yield. Due to extensive breeding efforts, maize grain yield has increased 745% from 1930 to the present (USDA-NASS, 2011). Biomass yield per unit of land is a function of many traits; thus plant breeders also have to address problems related to establishment, seed shattering, and resistance to abiotic/biotic stresses. Equally important is improvement in feedstock quality for sustainable bioeconomy.
Research is still evolving on processes to convert biomass to bioenergy/biofuel that will dictate the quality targets of dedicated bioenergy crops. One likely scenario is that both enzymatic and thermochemical conversion technologies will be required depending on the biomass feedstock availability and the targeted bioenergy end product.

1.3 Breeding Approach

The fundamentals of feedstock cultivar development will be the same as ones that have been successfully employed in several agricultural crops for thousands of years. Most of the potential bioenergy crops are outcrossing polyploids and great genetic diversity exists both within and among populations. This reinforces the potential for genetic improvement of these crops. Most of the named switchgrass cultivars were developed only by seed increases of desirable plants identified from the wild or selected through two or three generations under cultivation (Casler et al., 2007). The improvement of quantitative traits will require several cycles of selection (Bouton, 2008). The traits that are qualitatively inherited can be improved rapidly. Exploitation of heterosis would require identification of genes involved in heterosis and development of heterotic pools, similar to the one that was followed in hybrid breeding in maize. Different crop species would need different plant breeding methodologies depending on their mode of reproduction, ploidy systems, and germplasm availability. For example, corn has a well-developed hybrid production system using inbred lines, which may not be directly applicable to crops like switchgrass that has nearly 100% self-incompatibility. Some species of Miscanthus and sugarcane that do not produce seeds require a different approach. The hundreds of years of experience gained in the development of modern cultivars of food and other agricultural crops can directly benefit the cultivar development research of bioenergy crops.

1.4 Molecular Tools

Rapid development in high-throughput genotyping, genotyping based on sequencing, and computational biology continues to shape modern plant breeding into a new approach called “molecular breeding.” Rapid discoveries of DNA-based markers at significantly reduced cost have impacted cultivar development methodologies in the recent years. Advances in molecular biological research have uncovered several plant biological functions and enhanced the understanding of gene function at the molecular level (Bouton, 2008). Rapidly growing genome, transcriptome, proteome, and metabolom resources of several important biofuel crops can speed the process of feedstock development which can lead to improved economics of renewable bioenergy production. Lignin polymer is found to be interfering with enzymatic digestion of lignocellulosic biomass necessitating the pretreatment of biomass feedstock, making biofuel production an economic challenge (Dien et al., 2011). However, plant biologists have been able to characterize and modify lignin pathway and produce low lignin plants by silencing genes involved in lignin pathway (Dien et al., 2011; Fu et al., 2011). Transgenic technologies have also enabled plant breeders to look beyond target species for genes conferring desirable traits, but current regulatory aspects could curtail gains from transgenics, especially for bioenergy crops, without deregulation reforms that better balance both risk and benefit (Strauss et al., 2010).
1.5 Future Outlook

Changing climates as seen by frequent unprecedented drought cycles have become a serious challenge in the recent decades. This will require an “adjustment philosophy” in that breeding strategies will need to continually adjust trait targets for greater stress extremes with programs concentrating on stress tolerances growing in importance (Bouton, 2010). As biomass feedstock production scales up to a commercial level, there will also be a significant shift in agricultural landscapes, leading to occurrence of new pest and diseases specific to the feedstock species. Exploration and exploitation of microbial endophytes implicated in protection of plants from a broad range of biotic and abiotic stresses are important areas for future research (Ghimire et al., 2011). Bioenergy crop breeders should therefore take proactive action to integrate all conventional and modern tools into their cultivar development research.

There are government policy issues that may assist the growth of bioenergy industry. However, these are political issues not within the scope of this book and will need to be hashed out at that level. But one thing is certain, bioenergy cultivar development research will benefit by always striving for a cost-effective product that competes in the free market with hydrocarbons and nuclear power. This should become more possible by leveraging facilities/resources established for traditional agricultural crops and implementation of regional/national/international collaborations between institutions involved in bioenergy feedstock research. Finally, sharing germplasms between participating institutes would help maintain genetic diversity of the breeding pools needed for long-term use.

References

Chapter 2
Switchgrass Genetics and Breeding Challenges

Laura Bartley1, Yanqi Wu2, Aaron Saathoff3, and Gautam Sarath3

1Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
2Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK 74078, USA
3Grain, Forage, and Bioenergy Research Unit: USDA-ARS and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA

2.1 Introduction

Liquid biofuel production from biomass has the potential to reduce greenhouse gas emissions from transportation and dependence on fossil fuels extracted from politically volatile regions (Somerville, 2007; Bartley and Ronald, 2009; Vega-Sanchez and Ronald, 2010). Cultivated grasses are the most abundant sustainable class of biomass that can be produced in the United States (∼57%, Perlack et al., 2005). Switchgrass (Panicum virgatum L.), in particular, is an attractive native species for development as a bioenergy crop given that largely unimproved varieties exhibit large biomass yield (up to 36.7 Mg ha⁻¹) and marked stress tolerance (Figure 2.1; Thomason et al., 2004; McLaughlin and Adams Kszos, 2005; Bouton, 2007). Even with typical, lower-yielding marginal land (5–11 Mg ha⁻¹), energy and emission measurements for switchgrass production give an approximately 5-fold net energy yield (output:input) and an approximately 10-fold reduction in greenhouse gas emissions compared with gasoline (Schmer et al., 2008). In order to realize greater benefits from the production of lignocellulosic fuels, there is an enormous need to apply various breeding methods and tools toward switchgrass improvement. Below, we outline switchgrass energy crop breeding goals and, in subsequent sections, provide an overview of the basic biology and genetic characteristics of switchgrass. We then discuss experiences and challenges related to switchgrass conventional and molecular breeding.

Biomass yield and quality are the two general classes of targets for genetic improvement of bioenergy crops. Selection of switchgrass for high biomass production is ongoing (Vogel et al., 2010). Recently released cultivars “BoMaster,” “Cimarron,” and “Colony” produce higher biomass yields than the current best commercial cultivar “Alamo” and are primarily targeted for cellulosic feedstock production (Burns et al., 2008a, 2008b, 2010; Wu and Talafirro, 2009). Similarly, high-performing replacement proprietary cultivars for old standards such as Alamo, “Kanlow,” and “Cave-in-Rock” are currently sold in commercial...
bioenergy seed trade as EG1101, EG1102, and EG2101, respectively (http://www.bladeenergy.com/SwitchProducts.aspx).

Abiotic and biotic stress tolerance and improved agronomic characteristics, such as reduced seed dormancy (Burson et al., 2009), are important for establishing and obtaining consistent biomass production. In terms of biomass quality, the goals for the two current biomass to biofuel conversion platforms, biochemical and thermochemical, are roughly opposite (Figure 2.2). For biochemical conversion methods that mostly produce alcohol fuels, the quality goal is to optimize the quantity of sugar that can be obtained from the biomass. For