DIVERSITY-ORIENTED SYNTHESIS
DIVERSITY-ORIENTED SYNTHESIS

Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology

Edited by

ANDREA TRABOCCHI
University of Florence
Sesto Fiorentino, Florence, Italy

WILEY
CONTENTS

CONTRIBUTORS xv
FOREWORD xix
PREFACE xxi
ABBREVIATIONS xxv

1 The Basics of Diversity-Oriented Synthesis 1
Kieron M. G. O’Connell, Warren R. J. D. Galloway, and David R. Spring

1.1 Introduction, 1
1.2 What Is Diversity-Oriented Synthesis?, 1
1.3 Small Molecules and Biology, 2
1.4 Comparing DOS, TOS, and Combinatorial Chemistry: Focused Library Synthesis, 4
1.5 Molecular Diversity, 5
1.6 Molecular Diversity and Chemical Space, 8
1.7 Synthetic Strategies for Creating Molecular Diversity, 8
1.8 Reagent-Based Approaches to Diversity Generation, 11
 1.8.1 Use of Pluripotent Functional Groups, 11
 1.8.2 Use of Densely Functionalized Molecules, 15
 1.8.3 Twelve-fold Branching Strategy, 16
1.9 Substrate-Based Approach to Skeletal Diversity Generation, 19
1.10 Other Build/Couple/Pair Examples, 19
1.11 Concluding Remarks, 24
References, 24
PART I CHEMICAL METHODOLOGY IN DIVERSITY-ORIENTED SYNTHESIS

2 Strategic Applications of Multicomponent Reactions in Diversity-Oriented Synthesis 29
 John M. Knapp, Mark J. Kurth, Jared T. Shaw, and Ashkaan Younai
 2.1 Introduction, 29
 2.2 MCR Products for HTS, 31
 2.2.1 MCRs and HTS: The Real and the Virtual, 31
 2.2.2 Expanding Accessible Diversity: New MCRs, 33
 2.3 MCRs as Starting Points for DOS, 39
 2.4 Conclusions, 55
 References, 55

3 Cycloaddition Reactions in Diversity-Oriented Synthesis 59
 Giovanni Muncipinto
 3.1 Introduction, 59
 3.2 \([4 + 2]\) Cycloaddition Reactions, 60
 3.2.1 Diels–Alder Reaction, 60
 3.2.2 Inverse Electron-Demand Diels–Alder Reaction, 67
 3.3 1,3-Dipolar Cycloaddition Reactions, 70
 3.4 Miscellaneous Cycloadditions, 83
 3.5 Conclusions, 91
 References, 91

4 Phosphine Organocatalysis as a Platform for Diversity-Oriented Synthesis 97
 Zhiming Wang and Ohyun Kwon
 4.1 Introduction, 97
 4.2 DOS Using Phosphine Organocatalysis, 100
 4.2.1 Phosphine Organocatalysis of Allenes with Imines, 100
 4.2.2 Phosphine Organocatalysis of Allenes with Azomethine Imines, 103
 4.2.3 Phosphine Organocatalysis of Allenes with Electron-Deficient Olefins, 105
 4.2.4 Phosphine Organocatalysis of Allenes with Aldehydes, 109
 4.2.5 Phosphine Organocatalysis of Allenes with Aziridines, 112
 4.2.6 Phosphine Organocatalysis of Allenes with Dinucleophiles, 113
 4.2.7 Phosphine Organocatalysis of Acetylenes with Dinucleophiles, 114
 4.3 Skeletal Diversity Based on a Phosphine Catalysis/Combinatorial Scaffolding Strategy, 116
4.4 A DOS Library Based on Phosphine Organocatalysis: Biological Screening, Analog Synthesis, and Structure–Activity Relationship Analysis, 121
4.4.1 Protein Geranylgeranyltransferase Type I and Rab Inhibitors, 123
4.4.2 Activators of Endothelium-Driven Innate Immunity of Macrophages, 126
4.4.3 Cancer Cell Migration Assays, 128
4.4.4 Aplexone Decreases Cellular Cholesterol Level, 128

4.5 Conclusions, 129
References, 130

5 Domino Reactions in Library Synthesis 135
Matthew G. LaPorte, John R. Goodell, Sammi Tsegay, and Peter Wipf
5.1 Introduction, 135
5.2 Pericyclic Domino Reactions, 136
5.3 Anionic Domino Reactions, 150
5.4 Transition-Metal-Mediated Domino Reactions, 159
5.5 Radical Domino Reactions, 165
5.6 Conclusions, 174
References, 175

6 Diversity-Oriented Synthesis of Amino Acid–Derived Scaffolds and Peptidomimetics: A Perspective 177
Andrea Trabocchi
6.1 Introduction, 177
6.2 Definition and Classification of Peptidomimetics, 179
6.3 Early Combinatorial Approaches to Peptidomimetic Scaffolds, 180
6.4 Amino Acid–Derived Scaffolds, 183
6.4.1 Scaffolds from α-Amino Acids, 183
6.4.2 Scaffolds Containing the Pyrrolidine Ring, 185
6.4.3 Scaffolds from Amino Aldehyde Intermediates, 187
6.4.4 Scaffolds from Amino Carbonyl and Sugar Derivatives, 190
6.5 Macrocyclic Peptidomimetic Scaffolds, 194
6.6 Conclusions, 197
References, 198

7 Solid-Phase Synthesis Enabling Chemical Diversity 201
Naděžda Cankařová and Viktor Krčňák
7.1 Introduction, 201
7.2 Skeletal Diversity, 203
7.2.1 Reagent-Based Strategy: Branching Process, 203
7.2.2 Substrate-Based Strategy: Folding Process, 228
CONTENTS

7.3 Stereochemical Diversity, 234
7.4 Appendage Diversity, 238
7.5 Build/Couple/Pair Strategy, 239
7.6 Scaffold Hopping, 243
7.7 Conclusions, 249
References, 250

8 Macrocycles as Templates for Diversity Generation in Drug Discovery
Eric Marsault

8.1 Introduction, 253
8.2 Challenges Associated with Macrocycles, 254
 8.2.1 Synthetic Challenge, 254
 8.2.2 Assessment of Diversity, 257
 8.2.3 Macrocycles in Drug Discovery, 259
8.3 Macrocyclic Peptides, 259
 8.3.1 Split-and-Pool Synthesis of Macrocyclic Peptides, 259
 8.3.2 Synthesis of Small-to-Medium-Sized Macrocycles Using Amphoteric Reagents, 260
 8.3.3 DNA-, RNA-, and Phage-Templated Synthesis of Peptidic Macrocycles, 262
8.4 Peptidomimetic Macrocycles, 265
 8.4.1 Mimics of Peptide Secondary Structures, 265
 8.4.2 Diversity-Oriented Synthesis of Macrocyclic Peptidomimetics, 268
 8.4.3 Macrocyclic Peptoid Libraries, 269
 8.4.4 Semipeptidic Macrocycles, 270
8.5 Diversity-Oriented Strategies Based on Nonpeptidic Natural Product Scaffolds, 273
 8.5.1 Diversification of Rapamycin, 274
 8.5.2 Diversification Strategies Based on Natural Macrolactones, 275
 8.5.3 Diversification on Macrolactam Scaffolds, 277
 8.5.4 Multicomponent Macrocyclization, 278
8.6 Conclusions, 281
References and Notes, 282

PART II CHEMICAL LIBRARIES AND DIVERSITY-ORIENTED SYNTHESIS

9 Diversity-Oriented Synthesis of Natural Product–Like Libraries
Mark Dow, Francesco Marchetti, and Adam Nelson

9.1 Introduction, 291
9.2 Libraries Inspired by Natural Product Scaffolds, 292
9.3 Folding Pathways in the Synthesis of Natural Product–Like Libraries, 297
9.4 Branching Pathways in the Synthesis of Natural Product–Like Libraries, 305
9.5 Oligomer-Based Approaches to Natural Product–Like Libraries, 312
9.6 Summary, 320
References, 320

10 Chemoinformatic Characterization of the Chemical Space and Molecular Diversity of Compound Libraries 325
José Luis Medina-Franco

10.1 Introduction, 325
10.2 Concept of Chemical Space, 326
10.3 General Aspects of Chemoinformatic Methods to Analyze the Chemical Space, 327
10.4 Chemoinformatic-Based Analysis of Libraries using Different Representations, 328
 10.4.1 Physicochemical Properties and Medicinally Relevant Chemical Spaces, 330
 10.4.2 Molecular Complexity, 334
 10.4.3 Scaffold Analysis, 336
 10.4.4 Structure Fingerprints and Multiple Representations, 341
10.5 Recent Trends in Computational Approaches to Characterize Compound Libraries, 344
10.6 Concluding Remarks, 345
References, 347

11 DNA-Encoded Chemical Libraries 353
Luca Mannocci

11.1 Introduction, 353
 11.1.1 Drug Discovery Today: A Formidable Challenge, 353
 11.1.2 Selecting Chemicals, 354
 11.1.3 Chapter Overview, 356
11.2 DNA-Encoded Chemical Libraries, 357
 11.2.1 DNA Encoding, 357
 11.2.2 Single-Pharmacophore DNA-Encoded Chemical Libraries, 361
 11.2.3 Self-Assembled DNA-Encoded Chemical Libraries (Dual-Pharmacophore Libraries), 381
11.3 Selection and Decoding, 386
 11.3.1 In Vitro Selection Strategies, 386
 11.3.2 Decoding of DNA-Encoded Chemical Libraries, 387
PART III SCREENING METHODS AND LEAD IDENTIFICATION

12 Experimental Approaches to Rapid Identification, Profiling, and Characterization of Specific Biological Effects of DOS Compounds 403
Eduard A. Sergienko and Susanne Heynen-Genel

12.1 Introduction, 403
12.2 Basic Principles of HTS, 405
 12.2.1 Specifics of HTS Assays, 405
 12.2.2 Assay Performance Measures, 407
 12.2.3 Primary Hit Selection Criteria, 409
 12.2.4 Quality Control of HTS Data, 410
 12.2.5 Stages of Lead Identification Projects, 411
 12.2.6 Special HTS Modalities, 413
 12.2.7 Principles of Assay Design, 413
12.3 Common Assay Methods and Techniques, 415
 12.3.1 HTS Detection Approaches, 415
 12.3.2 The Great (Biological) Divide, 417
 12.3.3 Common Biochemical Screening Methods, 418
 12.3.4 Common Cell-Based Assays, 421
 12.3.5 Image-Based Screening, 424
12.4 Future Perspectives, 428
References, 428

13 Small-Molecule Microarrays 431
Hongyan Sun

13.1 Introduction, 431
13.2 Chemical Library Design and Synthesis, 432
 13.2.1 Diversity-Oriented Synthesis, 434
 13.2.2 Other Libraries, 436
13.3 Fabrication of SMMs, 438
 13.3.1 Noncovalent Immobilization Approach, 438
 13.3.2 Covalent Immobilization Approach, 440
 13.3.3 In Situ Synthesis Approach, 445
13.4 Applications of SMM, 446
 13.4.1 Protein Ligand Discovery, 447
14 Yeast as a Model in High-Throughput Screening of Small-Molecule Libraries 455
Irene Stefanini, Carlotta De Filippo, and Duccio Cavalieri

14.1 Introduction, 455
14.1.1 The Quest for Rapid and Smart Biological Assays, 455
14.1.2 Saccharomyces cerevisiae as a Model, 457
14.2 Chemical Genetics and S. cerevisiae, 461
14.2.1 Forward Chemical Genetics, 464
14.2.2 Reverse Chemical Genetics, 467
14.3 Chemical Genomics and S. cerevisiae, 471
14.3.1 Competitive Growth Assay Based on Heterozygote Strains, 472
14.3.2 Competitive Growth Assay Based on Haploid or Homozygous Strains, 472
14.3.3 Comparative Expression Profiling, 473
14.4 Conclusions: The Route of Drug Discovery with the Budding Yeast, 477
References, 478

15 Virtual Screening Methods 483
Jürgen Bajorath

15.1 Introduction, 483
15.2 Basic Virtual Screening Concepts, 484
15.2.1 Structure- and Ligand-Based Virtual Screening, 484
15.2.2 Scaffold Analysis, 485
15.2.3 Methodological Complexity, 485
15.3 Molecular Similarity in Virtual Screening, 487
15.3.1 Local vs. Global Similarity, 487
15.3.2 Molecular Representations, 488
15.4 Spectrum of Virtual Screening Approaches, 489
15.5 Docking, 490
15.6 Similarity Searching, 491
15.6.1 Pharmacophores, 492
15.6.2 Two-Dimensional Fingerprints, 494
15.7 Compound Classification, 496
15.7.1 Chemical Reference Spaces, 496
15.7.2 Clustering and Partitioning, 497
15.8 Machine Learning, 498
 15.8.1 Self-Organizing Maps vs. Decision Trees, 498
 15.8.2 Support Vector Machines, 499
 15.8.3 Bayesian Methods, 500
15.9 Conclusions, 501
References, 502

16 Structure–Activity Relationship Data Analysis: Activity Landscapes and Activity Cliffs 507
Jürgen Bajorath
16.1 Introduction, 507
16.2 Numerical SAR Analysis Functions, 508
 16.2.1 Structural Similarity vs. Activity Similarity, 508
 16.2.2 SAR Index, 509
 16.2.3 Per-Compound Discontinuity Score, 510
 16.2.4 Structure–Activity Landscape Index, 510
16.3 Principles and Intrinsic Limitations of Activity Landscape Design, 511
 16.3.1 Chemical Reference Space, 511
 16.3.2 Similarity Assessment, 512
16.4 Activity Landscape Representations, 513
 16.4.1 Three-Dimensional Models, 513
 16.4.2 SAS Maps, 515
 16.4.3 Molecular Networks, 516
 16.4.4 Compound-Centric Activity Landscape Views, 518
16.5 Defining and Identifying Activity Cliffs, 520
 16.5.1 Similarity and Potency Criteria, 520
 16.5.2 Continuum of Activity Cliffs vs. Discrete States, 522
 16.5.3 Experimental Data, 522
 16.5.4 Different Types of Activity Cliffs, 523
16.6 Activity Cliff Survey, 525
 16.6.1 Frequency of Cliff Formation, 525
 16.6.2 From Isolated to Coordinated Activity Cliffs, 525
 16.6.3 Preferred R-Groups and Scaffolds, 526
16.7 Activity Cliffs and SAR Information, 526
 16.7.1 SAR Discontinuity vs. Continuity, 526
 16.7.2 Information Extraction from Activity Cliffs, 527
16.8 Concluding Remarks, 528
References, 529
PART IV APPLICATIONS IN CHEMICAL BIOLOGY AND DRUG DISCOVERY

17 Diversity-Oriented Synthesis and Drug Development: Facilitating the Discovery of Novel Probes and Therapeutics 535
Jeremy R. Duvall, Eamon Comer, and Sivaraman Dandapani

17.1 Introduction, 535
17.2 Case Study 1: Inhibition of Cytokine-Induced β-cell Apoptosis, 540
17.3 Case Study 2: Identification of Antimalarials, 548
17.4 Case Study 3: Targeting Protein–Protein and Protein–DNA Interactions, 558
17.5 Conclusions, 570
References, 571

18 DOS-Derived Small-Molecule Probes in Chemical Biology 575
Nicholas Hill, Lingyan Du, and Qiu Wang

18.1 Introduction, 575
18.2 DOS-Derived Small-Molecule Probes, 576
18.3 Developing Small-Molecule Probes of Complex Biological Pathways, 576
18.3.1 Inhibitors of Sonic Hedgehog Signaling, 576
18.3.2 Inhibitor of the Secretory Pathway, 593
18.4 Expanding the Collection of Important Biological Probes, 595
18.4.1 Inhibitors of Heat Shock Protein 70: Probes with Higher Potency, 595
18.4.2 Agonist of the Acetylcholine Muscarinic M1 Receptor: Probes with Higher Selectivity, 597
18.4.3 Inhibitors of Protein Prenylation: Probes with Novel Structures, 599
18.4.4 Inhibitors of Core Self-Association in Hepatitis C Virus: Probes with a Novel Mechanism, 601
18.5 Developing Probes for Therapeutically Desirable Phenotypes, 603
18.5.1 Inhibitors of Glucose Transport, 603
18.5.2 Inhibitors of Osteoclastogenesis, 605
18.6 Natural Product–Inspired Small-Molecule Probes Developed from DOS and Biology-Oriented Synthesis, 606
18.6.1 Activator of the Wnt Pathway Derived from BIOS, 606
18.7 Summary and Outlook, 611
References, 611

INDEX 619
CONTRIBUTORS

Jürgen Bajorath, Rheinische Friedrich-Wilhelms-Universität, Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Dahlmannstrasse 2, D-53113, Bonn, Germany

Naděžda Cankařová, Palacký University, Department of Organic Chemistry, Faculty of Science, 17. Listopadu 12, 771 46, Olomouc, Czech Republic

Duccio Cavalieri, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, 38010 S. Michele all’Adige, Trento, Italy

Eamon Comer, Broad Institute of Harvard and MIT, Chemical Biology Platform, 7 Cambridge Center, Cambridge, MA 02142

Sivaraman Dandapani, Broad Institute of Harvard and MIT, Chemical Biology Platform, 7 Cambridge Center, Cambridge, MA 02142

Carlotta De Filippo, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, 38010 S. Michele all’Adige, Trento, Italy

Mark Dow, University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology, Leeds, LS2 9JT, United Kingdom

Lingyan Du, Duke University, Department of Chemistry, 124 Science Drive, Box 90346, 2102 French Family Science Center, Durham, NC 27708

Jeremy R. Duvall, Broad Institute of Harvard and MIT, Chemical Biology Platform, 7 Cambridge Center, Cambridge, MA 02142

Warren R. J. D. Galloway, University of Cambridge Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
CONTRIBUTORS

John R. Goodell, University of Pittsburgh, Center for Chemical Methodologies and Library Development, Department of Chemistry, Parkman Avenue, Pittsburgh, PA 15260

Susanne Heynen-Genel, Sanford-Burnham Medical Research Institute, Conrad Prebys Center for Chemical Genomics, 10901 North Torrey Pines Road, La Jolla, CA 92037

Nicholas Hill, Duke University, Department of Chemistry, 124 Science Drive, Box 90346, 2102 French Family Science Center, Durham, NC 27708

John M. Knapp, University of California, Department of Chemistry, One Shields Avenue, Davis, CA 95616

Viktor Krchňák, University of Notre Dame, Department of Chemistry and Biochemistry, 251 Nieuwland Science Center, Notre Dame, IN 46556

Mark J. Kurth, University of California, Department of Chemistry, One Shields Avenue, Davis, CA 95616

Ohyun Kwon, University of California–Los Angeles, Department of Chemistry and Biochemistry, 607 Charles E. Young Drive East, Los Angeles, CA 90095-1569

Matthew G. LaPorte, University of Pittsburgh, Center for Chemical Methodologies and Library Development, Department of Chemistry, Parkman Avenue CSC 658, Pittsburgh, PA 15260

Luca Mannocci, Philochem AG, Libernstrasse 3, CH-8112, Otelfingen, Switzerland

Francesco Marchetti, University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology, Leeds, LS2 9JT, United Kingdom

Eric Marsault, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e av nord, Sherbrooke, QC J1H 5N4, Canada

José Luis Medina-Franco, Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL 34987

Giovanni Muncipinto, Broad Institute of Harvard and MIT, Chemical Biology Platform, 7 Cambridge Center, Cambridge, MA 02142

Adam Nelson, University of Leeds, School of Chemistry and Astbury Centre for Structural Molecular Biology, Leeds, LS2 9JT, United Kingdom

Kieron M. G. O’Connell, University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

Stuart L. Schreiber, Howard Hughes Medical Institute, Broad Institute, Cambridge, MA 02142

Eduard A. Sergienko, Sanford-Burnham Medical Research Institute, Conrad Prebys Center for Chemical Genomics, 10901 North Torrey Pines Road, La Jolla, CA 92037
Jared T. Shaw, University of California, Department of Chemistry, One Shields Avenue, Davis, CA 95616

David R. Spring, University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

Irene Stefanini, Fondazione Edmund Mach, Research and Innovation Centre, Via E. Mach 1, 38010 S. Michele all’Adige, Trento, Italy

Hongyan Sun, Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China

Andrea Trabocchi, University of Florence, Department of Chemistry “Ugo Schiff”, Via della Lastruccia 13, I-50019 Sesto Fiorentino, Florence, Italy

Sammi Tsegay, University of Pittsburgh, Center for Chemical Methodologies and Library Development, Department of Chemistry, Parkman Avenue, Pittsburgh, PA 15260

Qiu Wang, Duke University, Department of Chemistry, 124 Science Drive, Box 90346, 2102 French Family Science Center, Durham, NC 27708

Zhiming Wang, School of Petrochemical Engineering, Changzhou University, No. 1 Gehu Road, Changzhou, Jiangsu, 213164, P. R. China

Peter Wipf, University of Pittsburgh, Center for Chemical Methodologies and Library Development, Department of Chemistry, Parkman Avenue, Pittsburgh, PA 15260

Ashkaan Younai, University of California, Department of Chemistry, One Shields Avenue, Davis, CA 95616
FOREWORD

The gap between insights into human disease and therapeutics that arise from these insights is closing, but it cannot close fast enough. Society has patiently invested in science. But its expectation of scientists—that we mitigate suffering from disease—must be met if we expect to receive its support in the future.

Advances in human biology are revealing novel insights into the cause of disease and requirements for the maintenance of disease. But the therapeutic targets that are arising, such as transcription factors and RNA molecules, do not fit conveniently into what we believe is currently achievable in drug discovery. Overcoming this belief is the twenty-first century challenge for organic chemistry, organic synthesis, and chemical biology. If we can do so, drug discovery and human health will be transformed.

The insights provided in Diversity-Oriented Synthesis: Basics and Applications in Organic Synthesis, Drug Discovery, and Chemical Biology leave me feeling optimistic. I can sense the fearlessness and audacity of the authors as they undertake the impossible. The three-dimensional world of biological macromolecules is now interfaced with the three-dimensional world of small molecules to a far greater degree. Therapeutic targets are now seeing the full force of modern organic chemistry. Using simple concepts exploited by nature’s synthesis of naturally occurring small molecules, small molecules with the physical properties required of drugs yet with the topographic properties needed for achieving the impossible are now accessible. Bravo!

STUART L. SCHREIBER

Broad Institute and Harvard University
Cambridge, Massachusetts
October 2012
Since the early reports by Stuart L. Schreiber, diversity-oriented synthesis (DOS) has become a new paradigm for developing large collections of structurally diverse small molecules as probes to investigate biological pathways and to provide a larger array of the chemical space in drug discovery issues. The principles of DOS have evolved from the concept of generating structurally diverse compounds from a divergent approach consisting of a complexity-generating reaction followed by cyclization steps and appendage diversity, to the development of different cyclic structures through the build/couple/pair approach. The concept of expanding the molecular complexity to explore the chemical space more thoroughly produced new advances in generating chemical libraries. Moreover, technology advances followed the need of automation in this field, thus producing high-tech instrumentation for library development and compound management, as well as improving high-throughput screening facilities. The possibility of creating new highly diverse and complex molecular platforms and the achievement of hundreds to thousands to millions of compounds is producing significant advances in chemical biology and drug discovery. This is due primarily to improvement in the quality of chemical libraries, which are more stereochemically rich and structurally complex. Moreover, advances in bioinformatics and systems biology are enabling an interdisciplinary setting between chemistry and biology in advancing the knowledge about the functions of biological systems and the correlation between genes and function. Finally, drug discovery is also taking advantage of DOS concepts in several medicinal chemistry programs, which in the near future will produce advances in both target and ligand discovery.

The book has been conceived in four parts, encompassing synthetic methods to achieve small-molecule collections according to DOS principles, strategies to develop
DOS libraries, screening methods for ligand identification, and selected significant applications of small molecules in drug discovery and chemical biology.

The first chapter deals with the basics of diversity-oriented synthesis, including definitions of molecular diversity and chemical space, discussing how DOS relates to classic combinatorial chemistry and showing significant approaches that have been developed for expanding the chemical diversity, including the well-known build/couple/pair concept introduced by Schreiber.

Part I encompasses key chemical methods addressing the generation of small molecules according to DOS principles and also important classes of molecules generated through DOS approaches, including peptidomimetics and macrocycles. Accordingly, important topics for accessing complexity and diversity have been taken into account. Chapter 2 reports the application of multicomponent reactions as a powerful tool to introduce chemical diversity and multifunctional building blocks in a DOS approach. Chapter 3 covers the use of cycloaddition reactions in the fields of DOS as a key approach to provide cyclic and heterocyclic compounds with a high degree of structural complexity and skeletal diversity. Phosphine organocatalysis is described in Chapter 4 as a valid approach encompassing catalytic methods in the DOS area, and stimulating examples with a wide array of building blocks are reported, together with some applications in chemical biology. Chapter 5 introduces the role of domino reactions in DOS as a concept devoted to the generation of small molecules in few synthetic steps, taking advantage of pericyclic, anionic, radical, or transition metal–mediated domino processes. Finally, solid-phase methods are reported in Chapter 7 to present the use of this important technique in generating large collections of small molecules according to DOS principles. The application of DOS to achieve specific classes of compounds is exemplified in Chapters 6 and 8, where the generation of peptidomimetics and macrocyclic structures, respectively, are reported.

In Part II the concept of diversity-oriented synthesis is expanded to describe chemical libraries and how these two elements are related. Chapter 9 presents a synthesis of chemical libraries inspired by natural products as a key platform in addressing both chemical diversity and molecular complexity. Chapter 10 deals with chemoinformatic methods of analyzing the chemical space, and several methods for representing small-molecule libraries are outlined. Chapter 11 reports the approach of DNA-encoded chemical libraries as an innovative technology addressing the need of huge libraries for drug discovery issues and the requirement of a fast deconvolution method.

Part III is dedicated to modern approaches for screening DOS libraries, including the basics of high-throughput and high-content screening (Chapter 12), small-molecule microarrays (Chapter 13), and the use of yeast as a model in smart screening assays encompassing chemical genetics and chemical genomics (Chapter 14). In silico methods are described in Chapters 15 and 16, which are connected to the chemoinformatic concepts reported in Chapter 10, and they present, respectively, the virtual screening of chemical libraries and the concepts of activity landscapes and activity cliffs as powerful methods for the analysis of structure–activity relationship data.
Finally, Part IV presents significant applications of DOS libraries and small molecules in the fields of drug discovery (Chapter 17) and chemical biology (Chapter 18), reporting selected key studies in these research areas, and giving a picture of the prominent role of diversity-oriented synthesis in present and future biomedical research.

I express my thanks to the authors who contributed the careful and detailed reviews presented in this book. These presentations should interest not only those readers who currently work in the field of diversity-oriented synthesis, but also those who are considering this approach in the fields of drug discovery and chemical biology. I hope that these chapters will stimulate further advances in this rapidly developing field.

Also, I would like to thank my mentor, professor Antonio Guarna, for kind support during the development of this book, and throughout my career in research.

Andrea Trabocchi

Florence, Italy
October 2012
ABBREVIATIONS

\(\mu_w \) Microwave irradiation

1,3-DNB 1,3-Dinitrobenzene

3CR Three-component reaction

3D Three-dimensional

4CR Four-component reaction

AcOH Acetic acid

AcONH\(_4\) Ammonium acetate

AD Activating domain

AD-mix Asymmetric dihydroxylation-mix

ADME Absorption, distribution, metabolism, and elimination

AIBN 2,2'-Azobis(isobutyronitrile)

AIDS Acquired immunodeficiency syndrome

AIV Avian influenza virus

All Allyl

ALPHA Amplified luminescent proximity homogeneous assay

ATP Adenosin triphosphate

B/C/P Build/couple/pair

BCL-2 \(\beta \)-Cell lymphoma 2

BD Binding domain

BEMP 2-t-Butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine

BIOS Biology-oriented synthesis

BMMSG Bipartite matching molecular series graph

Bn Benzyl

Boc \(t \)-Butoxycarbonyl
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bredereck’s reagent</td>
<td>t-Butoxybis(dimethylamino)methane</td>
</tr>
<tr>
<td>BRET</td>
<td>Bioluminescence resonance energy transfer</td>
</tr>
<tr>
<td>BRo5</td>
<td>“Beyond the rule of 5”</td>
</tr>
<tr>
<td>Bs</td>
<td>Brosyl</td>
</tr>
<tr>
<td>BTPP</td>
<td>t-Butyliminotri(pyrrolidino)phosphorane</td>
</tr>
<tr>
<td>Bts</td>
<td>Benzothiazole-2-sulfonyle</td>
</tr>
<tr>
<td>Bz</td>
<td>Benzoyl</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CAP</td>
<td>Complementary amphiphilic pairing</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CC</td>
<td>Commercial compounds</td>
</tr>
<tr>
<td>Cdc42</td>
<td>Cell division cycle 42</td>
</tr>
<tr>
<td>CDK1</td>
<td>Cyclin-dependent kinase 1</td>
</tr>
<tr>
<td>CHO</td>
<td>Chinese hamster ovary cells</td>
</tr>
<tr>
<td>CM</td>
<td>Cross metathesis</td>
</tr>
<tr>
<td>CMLD-BU</td>
<td>Center for Chemical Methodology for Library Development at Boston University</td>
</tr>
<tr>
<td>CNG</td>
<td>Chemical neighborhood graph</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>COD</td>
<td>Cyclooctadiene</td>
</tr>
<tr>
<td>COX-1</td>
<td>Cyclooxygenase-1</td>
</tr>
<tr>
<td>Cp</td>
<td>Cyclopentadienyl</td>
</tr>
<tr>
<td>CPCCG</td>
<td>Conrad Prebys Center for Chemical Genomics</td>
</tr>
<tr>
<td>CuAAC</td>
<td>Copper-catalyzed azide–alkyne cycloaddition</td>
</tr>
<tr>
<td>CXCR4</td>
<td>CXC chemokine receptor 4</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-Diazabicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>DAD</td>
<td>Dual activity difference</td>
</tr>
<tr>
<td>DAmP</td>
<td>Decreased abundance by mRNA perturbation</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCC</td>
<td>N,N'-Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCE</td>
<td>1,2-Dichloroethane</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DDQ</td>
<td>2,3-Dichloro-5,6-dicyano-1,4-benzoquinone</td>
</tr>
<tr>
<td>Ddz</td>
<td>α,α-Dimethyl-3,5-dimethoxybenzyloxy carbonyl</td>
</tr>
<tr>
<td>DEAD</td>
<td>Diethyl azodicarboxylate</td>
</tr>
<tr>
<td>Dess–Martin periodinane</td>
<td>1,1,1-Triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one</td>
</tr>
<tr>
<td>DH-PH</td>
<td>Dbl homology/pleckstrin homology</td>
</tr>
<tr>
<td>DHFR</td>
<td>Dihydrofolate reductase</td>
</tr>
<tr>
<td>(DHQD)PHAL</td>
<td>Hydroquinidine 1,4-phthalazinediyl diether</td>
</tr>
<tr>
<td>DIAD</td>
<td>Diisopropyl azodicarboxylate</td>
</tr>
<tr>
<td>DIC</td>
<td>N,N'-Diisopropylcarbodiimide</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N,N'-Diisopropylethylamine</td>
</tr>
<tr>
<td>DKP</td>
<td>Diketopiperazine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DMAD</td>
<td>Dimethylacetylenedicarboxylate</td>
</tr>
<tr>
<td>DMAP</td>
<td>(N,N)-Dimethylaminopyridine</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DMEDA</td>
<td>(N,N)-dimethylethylenediamine</td>
</tr>
<tr>
<td>DMF</td>
<td>(N,N)-Dimethylformamide</td>
</tr>
<tr>
<td>DMS</td>
<td>dimethylsulfide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DMT</td>
<td>(4,4')-Dimethoxytrityl</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNMT</td>
<td>DNA methyltransferase</td>
</tr>
<tr>
<td>DOPA</td>
<td>3,4-Dihydroxyphenylalanine</td>
</tr>
<tr>
<td>DOS</td>
<td>Diversity-oriented synthesis</td>
</tr>
<tr>
<td>DPC</td>
<td>DNA-programmed chemistry platform</td>
</tr>
<tr>
<td>DPPA</td>
<td>Diphenylphosphoryl azide</td>
</tr>
<tr>
<td>DPPP</td>
<td>Diphenylphosphinopropane</td>
</tr>
<tr>
<td>dr</td>
<td>Diastereomeric ratio</td>
</tr>
<tr>
<td>DRCS</td>
<td>Delimited reference chemical spaces</td>
</tr>
<tr>
<td>DSC</td>
<td>Differential scanning calorimetry</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethylenetriamine pentaacetic acid</td>
</tr>
<tr>
<td>DTS</td>
<td>DNA-templated synthesis</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EC</td>
<td>Endothelial cell</td>
</tr>
<tr>
<td>ECL3</td>
<td>Extracellular loop</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced green fluorescent protein</td>
</tr>
<tr>
<td>ELSD</td>
<td>Evaporative light scattering detection</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERK</td>
<td>Extracellular signal-regulated kinase</td>
</tr>
<tr>
<td>ESAC</td>
<td>Encoded self-assembling chemical libraries</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>F-SPE</td>
<td>Fluorous solid-phase extraction</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence-activated sorting instrument</td>
</tr>
<tr>
<td>FBDD</td>
<td>Fragment-based drug discovery</td>
</tr>
<tr>
<td>FGI</td>
<td>Functional group interconversion</td>
</tr>
<tr>
<td>FI</td>
<td>Fluorescence intensity</td>
</tr>
<tr>
<td>FKBP</td>
<td>FK506-binding protein</td>
</tr>
<tr>
<td>Fmoc</td>
<td>Fluorenylmethyloxycarbonyl</td>
</tr>
<tr>
<td>FOS</td>
<td>Function-oriented synthesis</td>
</tr>
<tr>
<td>FP</td>
<td>Fluorescence polarization</td>
</tr>
<tr>
<td>FRET</td>
<td>Fluorescence resonance energy transfer</td>
</tr>
<tr>
<td>FTase</td>
<td>Farnesyltransferase</td>
</tr>
<tr>
<td>GBP</td>
<td>Glycan-binding protein</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GGTase</td>
<td>Geranylgeranyltransferase</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Gli</td>
<td>Glial transcription factor</td>
</tr>
<tr>
<td>Glu</td>
<td>Glutamic acid</td>
</tr>
<tr>
<td>GLUT</td>
<td>Glucose transporters</td>
</tr>
<tr>
<td>GNF</td>
<td>Genomics Institute of the Novartis Research Foundation</td>
</tr>
<tr>
<td>GPCRs</td>
<td>G-protein-coupled receptors</td>
</tr>
<tr>
<td>Grb2</td>
<td>Growth factor receptor-bound protein 2</td>
</tr>
<tr>
<td>Grubbs I</td>
<td>Benzylidene–bis(tricyclohexylphosphate) dichlororuthenium; bis(tricyclohexylphosphate) benzylidine ruthenium(IV) dichloride</td>
</tr>
<tr>
<td>Grubbs II</td>
<td>[1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene] dichloro(phenylmethylene)(tricyclohexylphosphate) ruthenium</td>
</tr>
<tr>
<td>GSIS</td>
<td>Glucose-stimulated insulin secretion</td>
</tr>
<tr>
<td>GSK</td>
<td>GlaxoSmithKline</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathione S-transferase</td>
</tr>
<tr>
<td>GST-PBD</td>
<td>GST fusion protein of the p21-binding domain of PAK1</td>
</tr>
<tr>
<td>GTPase</td>
<td>Guanine triphosphatase</td>
</tr>
<tr>
<td>HA</td>
<td>Hemagglutinin</td>
</tr>
<tr>
<td>HaM</td>
<td>Heck-aza-Michael</td>
</tr>
<tr>
<td>HATU</td>
<td>N,N,N′,N′-Tetramethyl-2-(azabenzotriazol-1-yl)uronium hexafluorophosphate</td>
</tr>
<tr>
<td>HBA</td>
<td>Hydrogen-bond acceptors</td>
</tr>
<tr>
<td>HBD</td>
<td>Hydrogen-bond donors</td>
</tr>
<tr>
<td>HCS</td>
<td>High-content screening</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C virus</td>
</tr>
<tr>
<td>HDAC</td>
<td>Histone deacetylase</td>
</tr>
<tr>
<td>Hh</td>
<td>Hedgehog</td>
</tr>
<tr>
<td>HIP</td>
<td>Haploinsufficiency profiling</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HMDS</td>
<td>Hexamethyldisilazide</td>
</tr>
<tr>
<td>HMG-CoA</td>
<td>3-Hydroxy-3-methylglutaryl coenzyme A</td>
</tr>
<tr>
<td>HMPT</td>
<td>Hexamethylphosphorous triamide</td>
</tr>
<tr>
<td>hMSC</td>
<td>Human mesenchymal stem cell</td>
</tr>
<tr>
<td>HOP</td>
<td>Homozygous profiling</td>
</tr>
<tr>
<td>Hoveyda–Grubbs II</td>
<td>[1,3-Bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene]dichloro(2-isopropoxyphenylmethylene)ruthenium</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-performance liquid chromatography</td>
</tr>
<tr>
<td>HPNCC</td>
<td>Hereditary nonpolyposis colorectal cancer</td>
</tr>
<tr>
<td>Hsc</td>
<td>Heat shock cognate protein</td>
</tr>
<tr>
<td>Hsp</td>
<td>Heat shock protein</td>
</tr>
<tr>
<td>HTS</td>
<td>High-throughput screening</td>
</tr>
<tr>
<td>ICCB</td>
<td>Harvard Medical School's Institute for Chemistry and Cell Biology</td>
</tr>
<tr>
<td>IDPCR</td>
<td>Interaction-dependent PCR</td>
</tr>
</tbody>
</table>