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PREFACE 

The changes in this fourth edition reflect the feedback from numerous students, 
teachers, and colleagues since the third edition came out ten years ago. Almost all 
the material from the third edition is kept in the fourth, however, with a fair amount 
of editing and reorganization. 

Chapter 2 contains a new section on choosing the number of servers and a new 
subsection on computational issues of the Erlang B formula. The chapter now begins 
with a section on birth -death processes, which was the old Section 1.10 from the 
previous edition. Chapter 3 is substantially edited and contains a new section on 
retrial queues. Chapter 5 contains an expanded discussion of the level crossing 
method developed by Percy Brill. Chapter 7 is now split into two separate chapters: 
Chapter 7, Bounds and Approximations, and Chapter 8, Numerical Techniques and 
Simulation. Chapter 7 includes a new section on network approximations, and 
Chapter 8 includes a new section on numerical inversion of transforms. 

Two appendices are added back to this edition, one on transforms and generating 
functions and the other on differential and difference equations (by popular request). 
The appendix on the QtsPlus software is completely rewritten to reflect the changes 
and expansion made to the software. Also, a subsection on how to use the software 
is added to Chapter 1. Finally, many more examples and problems are added. In this 
edition we do not denote which problems are solvable on the computer - we leave 
that up to the discretion of the student and/or instructor. We also do not include here 

xi 



Xii PREFACE 

a table on suggested text material for various course lengths (quarter, semester, etc.). 
Again, we believe that the instructor is the best one to decide. 

For errata, updates, and other information about the text and associated QtsPlus 
software, see the text website: 

<http://mason.gmu.edu/-jshortle/fqt4th.html>. 

Fairfax, Virginia 
March 2008 

Donald Gross 
John F. Shortie 

James M. Thompson 
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CHAPTER 1 

INTRODUCTION 

All of us have experienced the annoyance of having to wait in line. Unfortunately, this 
phenomenon continues to be common in congested, urbanized, "high-tech" societies. 
We wait in line in our cars in traffic jams or at toll booths; we wait on hold for an 
operator to pick up our telephone calls; we wait in line at supermarkets to check 
out; we wait in line at fast-food restaurants; and we wait in line at banks and post 
offices. We, as customers, do not generally like these waits, and the managers of the 
establishments at which we wait also do not like us to wait, since it may cost them 
business. Why then is there waiting? 

The answer is simple: There is more demand for service than there is facility 
for service available. Why is this so? There may be many reasons; for example, 
there may be a shortage of available servers, it may be infeasible economically for a 
business to provide the level of service necessary to prevent waiting, or there may be a 
space limit to the amount of service that can be provided. Generally these limitations 
can be removed with the expenditure of capital, and to know how much service 
should then be made available, one would need to know answers to such questions 
as, "How long must a customer wait?" and "How many people will form in the line?" 
Queueing theory attempts (and in many cases succeeds) to answer these questions 
through detailed mathematical analysis. The word "queue" is in more common usage 
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Figure 1.1 A typical queueing process. 

in Great Britain and other countries than in the United States, but it is rapidly gaining 
acceptance in this country, although it must be admitted that it is just as displeasing 
to spend time in a queue as in a waiting line. 

1.1 Description of the Queueing Problem 

A queueing system can be described as customers arriving for service, waiting for 
service if it is not immediate, and if having waited for service, leaving the system after 
being served. The term "customer" is used in a general sense and does not imply 
necessarily a human customer. For example, a customer could be a ball bearing 
waiting to be polished, an airplane waiting in line to take off, or a computer program 
waiting to be run. Such a basic system can be schematically shown as in Figure 1.1. 
Although any queueing system may be diagrammed in this manner, it should be clear 
that a reasonably accurate representation of such a system would require a detailed 
characterization of the underlying processes. 

Queueing theory was developed to provide models to predict the behavior of sys
tems that attempt to provide service for randomly arising demands; not unnaturally, 
then, the earliest problems studied where those of telephone traffic congestion. The 
pioneer investigator was the Danish mathematician A. K. Erlang, who, in 1909, pub
lished "The Theory of Probabilities and Telephone Conversations." In later works 
he observed that a telephone system was generally characterized by either (1) Pois
son input, exponential holding (service) times, and multiple channels (servers), or 
(2) Poisson input, constant holding times, and a single channel. Erlang was also 
responsible for the notion of stationary equilibrium, for the introduction of the so
called balance-of-state equations, and for the first consideration of the optimization 
of a queueing system. 

Work on the application of the theory to telephony continued after Erlang. In 
1927, E. C. Molina published his paper "Application of the Theory of Probability 
to Telephone Trunking Problems," which was followed one year later by Thornton 
Fry's book Probability and Its Engineering Uses, which expanded much of Erlang's 
earlier work. In the early 1930s, Felix Pollaczek did some further pioneering work 
on Poisson input, arbitrary output, and single- and multiple-channel problems. Ad
ditional work was done at that time in Russia by Kolmogorov and Khintchine, in 
France by Crommelin, and in Sweden by Palm. The work in queueing theory picked 
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up momentum rather slowly in its early days, but accelerated in the 1950s, and there 
has been a great deal of work in the area since then. 

There are many valuable applications of the theory, most of which have been well 
documented in the literature of probability, operations research, management science, 
and industrial engineering. Some examples are traffic flow (vehicles, aircraft, people, 
communications), scheduling (patients in hospitals, jobs on machines, programs on 
a computer), and facility design (banks, post offices, amusement parks, fast-food 
restaurants). 

Queueing theory originated as a very practical subject, but much of the literature up 
to the middle 1980s was of little direct practical value. However, queueing theorists 
have once again become concerned about the application of the sophisticated theory 
that has largely arisen since the close of World War II. The emphasis in the literature 
on the exact solution of queueing problems with clever mathematical tricks is now 
becoming secondary to model building and the direct use of these techniques in 
management decisionmaking. Most real problems do not correspond exactly to a 
mathematical model, and increasing attention is being paid to complex computational 
analysis, approximate solutions, sensitivity analyses, and the like. The development 
of the practice of queueing theory must not be restricted by a lack of closed-form 
solutions, and problem solvers must be able to put the developed theory to good use. 
These points should be kept in mind by the reader, and we attempt to illustrate them 
whenever possible throughout this text. 

1.2 Characteristics of Queueing Processes 

In most cases, six basic characteristics of queueing processes provide an adequate 
description of a queueing system: (1) arrival pattern of customers, (2) service pattern 
of servers, (3) queue discipline, (4) system capacity, (5) number of service channels, 
and (6) number of service stages. 

1.2.1 Arrival Pattern of Customers 

In usual queueing situations, the process of arrivals is stochastic, and it is thus nec
essary to know the probability distribution describing the times between successive 
customer arrivals (interarrival times). It is also necessary to know whether cus
tomers can arrive simultaneously (batch or bulk arrivals), and if so, the probability 
distribution describing the size of the batch. 

It is also necessary to know the reaction of a customer upon entering the system. 
A customer may decide to wait no matter how long the queue becomes, or, on the 
other hand, if the queue is too long, the customer may decide not to enter the system. 
If a customer decides not to enter the queue upon arrival, the customer is said to have 
balked. A customer may enter the queue, but after a time lose patience and decide to 
leave. In this case, the customer is said to have reneged. In the event that there are 
two or more parallel waiting lines, customers may switch from one to another, that is, 
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jockey for position. These three situations are all examples of queues with impatient 
customers. 

One final factor to be considered regarding the arrival pattern is the manner in 
which the pattern changes with time. An arrival pattern that does not change with time 
(i.e., the probability distribution describing the input process is time-independent) 
is called a stationary arrival pattern. One that is not time-independent is called 
nonstationary. 

1.2.2 Service Patterns 

Much of the previous discussion concerning the arrival pattern is appropriate in 
discussing service. Most importantly, a probability distribution is needed to describe 
the sequence of customer service times. Service may also be single or batch. One 
generally thinks of one customer being served at a time by a given server, but there are 
many situations where customers may be served simultaneously by the same server, 
such as a computer with parallel processing, sightseers on a guided tour, or people 
boarding a train. 

The service process may depend on the number of customers waiting for service. A 
server may work faster if the queue is building up or, on the contrary, may get flustered 
and become less efficient. The situation in which service depends on the number of 
customers waiting is referred to as state-dependent service. Although this term was 
not used in discussing arrival patterns, the problems of customer impatience can be 
looked upon as ones of state-dependent arrivals, since the arrival behavior depends 
on the amount of congestion in the system. 

Service, like arrivals, can be stationary or nonstationary with respect to time. 
For example, learning may take place, so that service becomes more efficient as 
experience is gained. The dependence on time is not to be confused with dependence 
on state. The former does not depend on the number of customers in the system, but 
rather on how long it has been in operation. The latter does not depend on how long 
the system has been in operation, but only on the state of the system at a given time, 
that is, on how many customers are currently in the system. Of course, a queueing 
system can be both nonstationary and state-dependent. 

Even if the service rate is high, it is very likely that some customers will be delayed 
by waiting in the line. In general, customers arrive and depart at irregular intervals; 
hence the queue length will assume no definitive pattern unless arrivals and service 
are deterministic. Thus it follows that a probability distribution for queue lengths will 
be the result of two separate processes-arrivals and services-which are generally, 
though not universally, assumed mutually independent. 

1.2.3 Queue Discipline 

Queue discipline refers to the manner in which customers are selected for service 
when a queue has formed. The most common discipline that can be observed in 
everyday life is first come, first served (FCFS). However, this is certainly not the 
only possible queue discipline. Some others in common usage are last come, first 
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Figure 1.2 Multichannel queueing systems. 

served (LCFS), which is applicable to many inventory systems when there is no 
obsolescence of stored units, as it is easier to reach the nearest items, which are the 
last in; selection for service in random order independent of the time of arrival to the 
queue (RSS); and a variety of priority schemes, where customers are given priorities 
upon entering the system, the ones with higher priorities to be selected for service 
ahead of those with lower priorities, regardless of their time of arrival to the system. 

There are two general situations in priority disciplines. In the first, which is 
called preemptive, the customer with the highest priority is allowed to enter service 
immediately even if a customer with lower priority is already in service when the 
higher-priority customer enters the system; that is, the lower-priority customer in 
service is preempted, its service stopped, to be resumed again after the higher-priority 
customer is served. There are two possible additional variations: the preempted 
customer's service when resumed can either continue from the point of preemption 
or start anew. In the second general priority situation, called the nonpreemptive case, 
the highest -priority customer goes to the head of the queue but cannot get into service 
until the customer presently in service is completed, even though this customer has a 
lower priority. 

1.2.4 System Capacity 

In some queueing processes there is a physical limitation to the amount of waiting 
room, so that when the line reaches a certain length, no further customers are allowed 
to enter until space becomes available as the result of a service completion. These are 
referred to as finite queueing situations; that is, there is a finite limit to the maximum 
system size. A queue with limited waiting room can be viewed as one with forced 
balking where a customer is forced to balk if it arrives when the queue size is at 
its limit. This is a simple case, since it is known exactly under what circumstances 
arriving customers must balk. 

1.2.5 Number of Service Channels 

As we shortly explain in more detail, it is generally preferable to design multiserver 
queueing systems to be fed by a single line. Thus, when we specify the number of 
service channels, we are typically referring to the number of parallel service stations 
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Figure 1.3 A multistage queueing system with feedback. 

that can serve customers simultaneously. Figure 1.1 depicts an illustrative single
channel system, while Figure 1.2 shows two variations of multichannel systems. The 
two multichannel systems differ in that the first has a single queue, while the second 
allows a queue for each channel. A hair-styling salon with many chairs is an example 
of the first type of multichannel system (assuming no customer is waiting for any 
particular stylist), while a supermarket or fast-food restaurant might fit the second 
description. It is generally assumed that the service mechanisms of parallel channels 
operate independently of each other. 

1.2.6 Stages of Service 

A queueing system may have only a single stage of service, as in the hair-styling 
salon, or it may have several stages. An example of a multistage queueing system 
would be a physical examination procedure, where each patient must proceed through 
several stages, such as medical history; ear, nose, and throat examination; blood 
tests; electrocardiogram; eye examination; and so on. In some multistage queueing 
processes recycling or feedback may occur. Recycling is common in manufacturing 
processes, where quality control inspections are performed after certain stages, and 
parts that do not meet quality standards are sent back for reprocessing. Similarly, 
a telecommunications network may process messages through a randomly selected 
sequence of nodes, with the possibility that some messages will require rerouting on 
occasion through the same stage. A multistage queueing system with some feedback 
is depicted in Figure 1.3. 

The six characteristics of queueing systems discussed in this section are generally 
sufficient to completely describe a process under study. Clearly, a wide variety of 
queueing systems can be encountered. Before performing any mathematical analyses, 
however, it is absolutely necessary to describe adequately the process being modeled. 
Knowledge of the basic six characteristics is essential in this task. 

It is extremely important to use the correct model or at least the model that best 
describes the real situation being studied. A great deal of thought is often required 
in this model selection procedure. For example, let us reconsider the supermarket 
mentioned previously. Suppose there are c checkout counters. If customers choose 
a checkout counter on a purely random basis (without regard to the queue length in 
front of each counter) and never switch lines (no jockeying), then we truly have c 
independent single-channel models. If, on the other hand, there is a single waiting 
line and when a checker becomes idle, the customer at the head of the line (or with the 
lowest number if numbers are given out) enters service, we have a c-channel model. 
Neither, of course, is generally the case in most supermarkets. What usually happens 
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is that queues form in front of each counter, but new customers enter the queue that 
is the shortest (or has shopping carts that are lightly loaded). Also, there is a great 
deal of jockeying between lines. Now the question becomes which choice of models 
(c independent single channels or a single c-channel) is more appropriate. If there 
were complete jockeying, the single c-channel model would be quite appropriate, 
since even though in reality there are c lines, there is little difference, when jockeying 
is present, between these two cases. This is so because no servers will be idle 
as long as customers are waiting for service, which would not be the case with c 
truly independent single channels. As jockeying is rather easy to accomplish in 
supermarkets, the c-channel model will be more appropriate and realistic than the 
c-single-channels model, which one might have been tempted to choose initially 
prior to giving much thought to the process. Thus it is important not to jump to hasty 
conclusions but to select carefully the most appropriate model. 

1.3 Notation 

As a shorthand for describing queueing processes, a notation has evolved, due for the 
most part to Kendall (1953), which is now rather standard throughout the queueing 
literature. A queueing process is described by a series of symbols and slashes such 
as A/ B / X/Y /Z, where A indicates in some way the interarrival-time distribution, 
B the service pattern as described by the probability distribution for service time, 
X the number of parallel service channels, Y the restriction on system capacity, 
and Z the queue discipline (Appendix 1 contains a dictionary of symbols used 
throughout this text). Some standard symbols for these characteristics are presented 
in Table 1.1. For example, the notation M / D /2/ oo /FCFS indicates a queueing 
process with exponential interarrival times, deterministic service times, two parallel 
servers, no restriction on the maximum number allowed in the system, and first -come, 
first-served queue discipline. 

In many situations only the first three symbols are used. Current practice is to 
omit the service-capacity symbol if no restriction is imposed (Y = oo) and to omit 
the queue discipline if it is first come, first served ( Z = FCFS). Thus M / D /2 would 
be a queueing system with exponential input, deterministic service, two servers, no 
limit on system capacity, and first-come, first-served discipline. 

The symbols in Table 1.1 are, for the most part, self-explanatory; however, a few 
require further comment. The symbol G represents a general probability distribution; 
that is, no assumption is made as to the precise form of the distribution. Results in 
these cases are applicable to any probability distribution. These general-time distri
butions, however, are required to represent independent and identically distributed 
random variables. 

It may also appear strange that the symbol M is used for exponential. The use of 
the symbol E, as one might expect, would be too easily confused with Eko which is 
used for the type-k Erlang distribution (a gamma with an integer shape parameter). 
So M is used instead; it stands for the Markovian or memoryless property of the 
exponential, which is developed in some detail in Section 1.9. 
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Table 1.1 Queueing Notation A/ B/ X/Y/Z 

Characteristic Symbol Explanation 

M Exponential 
Interarrival-time D Deterministic 

distribution (A) Ek Erlang type k(k = 1, 2, ... ) 

Service-time Hk Mixture of k exponentials 
distribution (B) PH Phase type 

G General 
#of parallel servers (X) 1,2, ... ,00 

Max. system capacity (Y) 1,2, ... ,00 

Queue discipline (Z) FCFS First come, first served 
LCFS Last come, first served 
RSS Random selection for service 
PR Priority 
GD General discipline 

The reader may have noticed that the list of symbols is not complete. For example, 
there is no indication of a symbol to represent bulk arrivals, to represent series queues, 
to denote any state dependence, and so on. If a suitable notation does exist for any 
previously unmentioned model, it is indicated when that particular model is brought 
up in the text. However, there still remain models for which no symbolism has either 
been developed or accepted as standard, and this is generally true for those models 
less frequently analyzed in the literature. 

1.4 Measuring System Performance 

Up to now the concentration has been on the physical description of queueing pro
cesses. What, then, might one like to know about the effectiveness of a queueing 
system? Generally there are three types of system responses of interest: (1) some 
measure of the waiting time that a typical customer might be forced to endure; (2) an 
indication of the manner in which customers may accumulate; and (3) a measure of 
the idle time of the servers. Since most queueing systems have stochastic elements, 
these measures are often random variables and their probability distributions, or at 
the very least their expected values, are desired. 

There are two types of customer waiting times, the time a customer spends in 
the queue and the total time a customer spends in the system (queue plus service). 
Depending on the system being studied, one may be of more interest than the other. 
For example, if we are studying an amusement park, it is the time waiting in the 
queue that makes the customer unhappy. On the other hand, if we are dealing with 
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machines that require repair, then it is the total down time (queue wait plus repair 
time) that we wish to keep as small as possible. Correspondingly, there are two 
customer accumulation measures as well: the number of customers in the queue and 
the total number of customers in the system. The former would be of interest if 
we desire to determine a design for waiting space (say, the number of seats to have 
for customers waiting in a hair-styling salon), while the latter may be of interest 
for knowing how many of our machines may be unavailable for use. Idle-service 
measures can include the percentage of time any particular server may be idle, or the 
time the entire system is devoid of customers. 

The task of the queueing analyst is generally one of two things. He or she is either 
to determine the values of appropriate measures of effectiveness for a given process, 
or to design an "optimal" (according to some criterion) system. To do the former, one 
must relate waiting delays, queue lengths, and such to the given properties of the input 
stream and the service procedures. On the other hand, for the design of a system the 
analyst might want to balance customer waiting time against the idle time of servers 
according to some inherent cost structure. If the costs of waiting and idle service can 
be obtained directly, they can be used to determine the optimum number of channels 
to maintain and the service rates at which to operate these channels. Also, to design 
the waiting facility it is necessary to have information regarding the possible size of 
the queue to plan for waiting room. There may also be a space cost that should be 
considered along with customer-waiting and idle-server costs to obtain the optimal 
system design. In any case, the analyst will strive to solve this problem by analytical 
means; however, if these fail, he or she must resort to simulation. Ultimately, the issue 
generally comes down to a trade-off of better customer service versus the expense of 
providing more service capability, that is, determining the increase in investment of 
service for a corresponding decrease in customer delay. 

1.5 Some General Results 

We present some general results and relationships for GIG I 1 and GIG I c queues in 
this section, prior to specific model development. These results will prove useful in 
many of the following sections and chapters, as well as providing some insight at this 
early stage. 

Denoting the average rate of customers entering the queueing system as >. and the 
average rate of serving customers as f-L, a measure of traffic congestion for c-server 
systems is p = >.j Cf-L (often called traffic intensity). When p > 1 ( >. > Cf-L), the 
average number of arrivals into the system exceeds the maximum average service 
rate of the system, and we would expect, as time goes on, the queue to get bigger and 
bigger, unless, at some point, customers were not allowed to join. If we are interested 
in steady-state conditions (the state of the system after it has been in operation a long 
time), when p > 1, the queue size never settles down (assuming customers are not 
prevented from entering the system) and there is no steady state. It turns out that 
for steady-state results to exist, p must be strictly less than 1 (again, assuming no 
denial of customer entry). When p = 1, unless arrivals and service are deterministic 
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and perfectly scheduled, no steady state exists, since randomness will prevent the 
queue from ever emptying out and allowing the servers to catch up, thus causing the 
queue to grow without bound. Therefore, if one knows the average arrival rate and 
average service rate, the minimum number of parallel servers required to guarantee 
a steady-state solution can be calculated immediately by finding the smallest c such 
that )...j CJL < 1. 

What we most often desire in solving queueing models is to find the probability 
distribution for the total number of customers in the system at timet, N(t), which 
is made up of those waiting in queue, Nq(t), plus those in service, Ns(t). Let 
Pn(t) = Pr{N(t) = n}, and Pn = Pr{N = n} in the steady state. Considering 
c-server queues in steady state, two expected-value measures of major interest are 
the mean number in the system, 

00 

L = E[NJ = LnPn, 
n=O 

and the expected number in queue, 

00 

Lq = E[Nq] = L (n- c)Pn· 
n=c+l 

1.5.1 Little's Formulas 

One of the most powerful relationships in queueing theory was developed by John 
D. C. Little in the early 1960s (see Little, 1961, for the original proof-a host of 
papers refining the proof followed in the ensuing decades). Little related the steady
state mean system sizes to the steady-state average customer waiting times as follows. 
Letting Tq represent the time a customer (transaction) spends waiting in the queue 
prior to entering service and T represent the total time a customer spends in the 
system (T = Tq + S, where Sis the service time, and T, Tq, and S are random 
variables), two often used measures of system performance with respect to customers 
are Wq = E[Tq] and W = E[T], the mean waiting time in queue and the mean 
waiting time in the system, respectively. Little's formulas are 

L=AW (l.la) 

and 

(l.lb) 

Thus it is necessary to find only one of the four expected-value measures, in view 
of Little's formulas and the fact that E[T] = E[Tq] + E[SJ, or, equivalently, W = 
Wq + 1/ JL, where JL, as before, is the mean service rate. 

Although the following does not constitute a proof, we illustrate the concept of 
Little's formulas by considering a sample path of one busy period (time from when 
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Figure 1.4 Busy-period sample path. 

a customer enters an empty system until it next empties out again). Consider the 
illustration in Figure 1.4, where the number of customers (say, Nc) that arrive over 
the time period (0, T) is 4. 

The calculations for L and W are 

and 

L = [l(t2 - tl) + 2(t3 - t2) + l(t4- t3) + 2(t5 - t4) 

+ 3(t6 - t5) + 2(t7- t5) + l(T- t1 )]/T 
= (area under curve) /T 
= (T + t7 + t6- t5- t4 + t3- h- lt)/T 

W = [(t3- tl) + (t6- t2) + (t7- t4) + (T- t5)J/4 

= (T + t1 + t6- t5- t4 + ta- t2- lt)/4 
=(area under curve)/Nc. 

(1.2a) 

(1.2b) 

Thus we see from (1.2a) and (1.2b) that the area under curve is LT = WNc, which 
yields L = WNc/T. The fraction Nc/T is the number of customers arriving over 
the time T and is, for this period, the arrival rate A, so that L = A W. A similar 
argument would hold for a picture of the number in the queue Nq over the period (0, 
T), yielding Lq = AWq. While this is not a proof (since it needs to be shown that 
these relationships hold in the limit over many busy periods as time goes to infinity), 
one can see the idea behind the relationships. 

An interesting result that can be derived from Little's formulas [(l.la) and (l.lb)] 
and the relation between W and Wq is 

(1.3) 
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Table 1.2 Summary of General Results for GIG I c Queues 

p=>.lcJL 
L=>.W 
Lq = >.Wq 
W = Wq + 1111 
Pb = >.lcJL = p 
r =>.I JL 

L = Lq +r 
Po=1-p 
L = Lq + (1- Po) 

Traffic intensity; offered work load rate to a server 
Little's formula 
Little's formula 
Expected-value argument 
Busy probability for an arbitrary server 
Expected number of customers in service; offered work 

load rate 
Combined result-(1.3) 
GIG 11 empty-system probability 
Combined result for GIG I 1 

But L - Lq = E[N] - E[Nq] = E[N - Nq] = E[N8 ], so that the expected number 
of customers in service in the steady state is >.1 JL, which we will denote by r. Note 
for a single-server system that r = p and it also follows from simple algebra that 

00 00 00 

n=l n=l n=l 

From this, we can easily derive the probability that any given server is busy in 
a multiserver system in the steady state. We denote this probability by Pb· Since 
we have just shown that the expected number present in service at any instant in 
the steady state is r, it follows from the symmetry of the c servers that the expected 
number present at one server is rIc. Then, by a simple expected-value argument, we 
can show that Pb = p, since 

rIc = p = 0 · ( 1 - Pb) + 1 · Pb. 

For a single-server queue (GIG I 1), the probability of the system being idle 
(N = 0) is the same as the probability of a server being idle. Thus p0 = 1 - Pb in 
this case, and p0 = 1 - p = 1 - r = 1 - >.I JL. The quantity r = >.I JL, the expected 
number of customers in service, has another interesting connotation. It is sometimes 
also referred to as the offered load, since, on average, each customer requires 11 JL 
time units of service and the average number of customers arriving per unit time is >., 
so that the product >. ( 1 I JL) is the amount of work arriving to the system per unit time. 
Dividing this by the number of servers c (which yields p) gives the average amount 
of work coming to each server per unit time. 

Table 1.2 summarizes the results of this section. 

1.6 Simple Data Bookkeeping for Queues 

At this point, it might be useful to use a table format to show how the random 
events of arrivals and service completions interact for a sample single-server system 
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Figure 1.5 Sample path for queueing process. 

to form a queue. In the following, we begin at time 0 with a first arrival and then 
update the system state when events (arrivals or departures) occur-thus the name 
event-oriented bookkeeping is used for this sort of table. 

Consider the elementary case of a constant rate of arrivals to a single channel that 
possesses a constant service rate. (Figure 1.5 is an illustration of this with interarrival 
times of 3 and serve times of 5.) These regularly spaced arrivals are to be served 
first come, first served (FCFS). Let it also be assumed that at timet = 0 there are 
no customers waiting and that the channel is empty. Let >. be defined as the number 
of arrivals per unit time, and 1/ >.then will be the constant time between successive 
arrivals. The particular unit of time (minutes, hours, etc.) is up to the choice of the 
analyst. However, consistency must be adhered to once the unit is chosen so that the 
same basic unit is used throughout the analysis. Similarly, if J-L is to be the rate of 
service in terms of completions per unit time when the server is busy, then 1/ J-L is 
the constant service time. We would like to calculate the number in the system at an 
arbitrary timet, say, n(t), and the time the nth arriving customer must wait in the 
queue to obtain service, say, Wq (n). From these, it then becomes easy to compute 
the major measures of effectiveness. Under the assumption that as soon as a service 
is completed another is begun, the number in the system (including the customer in 
service) at timet is determined by the equation 

n(t) ={number of arrivals in (0, t]} 

-{number of services completed in (0, t]}. (1.4) 

It should be pointed out that there are usually three waiting times of interest-the time 
spent by the nth customer waiting for service (or line delay), which we write here as 
wJn); the time the nth customer spent in the system, which we shall call wCn); and 
what is called the virtual line wait V(t), namely, the wait a fictitious arrival would 
have to endure if it arrived at time t. The reader is cautioned that various authors 
are not consistent and each of these quantities is sometimes referred to simply as the 
waiting time. 
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Figure 1.6 Successive G / G /1 waiting times. 

To find the waiting times in queue until service begins, we observe that the line 
waits wJn) and wJn+l) of two successive customers in any single-server queue 
(deterministic or otherwise) are related by the simple recurrence relation 

{
W:(n) + s<n) _ T(n) 

w:(n+l)- q 
q -

0 

(WJnl + s<nl - T(n) > 0), 

(WJnl + s<n) - T(n) ~ 0), 
(1.5) 

where s< n) is the service time of the nth customer and r< n) is the interarrival time 
between the nth and (n + 1)st customers. This can be seen by a simple diagram as 
shown in Figure 1.6. (This is an important general relation that is also utilized in 
later portions of the text.) 

Bookkeeping has to do with updating the system status when events occur, record
ing items of interest, and calculating measures of effectiveness. Event-oriented 
bookkeeping updates the system state only when events (arrivals or departures) oc
cur. Since there is not necessarily an event every basic time unit, in next-event 
bookkeeping the master clock is increased by a variable amount each time, rather 
than a fixed amount as it would be in time-oriented bookkeeping. The event-oriented 
approach will be illustrated here by an example, using the arrival and service data 
given in Table 1.3. 

We see from simple averaging calculations for columns (5) and (6) in Table 1.4 
that the mean line delay of the 12 customers was 40/12 = 13°, while their mean 
system waiting time turned out to be 70/12 = 365 • Furthermore, we observe that we 
can estimate the mean arrival rate as ji customers per unit time, since there were 12 
arrivals over the 31-time-unit observation horizon. Thus the application of Little's 
law to these numbers tells us that the average system size L over the full time horizon 
was 

L = .AW = 70/12 = 70. 
31/12 31 

The mean queue size can be computed similarly. 


