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The world seldom notices who teachers are;
but civilization depends on what they do.

— Lindley Stiles*
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PREFACE

Mathematical Statistics with Resampling and R is a one-term undergraduate statistics
textbook for sophomores or juniors who have taken a course in probability (at the
level of, for instance, Ross (2009), Ghahramani (2004), and Scheaffer and Young
(2010)) but may not have had any previous exposure to statistics.

What sets this book apart from other mathematical statistics texts is the use of
modern resampling techniques—permutation tests and bootstrapping. We begin with
permutation tests and bootstrap methods before introducing classical inference meth-
ods. Resampling helps students understand the meaning of sampling distributions,
sampling variability, P-values, hypothesis tests, and confidence intervals. We are
inspired by the textbooks of Waldrop (1995) and Chance and Rossman (2005), two
innovative introductory statistics books that also take a nontraditional approach in the
sequencing of topics.

We believe the time is ripe for this book. Many faculty have learned resampling
and simulation-based methods in graduate school and use them in their own work and
are eager to incorporate these ideas into a mathematical statistics course. Students
and faculty today have access to computers that are powerful enough to perform
resampling quickly.

A major topic of debate about the mathematical statistics course is how much
theory to introduce. We want mathematically talented students to get excited about
statistics, so we try to strike a balance between theory, computing, and appli-
cations. We feel that it is important to demonstrate some rigor in developing
some of the statistical ideas presented here, but that mathematical theory should
not dominate the text. And of course, if additions are made to a syllabus, then
deletions must also be made. Thus, some topics such as sufficiency, Fisher infor-
mation, and ANOVA have been omitted in order to make room for permutation
testing, bootstrap; and other modern computing methods (though we plan to make

xiii



xiv PREFACE

some of these omitted topics available as supplements on the text web page
https://sites.google.com/site/ChiharaHesterberg). This site
will also contain R scripts for the text, and errata.

We have compiled the definitions and theorems of the important probability distri-
butions in Appendix B. Instructors who want to prove results on distributional theory
can refer to this appendix. Instructors who wish to skip the theory can continue without
interrupting the flow of the statistical discussion.

Incorporating resampling and bootstrapping methods requires that students use
statistical software. We use R because it is freely available (http://www.r-
project.org/), powerful, flexible, and a valuable tool in future careers. One
of us works at Google where there is an explosion in the use of R, with more and
more nonstatisticians learning R (the statisticians already know it). We realize that
the learning curve for R is high, but believe that the time invested in mastering R is
worth the effort. We have written some basic materials on R that are available on the
web site for this text. We recommend that instructors work through the introductory
worksheet with the students on the first or second day of the term, in a computer lab
if possible. We also provide R script files with code found in the text and additional
examples.

Statistical computing is necessary in statistical practice and for people working
with data in a wide variety of fields. There is an explosion of data—more and more
data—and new computational methods are continuously being developed to handle
this explosion. Statistics is an exciting field, dare we even say sexy?1

ACKNOWLEDGMENTS

This textbook could not have been completed without the assistance of many col-
leagues and students. In particular, we would like to thank Professor Katherine
St. Clair of Carleton College who bravely tested an early rough draft in her Intro-
duction to Statistical Inference class during Winter 2010. In addition, Professor Julie
Legler of St. Olaf College adopted the manuscript in her Statistical Theory class dur-
ing Fall 2010. Both instructors and students provided valuable feedback that improved
the exposition and content of this textbook.

We would also like to thank Siyuan (Ernest) Liu and Chen (Daisy) Sun, two Carleton
College students, for solving many of the exercises and writing up the solutions with
LATEX.

Finally, the staff at Wiley, including Steve Quigley, Sanchari Sil, Dean Gonzalez,
and Jackie Palmieri, provided valuable assistance in preparing this book.

Laura Chihara
Northfield, MN

Tim Hesterberg
Seattle, WA

1Try googling “statistics sexy profession.”



1
DATA AND CASE STUDIES

Statistics is the art and science of collecting and analyzing data and understanding
the nature of variability. Mathematics, especially probability, governs the underlying
theory, but statistics is driven by applications to real problems.

In this chapter, we introduce several data sets that we will encounter throughout
the text in the examples and exercises.

1.1 CASE STUDY: FLIGHT DELAYS

If you have ever traveled by air, you probably have experienced the frustration of flight
delays. The Bureau of Transportation Statistics maintains data on all aspects of air
travel, including flight delays at departure and arrival (http://www.bts.gov/
xml/ontimesummarystatistics/src/index.xml).

LaGuardia Airport (LGA) is one of three major airports that serves the New York
City metropolitan area. In 2008, over 23 million passengers and over 375,000 planes
flew in or out of LGA. United Airlines and American Airlines are two major airlines
that schedule services at LGA. The data set FlightDelays contains information
on all 4029 departures of these two airlines from LGA during May and June 2009
(Tables 1.1 and 1.2).

Each row of the data set is an observation. Each column represents a variable—
some characteristic that is obtained for each observation. For instance, on the first ob-
servation listed, the flight was a United Airlines plane, flight number 403, destined for

Mathematical Statistics with Resampling and R, First Edition. By Laura Chihara and Tim Hesterberg.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.
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2 DATA AND CASE STUDIES

TABLE 1.1 Partial View of FlightDelays Data

Flight Carrier FlightNo Destination DepartTime Day

1 UA 403 DEN 4–8 a.m. Fri
2 UA 405 DEN 8–noon Fri
3 UA 409 DEN 4–8 p.m. Fri
4 UA 511 ORD 8–noon Fri

...

Denver, and departing on Friday between 4 a.m. and 8 a.m. This data set consists of
4029 observations and 9 variables.

Questions we might ask include the following: Are flight delay times different
between the two airlines? Are flight delay times different depending on the day of the
week? Are flights scheduled in the morning less likely to be delayed by more than
15 min?

1.2 CASE STUDY: BIRTH WEIGHTS OF BABIES

The birth weight of a baby is of interest to health officials since many studies
have shown possible links between this weight and conditions in later life, such
as obesity or diabetes. Researchers look for possible relationships between the birth
weight of a baby and the age of the mother or whether or not she smoked cigarettes
or drank alcohol during her pregnancy. The Centers for Disease Control and Pre-
vention (CDC), using data provided by the U.S. Department of Health and Hu-
man Services, National Center for Health Statistics, the Division of Vital Statis-
tics as well as the CDC, maintain a database on all babies born in a given year
(http://wonder.cdc.gov/natality-current.html). We will investi-
gate different samples taken from the CDC’s database of births.

One data set we will investigate consists of a random sample of 1009 babies born
in North Carolina during 2004 (Table 1.3). The babies in the sample had a gestation
period of at least 37 weeks and were single births (i.e., not a twin or triplet).

TABLE 1.2 Variables in Data Set FlightDelays

Variable Description

Carrier UA=United Airlines, AA=American Airlines
FlightNo Flight number
Destination Airport code
DepartTime Scheduled departure time in 4 h intervals
Day Day of week
Month September or October
Delay Minutes flight delayed (negative indicates early departure)
Delayed30 Departure delayed more than 30 min?
FlightLength Length of time of flight (minutes)
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TABLE 1.3 Variables in Data Set
NCBirths2004

Variable Description

Age Mother’s age
Tobacco Mother used tobacco?
Gender Gender of baby
Weight Weight at birth (grams)
Gestation Gestation time (weeks)

In addition, we will also investigate a data set,Girls2004, consisting of a random
sample of 40 baby girls born in Alaska and 40 baby girls born in Wyoming. These
babies also had a gestation period of at least 37 weeks and were single births.

The data set TXBirths2004 contains a random sample of 1587 babies born
in Texas in 2004. In this case, the sample was not restricted to single births, nor
to a gestation period of at least 37 weeks. The numeric variable Number indicates
whether the baby was a single birth, or one of a twin, triplet, and so on. The variable
Multiple is a factor variable indicating whether or not the baby was a multiple birth.

1.3 CASE STUDY: VERIZON REPAIR TIMES

Verizon is the primary local telephone company (incumbent local exchange carrier,
ILEC) for a large area of the eastern United States. As such, it is responsible for
providing repair service for the customers of other telephone companies known as
competing local exchange carriers (CLECs) in this region. Verizon is subject to fines
if the repair times (the time it takes to fix a problem) for CLEC customers are sub-
stantially worse than those for Verizon customers.

The data set Verizon contains a random sample of repair times for 1664 ILEC
and 23 CLEC customers (Table 1.4). The mean repair time for ILEC customers is
8.4 hours, while that for CLEC customers is 16.5 h. Could a difference this large be
easily explained by chance?

1.4 SAMPLING

In analyzing data, we need to determine whether the data represent a population or
a sample. A population represents all the individual cases, whether they are babies,

TABLE 1.4 Variables in Data Set
Verizon

Variable Description

Time Repair times (in hours)
Group ILEC or CLEC
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fish, cars, or coin flips. The data from Flight Delays Case Study in Section 1.1 are
all the flight departures of United Airlines and American Airlines out of LaGuardia
Airport in May and June 2009; thus, this data set represents the population of all such
flights. On the other hand, the North Carolina data set contains only a subset of 1009
births from over 100,000 births in North Carolina in 2004. In this case, we will want
to know how representative statistics computed from this sample are of the entire
population of North Carolina babies born in 2004.

Populations may be finite, such as births in 2004, or infinite, such as coin flips or
births next year.

Throughout this chapter, we will talk about drawing random samples from a popu-
lation. We will use capital letters (e.g., X, Y, Z, and so on) to denote random variables
and lowercase letters (e.g., x1, x2, x3, and so on) to denote actual values or data.

There are many kinds of random samples. Strictly speaking, a “random sample”
is any sample obtained using a random procedure. However, in this book we use
random sample to mean a sample of independent and identically distributed (i.i.d.)
observations from the population, if the population is infinite.

For instance, suppose you toss a fair coin 20 times and consider each head a
“success.” Then your sample consists of the random variables X1, X2, . . . , X20, each
a Bernoulli random variable with success probability 1/2. We use the notation Xi ∼
Bern(1/2), i = 1, 2, . . . , 20.

If the population of interest is finite {x1, x2, . . . , xN}, we can choose a random
sample as follows: label N balls with the numbers 1, 2, . . . , N and place them in an
urn. Draw a ball at random, record its value X1 = xi1 , and then replace the ball. Draw
another ball at random, record its value, X2 = xi2 , and then replace. Continue until
you have a sample xi1 , xi2 , . . . , xin . This is sampling with replacement. For instance,
if N = 5 and n = 2, then there are 5 × 5 = 25 different samples of size 2 (where order
matters). (Note: By “order matters” we do not imply that order matters in practice,
rather we mean that we keep track of the order of the elements when enumerating
samples. For instance, the set {a, b} is different from {b, a}.)

However, in most real situations, for example, in conducting surveys, we do not
want to have the same person polled twice. So we would sample without replacement,
in which case, we will not have independence. For instance, if you wish to draw a
sample of size n = 2 from a population of N = 10 people, then the probability of any
one person being selected is 1/10. However, after having chosen that first person, the
probability of any one of the remaining people being chosen is now 1/9.

In cases where populations are very large compared to the sample size, calculations
under sampling without replacement are reasonably approximated by calculations
under sampling with replacement.

Example 1.1 Consider a population of 1000 people, 350 of whom are smokers and
the rest are nonsmokers. If you select 10 people at random but with replacement, then
the probability that 4 are smokers is

(10
4

)
(350/1000)4(650/1000)6 ≈ 0.2377. If you

select without replacement, then the probability is
(350

4

)(650
6

)
/
(1000

10

) ≈ 0.2388. �
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1.5 PARAMETERS AND STATISTICS

When discussing numeric information, we will want to distinguish between popula-
tions and samples.

Definition 1.1 A parameter is a (numerical) characteristic of a population or of a
probability distribution.

A statistic is a (numerical) characteristic of data. ||

Any function of a parameter is also a parameter; any function of a statistic is also
a statistic. When the statistic is computed from a random sample, it is itself random,
and hence is a random variable.

Example 1.2 μ and σ are parameters of the normal distribution with pdf f (x) =
(1/

√
2πσ)e−(x−μ)2/(2σ2).

The variance σ2 and signal-to-noise ratio μ/σ are also parameters. �

Example 1.3 If X1, X2, . . . , Xn are a random sample, then the mean X̄ =
1/n

∑n
i=1 Xi is a statistic. �

Example 1.4 Consider the population of all babies born in the United States in
2004. Let μ denote the average weight of all these babies. Then μ is a parameter. The
average weight of a sample of 2000 babies born in that year is a statistic. �

Example 1.5 If we consider the population of all adults in the United States today,
the proportion p who approve of the president’s job performance is a parameter. The
fraction p̂ who approve in any given sample is a statistic. �

Example 1.6 The average weight of 1009 babies in the North Carolina Case Study
in Section 1.2 is 3448.26 g. This average is a statistic. �

Example 1.7 If we survey 1000 adults and find that 60% intend to vote in the next
presidential election, then p̂ = 0.60 is a statistic: it estimates the parameter p, the
proportion of all adults who intend to vote in the next election. �

1.6 CASE STUDY: GENERAL SOCIAL SURVEY

The General Social Survey (GSS) is a major survey that has tracked American demo-
graphics, characteristics, and views on social and cultural issues since the 1970s. It
is conducted by the National Opinion Research Center (NORC) at the University of
Chicago. Trained interviewers meet face-to-face with the adults chosen for the survey
and question them for about 90 minutes in their homes.
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TABLE 1.5 Variables in Data Set GSS2002

Variable Description

Region Interview location
Gender Gender of respondent
Race Race of respondent: White, Black, other
Marital Marital status
Education Highest level of education
Happy General happiness
Income Respondent’s income
PolParty Political party
Politics Political views
Marijuana Legalize marijuana?
DeathPenalty Death penalty for murder?
OwnGun Have gun at home?
GunLaw Require permit to buy a gun?
SpendMilitary Amount government spends on military
SpendEduc Amount government spends on education
SpendEnv Amount government spends on the environment
SpendSci Amount government spends on science
Pres00 Whom did you vote for in the 2000 presidential election?
Postlife Believe in life after death?

The GSS Case Study includes the responses of 2765 participants selected in 2002
to about a dozen questions, listed in Table 1.5. For example, one of the questions
(SpendEduc) asked whether the respondent believed that the amount of money
being spent on the nation’s education system was too little, too much, or the right
amount.

We will analyze the GSS data to investigate questions such as the following: Is
there a relationship between the gender of an individual and whom they voted for
in the 2000 presidential election, are people who live in certain regions happier, are
there educational differences in support for the death penalty? These data are archived
at the Computer-Assisted Survey Methods Program at the University of California
(http://sda.berkeley.edu/).

1.7 SAMPLE SURVEYS

“When do you plan to vote for in the next presidential election?” “Would you purchase
our product again in the future?” “Do you smoke cigarettes? If yes, how old were
you when you first started?” Questions such as these are typical of sample surveys.
Researchers want to know something about a population of individuals, whether
they are registered voters, online shoppers, or American teenagers, but to poll every
individual in the population—that is, to take a census—is impractical and costly.
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Thus, researchers will settle for a sample from the target population. But if, say, 60%
of those in your sample of 1000 adults intend to vote for candidate Smith in the next
election, how close is this to the actual percentage who will vote for Smith? How can
we be sure that this sample is truly representative of the population of all voters? We
will learn techniques for statistical inference, drawing a conclusion about a population
based on information about a sample.

When conducting a survey, researchers will start with a sampling frame—a list from
which the researchers will choose their sample. For example, to survey all students
at a college, the campus directory listing could be a sampling frame. For pre-election
surveys, many polling organizations use a sampling frame of registered voters. Note
that the choice of sampling frame could introduce the problem of undercoverage:
omitting people from the target population in the survey. For instance, young people
were missed in many election surveys during the 2008 Obama–McCain presidential
race because they had not yet registered to vote.

Once the researchers have a sampling frame, they will then draw a random sample
from this frame. Researchers will use some type of probability (scientific) sampling
scheme, that is, a scheme that gives everybody in the population a positive chance of
being selected. For example, to obtain a sample of size 10 from a population of 100
individuals, write each person’s name on a slip of paper, put the slips of paper into a
basket, and then draw out 10 slips of paper. Nowadays, statistical software is used to
draw out random samples from a sampling frame.

Another basic survey design uses stratified sampling: the population is divided into
nonoverlapping strata and then random samples are drawn from each stratum. The
idea is to group individuals who are similar in some characteristic into homogeneous
groups, thus reducing variability. For instance, in a survey of university students, a
researcher might divide the students by class: first year, sophomores, juniors, seniors,
and graduate students. A market analyst for an electronics store might choose to
stratify customers based on income levels.

In cluster sampling, the population is divided into nonoverlapping clusters and
then a random sample of clusters is drawn. Every person in a chosen cluster is then
interviewed for the survey. An airport wanting to conduct a customer satisfaction
survey might use a sampling frame of all flights scheduled to depart from the airport
on a certain day. A random sample of flights (clusters) is chosen and then all passengers
on these flights are surveyed. A modification of this design might involve sampling
in stages: for instance, the analysts might first choose a random sample of flights, and
then from each flight choose a random sample of passengers.

The General Social Survey uses a more complex sampling scheme in which the
sampling frame is a list of counties and county equivalents (standard metropolitan
statistical areas) in the United States. These counties are stratified by region, age, and
race. Once a sample of counties is obtained, a sample of block groups and enumeration
districts is selected, stratifying these by race and income. The next stage is to randomly
select blocks and then interview a specific number of men and women who live within
these blocks.

Indeed, all major polling organizations such as Gallup or Roper as well as the GSS
use a multistage sampling design. In this book, we use the GSS data or polling results
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TABLE 1.6 Variables in Data Set
Beerwings

Variable Description

Gender Male or female
Beer Ounces of beer consumed
Hotwings Number of hot wings eaten

for examples as if the survey design used simple random sampling. Calculations for
more complex sampling scheme are beyond the scope of this book and we refer the
interested reader to Lohr (1991) for details.

1.8 CASE STUDY: BEER AND HOT WINGS

Carleton student Nicki Catchpole conducted a study of hot wings and beer consump-
tion at the Williams Bar in the Uptown area of Minneapolis (Catchpole (2004)). She
asked patrons at the bar to record their consumption of hot wings and beer over the
course of several hours. She wanted to know if people who ate more hot wings would
then drink more beer. In addition, she investigated whether or not gender had an
impact on hot wings or beer consumption.

The data for this study are in Beerwings (Table 1.6). There are 30 observations
and 3 variables.

1.9 CASE STUDY: BLACK SPRUCE SEEDLINGS

Black spruce (Picea mariana) is a species of a slow-growing coniferous tree found
across the northern part of North America. It is commonly found on wet organic
soils. In a study conducted in the 1990s, a biologist interested in factors affecting the
growth of the black spruce planted its seedlings on sites located in boreal peatlands
in northern Manitoba, Canada (Camill et al. (2010)).

The data set Spruce contains a part of the data from the study (Table 1.7).
Seventy-two black spruce seedlings were planted in four plots under varying con-
ditions (fertilizer–no fertilizer, competition–no competition) and their heights and
diameters were measured over the course of 5 years.

The researcher wanted to see whether the addition of fertilizer or the removal of
competition from other plants (by weeding) affected the growth of these seedlings.

1.10 STUDIES

Researchers carry out studies to understand the conditions and causes of certain
outcomes: Does smoking cause lung cancer? Do teenagers who smoke marijuana
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TABLE 1.7 Variables in Data Set Spruce

Variable Description

Tree Tree number
Competition C (competition), CR (competition removed)
Fertilizer F (fertilized), NF (not fertilized)
Height0 Height (cm) of seedling at planting
Height5 Height (cm) of seedling at year 5
Diameter0 Diameter (cm) of seedling at planting
Diameter5 Diameter (cm) of seedling at year 5
Ht.change Change (cm) in height
Di.change Change (cm) in diameter

tend to move on to harder drugs? Do males eat more hot wings than females? Do
black spruce seedlings grow taller in fertilized plots?

The Beer and Hot Wings Case Study in Section 1.8 is an example of an observa-
tional study, a study in which researchers observe participants but do not influence
the outcome. In this case, the student just recorded the number of hot wings eaten and
beer consumed by the patrons of Williams Bar.

Example 1.8 The first Nurse’s Health Study is a major observational study funded
by the National Institutes of Health. Over 120,000 registered female nurses who, in
1976, were married, between the ages of 33 and 55 years, and who lived in the 11
most populous states, have been responding every 2 years to written questions about
their health and lifestyle, including smoking habits, hormone use, and menopause
status. Many results on women’s health have come out of this study, such as finding
an association between taking estrogen after menopause and lowering the risk of heart
disease, and determining that for nonsmokers there is no link between taking birth
control pills and developing heart disease.

Because this is an observational study, no cause and effect conclusions can be
drawn. For instance, we cannot state that taking estrogen after menopause will cause
a lowering of the risk for heart disease. In an observational study, there may be many
unrecorded or hidden factors that impact the outcomes. Also, because the participants
in this study are registered nurses, we need to be careful about making inferences about
the general female population. Nurses are more educated and more aware of health
issues than the average person. �

On the other hand, the Black Spruce Case Study in Section 1.9 was an experi-
ment. In an experiment, researchers will manipulate the environment in some way
to observe the response of the objects of interest (people, mice, ball bearings, etc.).
When the objects of interest in an experiment are people, we refer to them as sub-
jects; otherwise, we call them experimental units. In this case, the biologist randomly
assigned the experimental units—the seedlings—to plots subject to four treatments:
fertilization with competition, fertilization without competition, and no fertilization
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with competition, and no fertilization with no competition. He then recorded their
height over a period of several years.

A key feature in this experiment was the random assignment of the seedlings to the
treatments. The idea is to spread out the effects of unknown or uncontrollable factors
that might introduce unwanted variability into the results. For instance, if the biologist
had planted all the seedlings obtained from one particular nursery in the fertilized, no
competition plot and subsequently recorded that these seedlings grew the least, then
he would not be able to discern whether this was due to this particular treatment or due
to some possible problem with seedlings from this nursery. With random assignment
of treatments, the seedlings from this particular nursery would usually be spread out
over the four treatments. Thus, the differences between the treatment groups should
be due to the treatments (or chance).

Example 1.9 Knee osteoarthritis (OA) that results in deterioration of cartilage in the
joint is a common source of pain and disability for the elderly population. In a 2008
paper, “Tai Chi is effective in treating knee osteoarthritis: A randomized controlled
trial,” Wang et al. (2009) at Tufts University Medical School describe an experiment
they conducted to see whether practicing Tai Chi, a style of Chinese martial arts,
could alleviate pain from OA. Forty patients over the age of 65 with confirmed knee
OA but otherwise in good health were recruited from the Boston area. Twenty were
randomly assigned to attend twice weekly 60 min sessions of Tai Chi for 12 weeks. The
remaining 20 participants, the control group, attended twice weekly 60 min sessions
of instructions on health and nutrition, as well as some stretching exercises.

At the end of the 12 weeks, those in the Tai Chi group reported a significant decrease
in knee pain. Because the subjects were randomly assigned to the two treatments, the
researchers can assert that the Tai Chi sessions lead to decrease in knee pain due to
OA. Note that because the subjects were recruited, we need to be careful about making
an inference about the general elderly population: Somebody who voluntarily signs
up to be in an experiment may be inherently different from the average person. �

1.11 EXERCISES

1. For each of the following, describe the population and, if relevant, the sample.
For each number presented, determine if it is a parameter or a statistic (or
something else).

(a) A survey of 2000 high school students finds that 47% watch the television
show “Glee.”

(b) The 2000 U.S. Census reports that 13.9% of the U.S. population was be-
tween the ages of 15 and 24 years.

(c) Based on the rosters of all National Basketball Association teams for the
2006–2007 season, the average height of the players was 78.93 in.

(d) A December 2009 Gallup poll of 1025 national adults, aged 18 and older,
shows that 47% would advise their member of Congress to vote for health
care legislation (or lean toward doing so).
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2. Researchers reported that moderate drinking of alcohol was associated with
a lower risk of dementia ((Mukamal et al. (2003)). Their sample consisted of
373 people with dementia and 373 people without dementia. Participants were
asked how much beer, wine, or shot of liquor they consumed. Thus, participants
who consumed 1–6 drinks a week had a lower risk of dementia than those who
abstained from alcohol.

(a) Was this study an observational study or an experiment?

(b) Can the researchers conclude that drinking alcohol causes a lower risk of
dementia?

3. Researchers surveyed 959 ninth graders who attended three large U.S. urban
high schools and found that those who listened to music that had references to
marijuana were almost twice as likely to have used marijuana as those who did
not listen to music with references to marijuana (Primack et al. (2010)).

(a) Was this an observational study or an experiment?

(b) Can the researchers conclude that listening to music with references to
marijuana causes students to use drugs?

(c) Can the researchers extend their results to all urban American adolescents?

4. Duke University researchers found that diets low in carbohydrates are effective
in controlling blood sugar levels (Westman et al. (2008)). Eighty-four volunteers
with obesity and type 2 diabetes were randomly assigned to either a diet of
less than 20 g of carbohydrates/day or a low-glycemic, reduced calorie diet
(500 calories/day). Ninety-five percent of those on the low-carbohydrate diet
were able to reduce or eliminate their diabetes medications compared to 62%
on the low-glycemic diet.

(a) Was this study an observational study or an experiment?

(b) Can researchers conclude that a low-carbohydrate diet causes an improve-
ment in type 2 diabetes?

(c) Can researchers extend their results to a more general population? Explain.

5. In a population of size N, the probability of any subset of size n being chosen
is 1/

(
N
n

)
. Show this implies that any one person in the population has a n/N

probability of being chosen in a sample. Then, in particular, every person in the
population has the same probability of being chosen.

6. A typical Gallup poll surveys about n = 1000 adults. Suppose the sampling
frame contains 100 million adults (including you). Now, select a random sample
of 1000 adults.

(a) What is the probability that you will be in this sample?

(b) Now suppose that 2000 such samples are selected, each independent of the
others. What is the probability that you will not be in any of the samples?

(c) How many samples must be selected for you to have a 0.5 probability of
being in at least one sample?





2
EXPLORATORY DATA ANALYSIS

Exploratory data analysis (EDA) is an approach to examining and describing data
to gain insight, discover structure, and detect anomalies and outliers. John Tukey
(1915–2000), an American mathematician and statistician who pioneered many of
the techniques now used in EDA, stated in his 1977 book Exploratory Data Analysis
(Tukey (1977)) that “Exploratory data analysis is detective work—numerical detective
work—counting detective work—or graphical detective work.” In this chapter, we will
learn many of the basic techniques and tools for gaining insight into data.

Statistical software packages can easily do the calculations needed for the basic
plots and numeric summaries of data. We will use the software package R. We will
assume that you have gone through the introduction to R available at the web site
https://sites.google.com/site/ChiharaHesterberg.

2.1 BASIC PLOTS

In Chapter 1, we described data on the lengths of flight delays of two major airlines
flying from LaGuardia Airport in New York City in 2009. Some basic questions we
might ask include how many of these flights were flown by United Airlines and how
many by American Airlines? How many flights flown by each of these airlines were
delayed more than 30 min?

A categorical variable is one that places the observations into groups. For instance,
in the FlightDelays data set, Carrier is a categorical variable (we will also

Mathematical Statistics with Resampling and R, First Edition. By Laura Chihara and Tim Hesterberg.
© 2011 John Wiley & Sons, Inc. Published 2011 by John Wiley & Sons, Inc.

13



14 EXPLORATORY DATA ANALYSIS

TABLE 2.1 Counts for the Carrier Variable

Carrier

American Airlines United Airways

Number of flights 2906 1123

call this a factor variable) with two levels, UA and AA. Other data sets might have
categorical variables such as gender (with two levels, Male or Female) or size
(with levels Small, Medium, and Large).

A bar chart is used to describe the distribution of a categorical (factor) variable.
Bars are drawn for each level of the factor variable and the height of the bar is
the number of observations in that level. For the FlightDelays data, there were
2906 American Airlines flights and 1123 United Airlines flights (Table 2.1). The
corresponding bar chart is shown in Figure 2.1.

We might also be interested in investigating the relationship between a carrier and
whether or not a flight was delayed more than 30 min. A contingency table summarizes
the counts in the different categories.

From Table 2.2, we can compute that 13.5% of American Airlines flights were
delayed more than 30 min compared to 18.2% of United Airlines flights. Is this
difference in percentages statistically significant? Could the difference in percentages
be due to natural variability, or is there a systematic difference between the two
airlines? We will address this question in the following chapters.

With a numeric variable, we will be interested in its distribution: What is the range
of values? What values are taken on most often? Where is the center? What is the
spread?
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FIGURE 2.1 Bar chart of Carrier variable.


