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PREFACE 

For many years the author has been urged to develop a text on linear algebra based on 
material in the second edition of his two-volume Calculus, which presents calculus of 
functions of one or more variables, integrated with differential equations, infinite series, 
linear algebra, probability, and numerical analysis. To some extent this was done by others 
when the two Calculus volumes were translated into Italian and divided into three volumes, * 
the second of which contained the material on linear algebra. The present text is designed 
to be independent of the Calculus volumes. 

To accommodate a variety of backgrounds and interests, this text begins with a review of 
prerequisites (Chapter 0). The review is divided into two parts: pre-calculus prerequisites, 
needed to understand the material in Chapters 1 through 7, and calculus prerequisites, 
needed for Chapters 8 through 10. Chapters 1 and 2 introduce vector algebra in n-space 
with applications to analytic geometry. These two chapters provide motivation and concrete 
examples to illustrate the more abstract treatment of linear algebra presented in Chapters 3 
through 7. 

Chapter 3 discusses linear spaces, subspaces, linear independence, bases and dimension, 
inner products, orthogonality, and the Gram-Schmidt process. Chapter 4 introduces linear 
transformations and matrices, with applications to systems of linear equations. Chapter 5 is 
devoted to determinants, which are introduced axiomatically through their properties. The 
treatment is somewhat simpler than that given in the author's Calculus. Chapter 6 treats 
eigenvalues and eigenvectors, and includes the triangularization theorem, which is used to 
deduce the Cayley-Hamilton theorem. There is also a brief section on the Jordan normal 
form. Chapter 7 continues the discussion of eigenvalues and eigenvectors in the setting of 
Euclidean spaces, with applications to quadratic forms and conic sections. 

In Chapters 3 through 7, calculus concepts occur only occasionally in some illustrative 
examples, or in some of the exercises; these are clearly identified and can be omitted or 
postponed without disrupting the continuity of the text. This part of the text is suitable 
for a first course in linear algebra not requiring a calculus prerequisite. However, the 
level of presentation is more appropriate for readers who have acquired some degree of 
mathematical sophistication in a course such as elementary calculus or finite mathematics. 

Chapters 8, 9, and 10 definitely require a calculus background. Chapter 8 applies linear 
algebra concepts to linear differential equations of order n, with special emphasis on 

* Calcolo, Volume primo: Analisi I; Volume Secondo: Geometria; Volume Terzo: Analisi 2. Published by Editore 
Boringhieri, 1977. 

xv 



xvi Preface 

equations with constant coefficients. Chapter 9 uses matrix calculus to discuss systems of 
differential equations. This chapter focuses on the exponential matrix, whose properties 
are derived by an interplay between linear algebra and matrix calculus. Chapter 10 treats 
existence and uniqueness theorems for systems of differential equations, using Picard's 
method of successive approximations, which is also cast in the language of contraction 
operators. 

Although most of the material in this book was extracted from the author's Calculus, 
some topics have been revised or rearranged, and some new material and new exercises 
have been added. 

This textbook can be used by first- or second-year students in college, and it can also 
be of interest to more mature individuals, who may have studied mathematics many years 
ago without learning linear algebra, and who now wish to learn the basic concepts without 
undue emphasis on abstraction or formalization. 

TOM M. ApOSTOL 

California Institute of Technology 
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o 
REVIEW OF PREREQUISITES 

Part 1 of this chapter summarizes some pre-calculus prerequisites for this book-facts about 
real numbers, rectangular coordinates, complex numbers, and mathematical induction. 
Part 2 does the same for calculus prerequisites. Chapters 1 and 2, which deal with vector 
algebra and its applications to analytic geometry, do not require calculus as a prerequisite. 
These two chapters provide motivation and concrete examples to illustrate the abstract 
treatment of linear algebra that begins with Chapter 3. In Chapters 3 through 7, calculus 
concepts occur only occasionally in some illustrative examples, or in some exercises; these 
are clearly identified and can be omitted or postponed without disrupting the continuity of 
the text. 

Although calculus and linear algebra are independent subjects, some of the most striking 
applications of linear algebra involve calculus concepts-integrals, derivatives, and infinite 
series. Familiarity with one-variable calculus is essential to understand these applications, 
especially those referring to differential equations presented in the last three chapters. At 
the same time, the use of linear algebra places some aspects of differential equations in a 
natural setting and helps increase understanding. 

Part 1. Pre-calculus Prerequisites 

0.1 Real numbers as points on a line 

Real numbers can be represented geometrically as points on a straight line. A point is 
selected to represent 0 and another, to the right of 0, to represent 1, as illustrated in Figure 0.1. 
This choice determines the scale, or unit of measure. If one adopts an appropriate set of 
axioms for Euclidean geometry, then each real number corresponds to exactly one point 
on this line and, conversely, each point on the line corresponds to one and only one real 

o x y 

FrGURE 0.1 Real numbers represented geometrically on a line. 
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number. For this reason, the line is usually called the real line or the real axis. We often 
speak of the point x rather than the point corresponding to the real number x. The set of all 
real numbers is denoted by R. 

If x < y, point x lies to the left of y as shown in Figure 0.1. Each positive real number x 
lies at a distance x to the right of zero. A negative real number x is represented by a point 
located at a distance Ixl to the left of zero. 

0.2 Pairs of real numbers as points in a plane 

Points in a plane can be represented by pairs of real numbers. Two perpendicular 
reference lines in the plane are chosen, a horizontal x axis and a vertical y axis. Their 
point of intersection, denoted by 0, is called the origin. On the x axis a convenient point 
is chosen to the right of 0 to represent 1; its distance from 0 is called the unit distance. 
Vertical distances along the y axis are usually measured with the same unit distance. Each 
point in the plane is assigned a pair of numbers, called its coordinates, which tell us how to 
locate the point. Figure 0.2 illustrates some examples. The point with coordinates (3, 2) lies 
three units to the right of the y axis and two units above the x axis. The number 3 is called 
the x coordinate or abscissa of the point, and 2 is its y coordinate or ordinate. Points to the 
left of the y axis have a negative abscissa; those below the x axis have a negative ordinate. 
The coordinates of a point, as just defined, are called its Cartesian coordinates in honor of 
Rene Descartes (1596-1650), one of the founders of analytic geometry. 

When a pair of numbers is used to represent a point, we agree that the abscissa is written 
first, the ordinate second. For this reason, the pair (a, b) is referred to as an ordered pair: 
the first entry is a, the second is b. Two ordered pairs (a, b) and (c, d) represent the same 
point if and only if we have a = c and b = d. Points (a, b) with both a and b positive are 
said to lie in the first quadrant; those with a < 0 and b > 0 are in the second quadrant; 
those with a < 0 and b < 0 are in the third quadrant; and those with a > 0 and b < 0 are 
in the fourth quadrant. Figure 0.2 shows one point in each quadrant. 

The procedure for locating points in space is analogous. We take three mutually per­
pendicular lines in space intersecting at a point (the origin). These lines determine three 

y-axis 
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FIGURE 0.2 Points in the plane represented by pairs of real numbers. 



Polar coordinates 3 

.)' 

FIGURE 0.3 The circle represented by the Cartesian equation x 2 + y2 = r. 

mutually perpendicular planes, and each point in space can be completely described by 
specifying, with appropriate regard for signs, the distances from these planes. We shall dis­
cuss three-dimensional Cartesian coordinates in a later chapter; for the present we confine 
our attention to the two-dimensional case. 

A geometric figure, such as a curve in the plane, is a collection of points satisfying one or 
more special conditions. By expressing these conditions in terms of the coordinates x and 
y we obtain one or more relations (equations or inequalitites) that characterize the figure in 
question. For example, consider a circle of radius r with its center at the origin, as shown 
in Figure 0.3. 

Let (x, y) denote the coordinates of an arbitrary point P on this circle. The line segment 
OP is the hypotenuse of a right triangle whose legs have lengths Ixl and Iyl and, hence, by 
the theorem of Pythagoras, we have 

This equation, called a Cartesian equation of the circle, is satisfied by all points (x, y) on 
the circle and by no others, so the equation completely characterizes the circle. Points inside 
the circle satisfy the inequality x 2 + y2 < r2, while those outside satisfy x 2 + y2 > r2. 

This example illustrates how analytic geometry is used to reduce geometrical statements 
about points to algebraic relations about real numbers. 

0.3 Polar coordinates 

Points in a plane can also be located by using polar coordinates. This is done as follows. 
Let P be a point distinct from the origin. Suppose the line segment joining the origin to P 
has length r > 0 and makes an angle of e radians with the positive x axis, as shown by the 
example in Figure 0.4. The two numbers rand e are called polar coordinates of P. They 
are related to the rectangular coordinates x and y by the equations 

(0.1) x = r cos e, y = r sin e. 
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y 

p = (x, y) 

y= rsinO 

--~~----~~------~----~----.x 
x = rcos 0 

FIGURE 0.4 Polar coordinates. 

The positive number r is called the radial distance of P, and e is called a polar angle. 
We say a polar angle rather than the polar angle because if e satisfies (0.1) so does e + 2n71' 
for any integer n. We agree to call all pairs of real numbers (r, e) polar coordinates of P if 
they satisfy (0.1) with r > O. 

The radial distance r is uniquely determined by x and y: r = Jx2 + y2, but the polar 
angle e is determined only up to integer multiples of 271'. 

When P is the origin, Eqs. (0.1) are satisfied with r = 0 and any e. For this reason, we 
assign the radial distance r = 0 to the origin, and we agree that any real e may be used as 
a polar angle. 

Some curves are described more simply with polar coordinates rather than rectangular 
coordinates. For example, a circle of radius 2 with center at the origin has Cartesian equation 
x 2 + l = 4. In polar coordinates the same circle is described by the simpler equation 
r = 2. The interior of the circle is described by the inequality r < 2, the exterior by r > 2. 

0.4 Complex numbers 

The quadratic equation x 2 + 1 = 0 has no solution in the real-number system because 
there is no real number whose square is negative. New types of numbers, called complex 
numbers, have been introduced to provide solutions to such equations. 

As early as the 16th century, a symbol R was introduced to provide solutions of the 
quadratic equation x2 + 1 = O. This symbol, later denoted by the letter i, was regarded as a 
fictitious or imaginary number, which could be manipulated algebraically like an ordinary 
real number, except that its square was -1. Thus, for example, the quadratic polynomial 
x2 + 1 was factored by writing 

x 2 + 1 = x 2 - P = (x - i)(x + i), 

and the solutions of the equation x2 + 1 = 0 were exhibited as x = ± i, without any concern 
regarding the meaning or validity of such formulas. Expressions such as 2 + 3i were called 
complex numbers, and they were used in a purely formal way for nearly 300 years before 
they were described in a manner that would be considered satisfactory by present-day 
standards. 
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Early in the 19th century, Carl Friedrich Gauss (1777-1855) and William Rowan Hamil­
ton (1805-1865) independently and almost simultaneously proposed the idea of defining 
complex numbers as ordered pairs of real numbers (a, b) endowed with certain special 
properties. This idea is widely accepted today and is described in the next section. 

0.5 Definition and algebraic properties of complex numbers 

Complex numbers are defined as ordered pairs of real numbers, in the same way that we 
described the rectangular coordinates of points in the plane. The new feature is that we also 
define addition and multiplication so that we can perform algebraic operations on complex 
numbers. 

DEFINITION. If a and b are real numbers, the pair (a, b) is called a complex number, 
provided that equality, addition, and multiplication of pairs is defined as follows: 

(a) Equality: (a, b) = (c, d) means a = c and b = d. 
(b) Sum: (a, b) + (c, d) = (a + c, b + d). 
(c) Product: (a, b)(c, d) = (ac - bd,ad + bc). 

The definition of equality states that (a, b) is to be regarded as an ordered pair. Thus, 
the complex number (2,3) is distinct from the complex number (3,2). The numbers a and 
b are called components of the complex number. The first component, a, is also called the 
real part of the complex number; the second component, b, is called the imaginary part. 

Note that the symbol FI does not appear anywhere in this definition. Presently we 
shall introduce i as a particular complex number that has all the algebraic properties ascribed 

to the fictitious symbol FI introduced by the early mathematicians. However, before we 
do this we discuss basic properties of the operations just defined. 

THEOREM 0.1. Addition and multiplication of complex numbers satisfy the commuta­
tive, associative and distributive laws. That is, if x, Y, and Z are arbitrary complex numbers 
we have the following properties: 

Commutative laws: x + Y = Y + x, xy = yx. 
Associative laws: x + (y + z) = (x + y) + z, x(yz) = (xy)z. 
Distributive law: x(y + z) = xy + xz. 

Proof. All these laws are easily verified directly from the definition of sum and product. 
For example, to prove the associative law for multiplication, we express x, y, z in terms of 
their components, say x = (XI, X2), Y = (YI, Y2), z = (Zl, Z2) and note that 

x(yz) = (XI,X2)(YIZI - Y2Z2,YIZ2 + Y2ZI) 

(XI (YIZI - Y2Z2) - X2(YIZ2 + Y2zd, XI (YIZ2 + Y2ZI) + X2(YIZI - Y2Z2)) 

((XIYI - X2Y2)ZI - (XIY2 + X2YI)Z2,(XIY2 + X2YI)ZI + (XIYI - X2Y2)Z2) 

= (XIYI - X2Y2,XIY2 + X2YI)(ZJ,Z2) = (xy)z. 

The commutative and distributive laws may be similarly proved. 
Further algebraic concepts, such as zero, negative, reciprocal, and quotient, analogous 

to those for real numbers, are defined as follows: 
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The complex number (0,0) is called the zero complex number. It is an identity element 
for addition because (0,0) + (a, b) = (a, b) for all complex numbers (a, b). Similarly, the 
complex number (1,0) is an identity for multiplication because 

(a,b)(l,O) = (a, b) 

for all (a, b). 
Since (-a, -b) + (a, b) = (0,0) we call the complex number (-a, -b) the negative of 

(a, b) and we write -(a, b) for (-a, -b). 
The difference (a, b) - (c, d) of two complex numbers is defined to be the sum of (a, b) 

and the negative of (c, d). 
Each nonzero complex number (a, b) has a reciprocal relative to the identity element 

(l, 0), which we denote by (a, b) -I. It is given by the ordered pair 

(0.2) ( a -b) 
( a, b) - I = a2 + b2 ' a2 + b2 if (a, b) *' (0,0), 

and it has the property that (a, b)(a, b)-I = (1,0). Note that a2 + b2 *' 0 because (a, b) *' 
(0,0). 

The quotient (a, b)/(c, d) of two complex numbers with (c, d) *' (0,0) is defined to be 
the product (a, b)(c, d)-I. 

0.6 Complex numbers as an extension of real numbers 

Let C denote the set of all complex numbers. Consider the subset Co of C consisting of 
all complex numbers of the form (a, 0), that is, all complex numbers with zero imaginary 
part. The sum or product of two members of Co is again in Co. In fact we have 

(a, 0) + (b,O) = (a + b,O) and (a, O)(b, 0) = (ab,O). 

This shows that we can add or multiply two numbers in Co by adding or multiplying the 
real parts alone. Or, in other words, with respect to addition and multiplication, the numbers 
in Co act exactly as though they were real numbers. The same is true for subtraction and 
division because -(a, 0) = (-a,O), and (b,O)-1 = (b- I ,0) if b *' O. For this reason, we 
make no distinction between the real number x and the complex number (x, 0) whose real 
part is x. We agree to identify x and (x, 0) and we write x = (x, 0). In particular, we write 
o = (0,0), 1 = (1,0), -1 = (-1,0), and so on. Thus, we can regard the complex number 
system as an extension of the real number system. 

This also makes sense geometrically. In a later section we will represent the complex 
number (x, y) by a point in the plane with Cartesian coordinates x and y; the subset Co is 
represented geometrically by the points on the x axis. 

0.7 The imaginary unit i 

Complex numbers have some algebraic properties not possessed by real numbers. For 
example, the quadratic equation x2 + 1 = 0, which has no solution among the real numbers, 
can now be solved with the use of complex numbers. In fact, the complex number (0,1) is 
a solution, because we have 

(0,1)2 = (0,1)(0,1) = (0' 0 - 1 . 1,0' 1 + 1 . 0) = (-1,0) = -l. 
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DEFINITION. The complex number (0, 1) is denoted by the symbol i and is called the 
imaginary unit. 

The imaginary unit has the property that its square is -1, i2 = -1. Therefore the 
quadratic equation x2 + 1 = 0 has the solution x = i. The reader can easily verify that 
x = - i is another solution. 

Now we can relate the ordered-pair idea with the notation used by the early mathemati­
cians. First we note that the definition of multiplication gives us (b,O)(O, 1) = (0, b), and 
hence we have 

(a, b) = (a, 0) + (0, b) = (a, 0) + (b,O)(O, 1). 

Therefore if we write a = (a, 0), b = (b, 0), and i = (0,1), we get (a, b) = a + bi. In other 
words, we have proved the following: 

THEOREM 0.2. Every complex number (a, b) can be expressed in the form (a, b) 
a + bi. 

This notation aids us in calculations involving addition and multiplication. For example, 
to multiply a + bi by c + di, use the distributive and associative laws, and replace i2 by 
-1. Thus, 

(a + bi)(c + di) = ac - bd + (ad + bc)i, 

which, of course, agrees with the definition of multiplication. Similarly, to compute the 
reciprocal of a nonzero complex number a + bi we write 

a - bi a - bi a bi 
-- - --,------,-- - --- - --- ---
a + bi (a + bi)(a - bi) a2 + b2 a2 + b2 a2 + b2 • 

This formula agrees with that given in (0.2). 
With complex numbers we can solve not only the simple quadratic equation x2 + 1 = 0, 

but also the more general quadratic equation ax2 + bx + c = 0, where a, b, c are real and 
a =1= O. By completing the square, we can write this quadratic equation in the form 

( b )2 4ac - b2 0 x+- + = . 
2a 4a2 

If 4ac - b2 ::; 0, the equation has the real roots (-b ± jb2 - 4ac)/(2a). If 4ac - b2 > 0, 
the left member is positive for every real x and the equation has no real roots. In this case, 
however, there are two complex roots, given by the formulas 

(0.3) 
b .j4ac-b2 

rl = -- + l----
2a 2a 

and 

In 1799, Gauss proved that every polynomial equation of the form 
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where aD, a I, ... ,an are arbitrary real numbers, with an *- 0, has a solution among the 
complex numbers if n 2: 1. Moreover, even if the coefficients aD, ai, ... ,an are complex, 
a solution exists in the complex-number system. This fact is known as the fundamental 
theorem of algebra. It shows that there is no need to construct numbers more general than 
complex numbers to solve polynomial equations with complex coefficients. 

0.8 Exercises 

1. If the product of two complex numbers is zero, prove that at least one of the factors is zero. 
2. Prove that x = i and x = - i are the only solutions of the quadratic equation x2 + 1 = O. 
3. Instead of the definition of multiplication given in Section 0.5, suppose that the product of two 

complex numbers is defined by the simpler equation (a, b)(c, d) = (ac, bd), which is analogous 
to that for addition. 
(a) Show that this new product is commutative and associative and also satisfies the distributive 

law. 
(b) Give two reasons why you think this simpler definition is not appropriate for multiplying 

complex numbers. 

0.9 Geometric interpretation. Modulus and argument 

Because a complex number (x, y) is an ordered pair of real numbers, it can be represented 
geometrically by a point in a plane, or by an arrow extending from the origin to the point 
(x, y), as shown in Figure 0.5. In this context, the xy plane is often referred to as the complex 
plane. The x axis is called the real axis; the y axis is the imaginary axis. It is customary 
to use the words complex number and point interchangeably. Thus, we refer to the point Z 

rather than the point corresponding to the complex number z. 
The operations of addition and subtraction of complex numbers have a simple geometric 

interpretation. If two complex numbers ZI and Z2 are represented by arrows from the origin 
to Zl and Z2, respectively, then the sum Zl + Z2 is determined by the parallelogram law. 
The arrow from the origin to Zl + Z2 is a diagonal of the parallelogram determined by 0, 
ZI, and Z2, as illustrated by the example in Figure 0.6. The other diagonal is related to the 
difference of Zl and Z2. The arrow from ZI to Z2 is parallel to and equal in length to the arrow 
from 0 to Z2 - Zl; the arrow in the opposite direction, from Z2 to ZI, is related in the same 
way to Zl - Z2. 

y 

,(x,y) = x + iy 
I 
I , 
I 

~ Y = r sin () , 
I , 

----~o~~~-4~------~--------~x 

FrGURE 0.5 Geometric representation of the complex number x + iy. 
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FIGURE 0.6 Addition and subtraction of complex numbers represented 
geometrically by the parallelogram law. 

If (x, y) *" (0,0) we can express x and y in polar coordinates, 

x = r cos e, y = rsin e, 

and we obtain 

x + iy = r(cos e + i sin e). 
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(See Figure 0.5.) The positive number r, which represents the distance of (x, y) from the 
origin, is called the modulus or absolute value of x + iy and is denoted by Ix + iyl. Thus, 
we have 

The polar angle e is call an argument of x + iy. We sayan argument rather than the 
argument because for a given point (x, y) the angle e is determined only up to multiples of 
27T. Sometimes it is desirable to assign a unique argument to a complex number. This may 
be done by restricting e to lie in a half-open interval of length 27T. The intervals [0,27T) 
and (-7T, 7T] are commonly used for this purpose. We shall use the interval (-7T, 7T] and 
refer to the corresponding e in this interval as the principal argument of x + iy; we denote 
this e by arg(x + iy). Thus, if x + iy *" 0 and r = Ix + iyl, we define arg(x + iy) to be the 
unique real e satisfying the conditions 

x = r cos e, y = r sin e, -7T < e:::; 7T. 

For the zero complex number we assign the modulus 0 and agree that any real e may be 
used as argument. 

Since the absolute value of a complex number z is simply the length of a line segment, it 
is not surprising to learn that it has the usual properties of absolute values of real numbers. 
For example, 

Izl > 0 if z *" 0, and 

Geometrically, the absolute value IZI - z21 represents the distance between the points Zl 

and Z2 in the complex plane. 
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0.10 Complex conjugates 

If Z = x + iy, the complex conjugate of z is the complex number 2 = x - iy. Geometri­
cally, 2 represents the reflection of z through the real axis; it has the same real part, but the 
imaginary part has opposite sign. The definition of conjugate implies that 121 = Izl and that 

Zl + Z2 = Zl + Z2, 

(0.4) 

Similarly, we find IZI / z21 = IzJi /122 I if Z2 *- O. The triangle inequality 

(0.5) 

is also valid. To prove this we write 

Now observe that a complex number plus its conjugate is twice its real part; and since the 
real part of a complex number does not exceed its modulus, we have 

Therefore 

from which we get the triangle inequality in (0.5). 
If a quadratic equation with real coefficients has no real roots, its complex roots, given 

by (0.3), are conjugates. Conversely, if rl and r2 are complex conjugates, say r1 = a + i{3 
and r2 = a - i{3, where a and {3 are real, then r1 and r2 are roots of a quadratic equation 
with real coefficients. In fact, 

and 

so 

and the quadratic equation in question is 

0.11 Exercises 

I. Express each of the following complex numbers in the form a + hi. 
(a) (l + i)2. (e) (l + i)/(l - 2i). 
(b) I/i. (f) is + i 16 • 

(c) 1/(1 + i). (g) I + i + i2 + i3 . 

(d) (2 + 3i)(3 - 4i). (h) ~ (1 + i)(1 + i- 8). 


