Organic Materials for Sustainable Construction

Edited by Yves Mouton
Organic Materials for Sustainable Construction
Organic Materials for Sustainable Construction

Edited by
Yves Mouton
Table of Contents

Introduction. ... xxiii
Yves MOUTON

PART 1. PROBLEMS REGARDING ORGANIC MATERIALS AND SUSTAINABLE DEVELOPMENT. ... 1

Chapter 1. Organic materials used in Construction at the Dawn of the Third Millennium. ... 3
Michel DE LONGCAMP and Yves MOUTON

 1.1. Specifically polymer-based products 5
 1.1.1. Plastics, rubbers and geosynthetics 5
 1.1.2. Resins, coatings, paintings ... 8
 1.1.3. Incorporated components: organic fiber and concrete
 adjuvants .. 10
 1.2. Bitumen and related products ... 10
 1.3. Organic matrix composite .. 11
 1.4. Timber .. 12
 1.5. Conclusion ... 13
 1.6. Bibliography ... 13

Chapter 2. Sustainable Development Issues Regarding Organic Materials used in Civil Engineering. ... 15
Agnès JULLIEN

 2.1. Introduction. ... 15
2.2. Sustainable development: definitions, general issues and issues in construction ... 16
 2.2.1. The political concept 16
 2.2.2. Possible actions ... 17
 2.2.3. Environmental considerations 18
 2.2.4. Towards normative reference − certification of construction works ... 21

2.3. Civil engineering materials in their environment 23
 2.3.1. Organic materials development practices 23
 2.3.2. From resources to construction: matter transformation . . 24
 2.3.3. Durability: the unquestionable effect of time 25
 2.3.4. About material lifecycle 25

2.4. Sustainable development and civil engineering 28
 2.4.1. Links between study domains of material and construction work ... 28
 2.4.2. Temporal and spatial scales to be taken into account for the environment 30
 2.4.3. Environmental assessment of materials lifecycle of 32

2.5. Conclusion .. 34

2.6. Bibliography .. 34

Chapter 3. Health Risks of Organic Materials used in Construction:
What is the Situation Today? .. 37
Guy AUBURTIN

 3.1. Problems concerning the health risks, and available tools 37
 3.2. Available data in organic construction materials 41
 3.2.1. State of knowledge on the risks related to bitumens 41
 3.2.2. Quality of inside air and health qualification of construction materials ... 44
 3.3. Conclusion .. 46
 3.4. Bibliography .. 47

Chapter 4. Ecological Impacts of Organic Construction Materials:
What is the Situation Today? .. 51
Yves PERRODIN

 4.1. Problems and available tools 51
 4.2. Works available in the field of organic construction materials. . . 54
Table of Contents

4.3. Prospects for organic materials used in construction 56
4.4. Conclusion .. 58
4.5. Bibliography 58
4.6. For more information 59

PART 2. ORGANIC POLYMERS AS BUILDING MATERIALS. 63

Chapter 5. Organic Polymers ... 65
Jacques VERDU and Bruno FAYOLLE

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Introduction</td>
<td>65</td>
</tr>
<tr>
<td>5.1.1. Brief history</td>
<td>65</td>
</tr>
<tr>
<td>5.1.2. Polymers among materials</td>
<td>66</td>
</tr>
<tr>
<td>5.2. Polymer structures</td>
<td>69</td>
</tr>
<tr>
<td>5.2.1. Three structure scales</td>
<td>69</td>
</tr>
<tr>
<td>5.2.2. Molecular structure</td>
<td>70</td>
</tr>
<tr>
<td>5.2.3. Order in the chain – copolymers, stereoisomers, conformations</td>
<td>74</td>
</tr>
<tr>
<td>5.2.4. Macromolecular architectures: thermoplastics and thermosets</td>
<td>78</td>
</tr>
<tr>
<td>5.2.5. Structure on a macromolecular scale</td>
<td>80</td>
</tr>
<tr>
<td>5.2.6. Structure on a supramolecular scale</td>
<td>86</td>
</tr>
<tr>
<td>5.3. Additives and fillers</td>
<td>94</td>
</tr>
<tr>
<td>5.3.1. Additives</td>
<td>94</td>
</tr>
<tr>
<td>5.3.2. Fillers</td>
<td>95</td>
</tr>
<tr>
<td>5.4. Processing properties</td>
<td>96</td>
</tr>
<tr>
<td>5.4.1. Thermoplastics</td>
<td>96</td>
</tr>
<tr>
<td>5.4.2. Thermosetting polymers</td>
<td>98</td>
</tr>
<tr>
<td>5.5. Mechanical properties</td>
<td>99</td>
</tr>
<tr>
<td>5.5.1. Elastomers</td>
<td>99</td>
</tr>
<tr>
<td>5.5.2. Mechanical properties of glassy amorphous polymers</td>
<td>103</td>
</tr>
<tr>
<td>5.5.3. Mechanical properties of semi-crystalline polymers</td>
<td>109</td>
</tr>
<tr>
<td>5.6. Plasticizers and impact modifiers</td>
<td>112</td>
</tr>
<tr>
<td>5.6.1. Plasticizers</td>
<td>112</td>
</tr>
<tr>
<td>5.6.2. Impact modifiers</td>
<td>114</td>
</tr>
<tr>
<td>5.7. Properties of a few industrial linear polymers</td>
<td>117</td>
</tr>
<tr>
<td>5.8. Conclusion</td>
<td>118</td>
</tr>
<tr>
<td>5.9. Bibliography</td>
<td>119</td>
</tr>
<tr>
<td>5.10. More information</td>
<td>120</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>7.5.2.</td>
<td>“Intrinsic” photochemistry and photo-oxidation; photo-oxidation and thermo-oxidation</td>
</tr>
<tr>
<td>7.5.3.</td>
<td>Photostabilisation. UV screens</td>
</tr>
<tr>
<td>7.5.4.</td>
<td>Towards a lifetime prediction in photoageing</td>
</tr>
<tr>
<td>7.6.</td>
<td>Hydrolytic ageing</td>
</tr>
<tr>
<td>7.6.1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>7.6.2.</td>
<td>Quasi-irreversible hydrolysis</td>
</tr>
<tr>
<td>7.6.3.</td>
<td>Reversible hydrolysis</td>
</tr>
<tr>
<td>7.6.4.</td>
<td>Role of solutes in water</td>
</tr>
<tr>
<td>7.6.5.</td>
<td>Secondary effects of hydrolysis: composites</td>
</tr>
<tr>
<td>7.6.6.</td>
<td>Stabilization</td>
</tr>
<tr>
<td>7.7.</td>
<td>Conclusion</td>
</tr>
<tr>
<td>7.8.</td>
<td>Bibliography</td>
</tr>
<tr>
<td>7.9.</td>
<td>More information</td>
</tr>
<tr>
<td>8.1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>8.2.</td>
<td>Combustion principles</td>
</tr>
<tr>
<td>8.3.</td>
<td>Action in gas phase</td>
</tr>
<tr>
<td>8.4.</td>
<td>Cooling and ceramization</td>
</tr>
<tr>
<td>8.5.</td>
<td>The concept of intumescence</td>
</tr>
<tr>
<td>8.6.</td>
<td>Nanocomposites</td>
</tr>
<tr>
<td>8.7.</td>
<td>Intumescent coatings for protecting steel</td>
</tr>
<tr>
<td>8.8.</td>
<td>Conclusion</td>
</tr>
<tr>
<td>8.9.</td>
<td>Bibliography</td>
</tr>
<tr>
<td>8.10.</td>
<td>For more information</td>
</tr>
<tr>
<td>9.1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>9.2.</td>
<td>Assessment</td>
</tr>
<tr>
<td>9.2.1.</td>
<td>Definitions</td>
</tr>
<tr>
<td>9.2.2.</td>
<td>Plastics: facts and figures</td>
</tr>
<tr>
<td>9.2.3.</td>
<td>Legislation</td>
</tr>
<tr>
<td>9.2.4.</td>
<td>Recycling and valorization channels</td>
</tr>
</tbody>
</table>
9.2.5. Current proportion of recycling in waste disposal 195
9.3. Scientific aspects .. 197
9.3.1. The concept of lifecycle 197
9.3.2. Concept of adequacy, application duration/lifetime durability 198
9.4. The construction sector 199
9.5. Conclusion .. 201
9.6. Bibliography .. 201

PART 3. MANUFACTURED PRODUCTS 203

Chapter 10. Geosynthetics and Waterproofing 205
Philippe MESTAT

10.1. Waterproofing in civil engineering 205
10.2. Flow in civil engineering materials 208
10.2.1. Equations of porous media mechanics 208
10.2.2. Permeability coefficients 210
10.3. Characteristics of infiltration liquids 213
10.4. Choice of waterproofing device 214
10.5. Advantages of geosynthetics 216
10.5.1. Geosynthetic types 216
10.5.2. Geosynthetics and their function in constructions 216
10.5.3. Reinforcement and protection function of geosynthetics 220
10.5.4. Hydraulic performances of geosynthetics 223
10.5.5. Geosynthetic drainage functions 225
10.6. Waterproofing functions of geosynthetics 226
10.6.1. Geocomposite and geomembrane clay liners 226
10.6.2. Geomembranes .. 226
10.6.3. Synthetic geomembranes 227
10.6.4. Bituminous geomembranes 229
10.6.5. Geosynthetic clay liners 229
10.7. Geosynthetics layering in construction 232
10.7.1. Assembling geosynthetic layers 232
10.7.2. Connecting geosynthetic layers to constructions 235
10.7.3. Stability of geosynthetic fabrics on slopes 236
10.8. Product specificity and waterproofing systems 237
10.8.1. Composition of geosynthetic waterproofing devices (DEG)... 237
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8.2. Composition of a draining system with geosynthetics (DDG)</td>
<td>239</td>
</tr>
<tr>
<td>10.8.3. Composition of a waterproofing and drainage system with geosynthetics (DEDG)</td>
<td>239</td>
</tr>
<tr>
<td>10.8.4. Composition of a waterproofing device by geosynthetic clay liners (DEGB)</td>
<td>241</td>
</tr>
<tr>
<td>10.8.5. Analysis and dimensioning of geosynthetic based structures</td>
<td>242</td>
</tr>
<tr>
<td>10.9. Numerical modeling</td>
<td>242</td>
</tr>
<tr>
<td>10.9.1. Mechanical behavior</td>
<td>242</td>
</tr>
<tr>
<td>10.9.2. Mechanical behavior modeling by finite elements</td>
<td>244</td>
</tr>
<tr>
<td>10.9.3. Numerical modeling of hydraulic behavior</td>
<td>247</td>
</tr>
<tr>
<td>10.10. Sustainability</td>
<td>250</td>
</tr>
<tr>
<td>10.11. Testing, exploitation, maintenance, repair</td>
<td>252</td>
</tr>
<tr>
<td>10.11.1. Levels of testing</td>
<td>252</td>
</tr>
<tr>
<td>10.11.2. Evidence of loss of waterproofing</td>
<td>253</td>
</tr>
<tr>
<td>10.11.3. Methods for detecting defects</td>
<td>255</td>
</tr>
<tr>
<td>10.11.4. Repairing constructions and autocicatrzation</td>
<td>256</td>
</tr>
<tr>
<td>10.12. Watertight barriers for waste storage sites</td>
<td>257</td>
</tr>
<tr>
<td>10.12.1. Designing a waste storage site</td>
<td>257</td>
</tr>
<tr>
<td>10.12.2. Foundation of a waste storage site</td>
<td>259</td>
</tr>
<tr>
<td>10.12.3. Waste storage site slope</td>
<td>259</td>
</tr>
<tr>
<td>10.12.4. Waste storage site covers</td>
<td>260</td>
</tr>
<tr>
<td>10.12.5. Using geosynthetic materials in waste storage sites</td>
<td>260</td>
</tr>
<tr>
<td>10.12.6. Numerical modeling of waste storage sites</td>
<td>261</td>
</tr>
<tr>
<td>10.13. Conclusions and perspectives</td>
<td>262</td>
</tr>
<tr>
<td>10.15. More information</td>
<td>267</td>
</tr>
</tbody>
</table>

Chapter 11. Waterproofing Buildings: The Point of View of an Expert

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1. Introduction</td>
<td>269</td>
</tr>
<tr>
<td>11.2. Initial analyses</td>
<td>270</td>
</tr>
<tr>
<td>11.3. Initial obligations</td>
<td>272</td>
</tr>
<tr>
<td>11.4. Questions of definition</td>
<td>272</td>
</tr>
<tr>
<td>11.5. Possible solutions</td>
<td>273</td>
</tr>
<tr>
<td>11.5.1. Watertight concrete</td>
<td>274</td>
</tr>
</tbody>
</table>

Chapter 13. Composite Materials and Construction

Jean-François CARON

13.1. Introduction ... 315
13.2. Composites used in construction 317
13.2.1. General remarks .. 317
13.2.2. Fibers ... 317
13.2.3. Different available fiber architecture 320
13.2.4. Matrices ... 320
13.2.5. Transformation processes and semi-products for construction .. 321
13.3. Applications today .. 322
13.3.1. Pre-stressing and cable staying in composite materials 323
13.3.2. Bars for reinforced concrete 324
13.3.3. Composite beams for crossing 325
13.3.4. Composite bridge decks 325
13.3.5. Sandwich roofs .. 326
13.3.6. Some examples of constructions 326
13.4. Perspectives and projects 328
13.4.1. Composite crossings and footbridges 329
13.4.2. Composite gridshells 332
13.5. Recommendations, norms and standards 334
13.6. Composites and the environment: reflections 335
13.7. Conclusion .. 336
13.8. Bibliography ... 336

Chapter 14. Textile Materials: Architectural Applications

Bernard MAURIN and Romain FERRARI

14.1. Introduction .. 339
14.2. Architectural textile membranes 340
14.2.1. Different fabric types 340
14.2.2. Conceptual design 341
14.3. Tensile membranes engineering 343
14.3.1. Two keywords: curvature and pretension 343
14.3.2. Form-finding .. 344
14.3.3. Behavior under external loads 345
Chapter 15. Wood .. 353
Rémy MOUTERDE

15.1. From the thinkable, to the possible 354
15.2. Biological structure 355
 15.2.1. Growth 356
 15.2.2. From the plank to the molecules 357
 15.2.3. Composition 360
 15.2.4. Characteristics of physical behavior 363
15.3. Industrial approach of material 371
 15.3.1. Improvement of natural material 371
 15.3.2. Derivative products 374
 15.3.3. Evolution of the glues 380
 15.3.4. Developments in constructive technologies ... 381
15.4. Conclusion .. 385
15.5. Bibliography .. 386
15.6. More information 386

PART 5. ORGANIC BINDER-BASED MATERIALS 389

Chapter 16. Bitumen, Road Construction and Sustainable
Development .. 391
Bernard LOMBARDI

16.1. A bit of history 391
 16.1.1. An ancient history 391
 16.1.2. First definitions 392
 16.1.3. Bitumen in contemporary times 393
 16.1.4. Bitumen in road engineering 393
16.2. Bitumen and bitumen binders today 395
 16.2.1. Manufacturing bitumen 395
 16.2.2. Bitumen composition 396
 16.2.3. Simple characterization of bitumen 397
16.3. Bitumen, environment and health. REACH regulation 399
16.3.1. Relating to the REACH regulation 399
16.3.2. Bitumen and the REACH regulation 400
16.3.3. Bitumen and hygiene, safety and the environment 401
16.4. Bitumen and sustainable development 403
16.5. Conclusion ... 404
16.6. Bibliography .. 405
16.7. More information ... 405

Chapter 17. Industrial Mortars and Repairing Concrete Products 407
Pierre BOULANGER and Paulo GONCALO

17.1. Definitions ... 407
17.2. The contribution of organic compounds in formulating industrial
mortars ... 408
17.2.1. Contributions for usage ... 408
17.2.2. Contributions for expected performances 410
17.3. Repairing concretes ... 413
17.3.1. Norm EN 1504 ... 413
17.3.2. Implementation of repair strategies 414
17.3.3. Families repair products .. 417
17.4. Conclusion ... 418
17.5. For more information .. 418

Chapter 18. Waterborne Paints to Limit VOC Emissions: Interests
and Limits ... 419
Emmanuel ARAGON and André MARGAILLAN

18.1. Introduction .. 419
18.2. Definition of paint .. 420
18.3. Main features and properties of waterborne paints 421
18.3.1. History of the development of waterborne paints 421
18.3.2. Various types of paint in aqueous phase 421
18.3.3. Film formation process ... 422
18.3.4. Various product families ... 422
18.4. Advantages and disadvantages for using water as a solvent 423
18.4.1. Advantages ... 423
18.4.2. Disadvantages ... 424
18.4.3. Health and safety hazards 426
18.4.4. Conclusion .. 426
18.5. Advantages and disadvantages of using water-based paints in relation to alternative solutions .. 427
18.5.1. Powder coatings .. 427
18.5.2. Radiation curing paints 427
18.5.3. High solids paints 428
18.6. Conclusion: the need for an eco-assessment 428
18.7. Bibliography .. 429

PART 6. ORGANIC COMPOUNDS BUILT-IN INTO CEMENT MATRICES 431

Chapter 19. Rheological Admixtures 433
Nicolas ROUSSEL
19.1. History of rheological admixtures 433
19.2. Macroscopic behavior and microscopic interactions in a cementitious suspension .. 435
19.2.1. Components and composition of cement suspensions 436
19.2.2. Distant inter-particle interactions 437
19.2.3. Contact type interactions 441
19.2.4. Hydrodynamic effects 442
19.3. Conclusion ... 444
19.4. Bibliography .. 445

François CUSSIGH
20.1. Introduction ... 447
20.2. The situation without the contribution of organic chemistry .. 447
20.3. Contribution of superplasticizers 448
20.4. Example of pre-stressed grouting 448
20.5. High performance concretes (HPC) 449
20.6. Self-compacting concretes 450
20.7. Ultra-high performance fiber reinforced concrete (UHPFC) .. 453
20.8. Currently used concretes 454
20.9. Perspectives .. 454
20.10. Bibliography ... 455
Chapter 21. Organic Fibers in Cementitious Materials

Laetitia D’ALOIA-SCHWARTZENTRUBER

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1. Introduction</td>
<td>457</td>
</tr>
<tr>
<td>21.1.1. Characteristics of main fibers</td>
<td>458</td>
</tr>
<tr>
<td>21.1.2. Fiber reinforced cement material, application in civil engineering</td>
<td>459</td>
</tr>
<tr>
<td>21.2. The use of organic fibers in cementitious materials</td>
<td>460</td>
</tr>
<tr>
<td>21.2.1. The contribution of organic fibers</td>
<td>460</td>
</tr>
<tr>
<td>21.2.2. The most used organic fibers in cementitious materials</td>
<td>461</td>
</tr>
<tr>
<td>21.2.3. Organic fiber/cement material composite</td>
<td>462</td>
</tr>
<tr>
<td>21.3. A return to the use of some organic fibers</td>
<td>463</td>
</tr>
<tr>
<td>21.3.1. Polypropylene fibers</td>
<td>463</td>
</tr>
<tr>
<td>21.3.2. Plant fibers</td>
<td>472</td>
</tr>
<tr>
<td>21.4. Contribution of organic fibers to recycling</td>
<td>475</td>
</tr>
<tr>
<td>21.5. Conclusion</td>
<td>476</td>
</tr>
<tr>
<td>21.6. Bibliography</td>
<td>478</td>
</tr>
</tbody>
</table>

Part 7. Problems Specific to Organic Materials: Adhesive Bonding and Characterization Methods

Chapter 22. Adhesive Bonding, a Method for Construction

Thierry CHAUSSADENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.1. Preliminary thoughts</td>
<td>485</td>
</tr>
<tr>
<td>22.2. Introduction</td>
<td>486</td>
</tr>
<tr>
<td>22.3. Theory of adhesion and practical conclusions</td>
<td>487</td>
</tr>
<tr>
<td>22.3.1. Microscopic aspects of adhesion</td>
<td>487</td>
</tr>
<tr>
<td>22.3.2. Macroscopic aspects. Adhesive strength and mechanical properties of adhesive bonds</td>
<td>489</td>
</tr>
<tr>
<td>22.4. Adhesive formulation and implementation</td>
<td>491</td>
</tr>
<tr>
<td>22.4.1. Adhesives used in construction</td>
<td>491</td>
</tr>
<tr>
<td>22.4.2. Implementation of adhesion techniques</td>
<td>492</td>
</tr>
<tr>
<td>22.5. Ageing of adhesive bonds</td>
<td>494</td>
</tr>
<tr>
<td>22.5.1. Microscopic aspects</td>
<td>495</td>
</tr>
<tr>
<td>22.5.2. Macroscopic aspects</td>
<td>496</td>
</tr>
<tr>
<td>22.6. Paths for progress in the development of adhesive bonding techniques in civil engineering</td>
<td>497</td>
</tr>
<tr>
<td>22.6.1. Limitation of mechanical stresses</td>
<td>497</td>
</tr>
<tr>
<td>22.6.2. Adhesive choice and implantation management</td>
<td>498</td>
</tr>
</tbody>
</table>
Chapter 23. Strengthening Concrete Structures by Externally Bonded Composite Materials
Marc QUIERTANT

23.1. Introduction .. 503
23.2. Composite materials for repairing and strengthening concrete structures 505
23.3. History and background of structural strengthening techniques by externally bonded composites ... 509
23.4. Mechanics of externally bonded FRP 510
 23.4.1. Flexural strengthening .. 510
 23.4.2. Shear strengthening .. 514
 23.4.3. Strengthening of compression elements 516
23.5. Installation of FRP strengthening systems 519
 23.5.1. Control of the strength of the concrete substrate 519
 23.5.2. Surface preparation .. 520
 23.5.3. FRP installation .. 521
 23.5.4. Finishing or protective coats .. 524
23.6. Conclusion. Future of strengthening concrete structures by externally bonded composite materials 524
23.7. Bibliography .. 525

Chapter 24. Durability of FRP Strengthened Concrete Specimens under Accelerated Ageing
Karim BENZARTI, Marc QUIERTANT, Sylvain CHATAIGNER and Christophe AUBAGNAC

24.1. Introduction .. 529
24.2. Experimental results and discussions 530
 24.2.1. First set of experiments: Investigation on FRP strengthened concrete slabs using the pull-off test 530
 24.2.2. Second set of experiments: Investigation on FRP strengthened concrete blocks using both the pull-off test and the single lap shear test. 537
24.3. Conclusion .. 550
24.4. Acknowledgements .. 550
Chapter 25. Characterization of Organic Materials used in Civil Engineering by Chemical and Physico-chemical Methods

Fabienne FARCAS

25.1. Bituminous binders
25.1.1. Pure bitumen
25.1.2. Special bitumens
25.1.3. PolypHosphoric acid modified bitumens

25.2. Anti-corrosive paints
25.2.1. Ageing of chlorinated rubber binders
25.2.2. Ageing of polyurethane, urethane-acrylic and alkyd-urethane paint binders

25.3. Organic admixture in cementing materials
25.3.1. Evolution of “classic” superplasticizers in hardened cement pastes
25.3.2. New generation admixtures

25.4. Conclusion

25.5. Bibliography

PART 8. ORGANIC MATERIALS, CONSTRUCTION, ARCHITECTURE, CREATION AND SUSTAINABLE DEVELOPMENT

Chapter 26. Organic Materials and Sustainable Architectural Design

Michel PAULIN

26.1. A context of accelerated evolution
26.1.1. Post-war practices
26.1.2. The first oil crisis
26.1.3. New modernity and heritage
26.1.4. The era for sustainable development

26.2. New designer practices
26.2.1. The revival of the systemic approach
26.2.2. Performance design
26.2.3. Responsibility evolution
26.2.4. Legal complexity
26.2.5. NTIC on projects

26.3. New approaches to materials and structures
26.3.1. A new status for materials in society
26.3.2. The lack of image for organic materials 591
26.3.3. The specificity of composite materials 592
26.3.4. Double approach: low-tech and high-tech. 592
26.3.5. Irruption of the nanoscopic scale 593
26.4. What are the hopes for architectural creations? 593
26.4.1. Organic materials and the structure of the buildings 594
26.4.2. Organic materials for building enclosures 595
26.4.3. For the future? .. 597

Chapter 27. Specific Contributions of Viscous Behavior Materials in Construction .. 599
Bernard HALPHEN

27.1. Introduction ... 599
27.2. The viscosity of fresh concrete: a property to be taken into account ... 600
27.3. Viscosity and injection products 602
27.4. Viscosity and self-repair .. 603
27.5. Viscosity and absorption .. 604
27.6. Conclusion ... 607
27.7. Bibliography ... 607

Henri VAN DAMME

28.1. A structured, decorated and communicating skin 610
28.2. An energy collecting surface 611
28.3. A self-cleaning and depolluting envelope 612
28.4. A self-repairing envelope .. 612
28.5. An air-conditioning envelope 613
28.6. Conclusion ... 614
28.7. Bibliography ... 615

Chapter 29. Thoughts on the Futurology in Research and Development of Innovative Materials 617
Jean BILLARD

29.1. Difficulty of prediction ... 617
29.2. The current state of things ... 618
Table of Contents

29.3. Extrapolation attempts .. 619
29.3.1. Primary resources ... 620
29.3.2. Some social tendencies ... 621
29.3.3. The complexity of technical systems 621
29.3.4. Research ... 622
29.4. Futurology ... 626
29.5. Conclusion ... 627
29.6. Bibliography ... 628

Conclusion ... 631
François BUYLE-BODIN

Acronyms and Initials .. 639

List of Authors .. 645

Index ... 649
Introduction

In the building trade, for the majority of those involved, organic materials are still considered to be mere accessories, as products of secondary importance. However, they have proved to be omnipresent and therefore essential to the trade. This vision also explains why these organic materials have only been of interest to those authors of science and technology in the application’s restricted framework, in the trade where each one of these materials is needed. Experience in the civil engineering domain has shown us that the “plastics”, sometimes called soft materials, have many characteristics in common. All taken together, these characteristics may be interesting to compare, with the aim both to teach, and to stimulate research. Out of this aim, the 2003 work entitled Matériaux organiques pour le génie civil – Approche physico-chimique [MOU 03] was created and later translated into English as Organic Materials in Civil Engineering [MOU 06].

In this book we tried to define the field represented by these materials, which are characterized as:

– on the one hand, organic materials;
– on the other hand, construction materials.

In order to approach organic materials, we chose the physicochemical approach, meaning that we start by looking for what (in their molecular structure) characterizes these materials, and what exactly characterizes them as being part of the same category, regardless of their use. The intrinsic properties of these materials, namely their mechanical behavior, clearly depend on this structural data. Conversely, we were able to find all kinds of coherences between products with completely different uses, and we were then able to justify the tranversality hypothesis which guides our work.

Introduction written by Yves MOUTON.
Here, we should be precise. Although they are largely in the majority, the compounds which chemists call polymers – which will be greatly discussed in this book – are not the only existing organic materials, particularly in construction. This is why bitumen¹ used for road engineering and sealing various types of constructions, has an “organic” structure but cannot be qualified as polymers. In the same way, lumber is not strictly a polymer. Therefore our subject exceeds the strict framework of polymer applications in construction.

The world of construction materials is so vast that we chose to limit ourselves to the civil engineering field, where we felt more at ease, taking into account our own professional experience. Works were carried out to the field of building construction, but primarily for extrapolation reasons.

This initial work could not be left in this condition. The interest it generated made us take up its cause again, and develop it on two points.

First of all, it was presented as a summary, an introduction to organic construction materials as seen by a generalist. To go a bit further, it seemed necessary to let various specialists in the field concerned have their say, the people of art and science, as well as practitioners, each one of them also having to worry about sustainable development. The transversality hypothesis expressed in the first work was then transposed to the level of the whole book and its organization.

Secondly, the initial work was limited to civil engineering; opening up the subject to the whole of the construction domain seemed essential.

The book we are now proposing is therefore a more in-depth extension of this initial work, presented by specialists in each field discussed. The authors were not asked to approach their subject in an exhaustive manner. Some did, whereas others developed parts of the subject which seemed the most important to them. This means that this book is not intended “to cancel and replace” the previous work but to recreate it in more depth, to show new aspects of it and to update it.

Let us finally add that, written by teachers, researchers, experts and French entrepreneurs, this book is presented, in a certain manner, as a reflection of the French technique of organic material construction.

¹ It may be noted that the French word “bitumen” is “bitumen” in English and “asphalt cement” in American English. We must note here that “bitumen” has a more accurate sense than “asphalt” which often appears as ambiguous. This is why we will use the European terminology concerning bitumen technology.
In addition the concept of sustainable development was already taken into account in 2003 [MOU 03], but it was only really explicit in the final chapter. The procedure which is proposed today appears as follows.

The book is presented in 8 parts.

Part 1. Problems Regarding Organic Materials and Sustainable Development: a successive approach to define the concerned field of materials, the requirements of sustainable development, the health and environmental impacts of these materials used in construction. Chapter 1 presents these materials and classifies them into three categories which are detailed in Parts 3 to 6 of this book. Chapter 2, the most detailed chapter of Part 1, establishes the problems concerned with organic materials in a sustainable development context. This will be taken up again in Chapters 3 and 4, which are intended to be used for reference purposes in future works. On this subject, it must be noted that referenced literature is relatively poor in these fields. It is not the same as “gray literature”, i.e. internal work in companies or research laboratories, but it is still difficult to bring it out into broad daylight. Asking this of the authors was still more difficult.

Part 2. Organic Polymers as Building Materials: starts with a thorough scientific presentation of these compounds.

As previously stated, there is no identity between organic materials and polymers, but road bitumens, for example, manifest properties which bring them closer to polymers and put them in this category of soft materials, which we mentioned at the beginning of the introduction.

With the concept of the polymer being defined, Part 2 follows by developing the way in which plastic manufacturers use polymer based products. Both the theorist’s (discussed in the first chapter) and the plastic manufacturer’s points of view respond to each other. Then, three phenomena which are at the core of many questions from users are discussed: first of all, the ageing and the durability of organic polymers, then, fire-proofing products containing organic polymers, and finally, processing the waste which is generated at the end of their life.

The first phenomenon is the subject of an important development, because it corresponds to a field where it is necessary to bypass the molecular scale if we want to understand these phenomena, and therefore be able to control the processes. The two others correspond to very widespread interrogations on the relevance of using organic materials when we speak about sustainable development. Here, there are ideas on eminently significant subjects ready to be put into place. Thus fire-proofing is the first response by producers to the anxious users of fire-sensitive organic materials, its balance being the definition of adequate constructive provisions. As for
the problem of waste management, it must be correctly replaced in its context to be dealt with, without \textit{a priori}.

\textit{Part 3. Manufactured Products:} meaning products which are to be implemented as they are.

First comes geosynthetics, which is used to carry out waterproofing or all kinds of work concerned with geosynthetics. “Waterproofing” is obviously the field of excellence for polymers which are, in their great majority, hydrophobic, and thus perfectly adapted to this use. This is initially dealt with thoroughly within a civil engineering framework. Then, as for plastic formulation, it is looked at in its daily use by the expert, within a general construction framework.

Their hydrophobic characteristic aside, certain polymers manifest particular elastic properties, more specifically elastomeric, which makes them very useful in several domains, particularly for manufacturing expansion or waterproof sealing, or expansion bearings or works of art. The study of these elastomers and rubbers also deserves to be widely developed.

Chapter 13 relates to organic matrix \textit{composite materials}, some of which are real manufactured goods and others are implemented in situ. It is initially a question of presenting the pallet offered by these truly innovating products, while considering more particularly new constructions. Repair and strengthening structures will be discussed thoroughly in Part 7 as a specific application of binding.

Then materials for \textit{tensile structures} arrived, which gave way to the practice now known as \textit{textile architecture}, based on new mechanical concepts, particularly tensegrity.

Finally we should not forget \textit{timber}, the oldest organic material, which has become an industrial material with masterful performances, and yet so unknown that it deserves to be developed further.

Bitumen, the first binder to appear in the field of construction and the most used organic binder today, is a complex product. Its colloidal structure expresses physical and mechanical properties, similar to polymers but more specific, which require
very interesting and considerable work on behalf of the researchers, to get closer to the work of polymerists. It must also be noted that significant results were obtained from this material with regard to research on the prevention of the industrial risks (see Chapter 3, Part 1).

For paints as well as repair products and industrial mortars, the last 20 years has seen spectacular transformations occurring in formulation concepts and implementation practices to fulfill the medical and environmental requirements which were to be part of the new standard. Those different domains had to take stock of the situation.

Part 6. Organic Compounds Built-in into Cement Matrices: particularly insists on hydraulic mortar and concrete admixtures. In the same spirit as for polymers in Part 2, the researcher is given a voice followed by the entrepreneur who lists the attributes of organic admixtures in construction processes. Chapter 21 takes stock of incorporating organic fibers in cementitious materials into the field of civil engineering.

Part 7. Problems Specific to Organic Materials: Adhesive Bonding: particularly illustrates the field opened by organic materials in the research domain, an essential assembly method for this type of material, and characterization methods which are also specific. These are two distinct domains. Bonding is a difficult phenomenon to pinpoint, which still opens the door to a lot of research, but which intervenes in a direct or indirect way as soon as an organic material is brought into play. Strengthening of concrete structures is the most important application of that technique in the field of civil engineering. Here the durability of specimens under accelerated ageing is used to qualify the materials.

Finally, for the specific characterization methods of organic materials, it is interesting to follow their evolution, both in terms of scientific knowledge and European and international norms. Bitumen, paints and concrete admixtures are particularly concerned.

Part 8. Organic Materials, Construction, Architecture, Creation and Sustainable Development: takes a step back. Firstly, the architect’s point of view followed by that of the theoretical and applied mechanics’ expert. This is then followed by setting up a perspective for the construction materials of tomorrow, when organic materials will play an important role but will not be exclusive. It will reflect the role of research and its pitfalls, before a conclusive article on the possible future of organic construction materials in a sustainable developmental perspective.

Hence, today we can say that organic construction materials are at the very heart of the awakening to the concept of sustainable development. Such an assertion
already passed for a pure provocation, five or ten years ago. Now it is becoming relevant, and today we turn our attention specifically to those who might have felt prompted yesterday.

Bibliography
