Nonclinical Safety Assessment
Contents

List of Contributors

Preface

Part I International Regulations and Nonclinical Studies for Pharmaceuticals

1 Introduction

Kathy M. McGown and William J. Brock

- 1.1 The Global Pharmaceutical Market
- 1.2 Looking to the Future
- 1.3 Legal and Regulatory Considerations in Drug Development
- 1.4 The Drug Development Process – General Considerations

References

2 ICH: History and Nonclinical Guidances

Jan-Willem van der Laan and Kenneth L. Hastings

- 2.1 Introduction
- 2.2 Organization of the ICH
- 2.3 The ICH Process
- 2.4 Animal Welfare and Alternative Methods
- 2.5 ICH M3
- 2.6 New Initiatives and Topics

References

3 Food and Drug Administration: Nonclinical Program and Pharmaceutical Approval

William J. Brock and Kenneth L. Hastings

- 3.1 Legislative Authority of the FDA
- 3.2 Nonclinical Drug Development and the FDA
- 3.3 Nonclinical Testing: General Conditions and Considerations
- 3.4 Toxicity Testing: Small Molecules and Traditional Pharmaceuticals
- 3.5 Toxicity Testing of Pharmaceuticals – The General Approach
- 3.6 First-in-Human Dosing: Results from Nonclinical Studies

References
4 Nonclinical Pharmaceutical Development in MERCOSUR and Brazil

Cristiana Leslie Corrêa, Giuliana Selmi, and Flávio Ailton Duque Zambrone

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>4.2 MERCOSUR</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Brazil</td>
<td>44</td>
</tr>
<tr>
<td>4.3.1 Brazilian Regulatory Aspects</td>
<td>44</td>
</tr>
<tr>
<td>4.3.2 Nonclinical Studies Required for Drug Registration</td>
<td>48</td>
</tr>
<tr>
<td>4.3.3 Comparison with Other Agencies and Harmonization Institutes</td>
<td>51</td>
</tr>
<tr>
<td>4.3.4 Regional Reality of Drug Registration – Final Comments</td>
<td>53</td>
</tr>
</tbody>
</table>

References | 54 |

5 Nonclinical Safety Assessment: Canada

Jamie L. Doran and Mark T. Goldberg

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>5.2 Organization of Health Canada</td>
<td>58</td>
</tr>
<tr>
<td>5.2.1 Therapeutic Products Directorate</td>
<td>58</td>
</tr>
<tr>
<td>5.2.2 Biologics and Genetic Therapies Directorate</td>
<td>60</td>
</tr>
<tr>
<td>5.2.3 Natural Health Products Directorate</td>
<td>60</td>
</tr>
<tr>
<td>5.3 The Regulatory Framework for Drug Approval in Canada</td>
<td>60</td>
</tr>
<tr>
<td>5.3.1 The Food and Drugs Act</td>
<td>60</td>
</tr>
<tr>
<td>5.3.2 The Food and Drug Regulations</td>
<td>61</td>
</tr>
<tr>
<td>5.4 Nonclinical Assessment in Canada</td>
<td>64</td>
</tr>
<tr>
<td>5.4.1 Canada and the International Conference on Harmonization</td>
<td>64</td>
</tr>
<tr>
<td>5.4.2 Good Laboratory Practices in Canada</td>
<td>66</td>
</tr>
<tr>
<td>5.4.3 Case Studies and Summary Basis of Decision</td>
<td>67</td>
</tr>
<tr>
<td>5.5 Clinical Trial Applications</td>
<td>70</td>
</tr>
<tr>
<td>5.5.1 History and Regulations</td>
<td>70</td>
</tr>
<tr>
<td>5.5.2 Clinical Trial Application Overview</td>
<td>71</td>
</tr>
<tr>
<td>5.5.3 Pre-Submission Meetings and Consultations</td>
<td>71</td>
</tr>
<tr>
<td>5.5.4 CTA Content and Format</td>
<td>72</td>
</tr>
<tr>
<td>5.5.5 Nonclinical Aspects of the CTA/CTA-A Process</td>
<td>73</td>
</tr>
<tr>
<td>5.5.6 CTA-A Content and Format</td>
<td>73</td>
</tr>
<tr>
<td>5.5.7 CTA and CTA-A Review Process</td>
<td>73</td>
</tr>
<tr>
<td>5.6 Special Regulatory Considerations</td>
<td>74</td>
</tr>
<tr>
<td>5.6.1 Generic Drugs</td>
<td>74</td>
</tr>
<tr>
<td>5.6.2 Subsequent Entry Biologics in Canada</td>
<td>74</td>
</tr>
<tr>
<td>5.6.3 Orphan Drugs in Canada</td>
<td>77</td>
</tr>
</tbody>
</table>

References | 78 |

6 European Pharmaceutical Regulation – Nonclinical Testing Requirements

Adam Woolley and Jan Willem van der Laan

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>79</td>
</tr>
<tr>
<td>6.1.1 Definitions</td>
<td>81</td>
</tr>
<tr>
<td>6.2 Regulation of Medicinal Products in the European Union</td>
<td>82</td>
</tr>
</tbody>
</table>
6.2.1 Overview
6.2.2 Role of the European Medicines Agency in the Regulation of Medicines
6.2.3 Scientific Structure of the EMA
6.2.4 Regulatory Process in the EU
6.3 Nonclinical Testing in the Support of Clinical Trials
6.3.1 Role of Individual Country Regulatory Agencies/Authorities
6.3.2 Risk Mitigation in Nonclinical Development of Medicinal Products
6.4 Overview

References

7 South Africa
Fariza Feraoun and Malik Feraoun

7.1 Introduction
7.2 Country Information
7.2.1 Description
7.2.2 Economy
7.2.3 Country Organization
7.2.4 The Rainbow Nation
7.2.5 Health and Medicines
7.3 The Regulatory Aspects
7.3.1 The Registration of Medicines: Introduction and Scope
7.3.2 The Legal Framework
7.3.3 Role, Structure and Organization of the MCC
7.3.4 The Regulatory Procedures
7.3.5 The Registration Requirements for Preparation of the Application Package
7.3.6 The Registration Process: Several Steps of Review
7.4 The Nonclinical Safety Assessment
7.4.1 Introduction
7.4.2 Nonclinical Evaluation
7.4.3 Content of the Application for Safety Assessment
7.4.4 The Focus of the Nonclinical Evaluation
7.4.5 Pharmacology Testing
7.4.6 Toxicology Testing
7.5 Conclusion
7.5.1 Withdrawals
7.5.2 Consequences
7.5.3 New Safety Approach

8 Asia Pacific: China
Lijie Fu and Qingli Wang

8.1 Introduction
8.2 History of Drug Administration
9 Pharmaceutical Regulations for Nonclinical Safety Assessment in Japan

Kazuichi Nakamura and Osamu Fueki

9.1 History of Regulation for Nonclinical Safety Assessment in Japan
9.2 Approval Application of New Drugs in Japan
 9.2.1 Nonclinical Safety Studies Required for Drug Approval
9.3 Current Nonclinical Safety Guidelines Available in Japan
9.4 Current Trends of Conduct of Nonclinical Safety Evaluation in Japan
 9.4.1 Single-Dose Toxicity Studies
 9.4.2 Nonclinical Evaluation of the Potential for QT Interval Prolongation
 9.4.3 Carcinogenicity Studies
 9.4.4 Safety Evaluation of Drug Metabolites
 9.4.5 Phototoxicity Studies
 9.4.6 Skin Sensitization Studies
 9.4.7 Nonclinical Evaluation of Paediatric Drugs
 9.4.8 Antigenicity Studies
 9.4.9 Safety Evaluation of Chiral Pharmaceuticals
 9.4.10 Safety Evaluation of Impurities
 9.4.11 Other Studies
9.5 Safety Assessment of Unapproved Drugs
9.6 Necessity of 3Rs (Reduction/Refinement/Replacement) of Animal Studies
9.7 Attitude of Japanese Pharmaceutical Companies and the Regulatory Agency toward Nonclinical Safety Assessment

References

10 Indian Regulatory Process for Nonclinical Drug Development

K.S. Rao and S. Natesan

10.1 Introduction
10.2 Drug Development
10.3 Quality Systems
10.4 Nonclinical Drug Development – Key Regulatory Requirements 148
10.5 Nonclinical Safety Assessment – Key Approval Requirements 149
10.6 Data Required for Clinical Study Approval 151
10.6.1 Animal Toxicity Studies as Mandated by Clinical Phases 152
10.6.2 Animal Toxicity Studies as Mandated by Proposed Route and Duration of Administration 152
10.7 Animal Toxicology 154
10.7.1 Systemic Toxicity Studies 155
10.7.2 Male Fertility Study 159
10.7.3 Female Reproduction and Developmental Toxicity Studies 159
10.7.4 Local Tolerance Studies 161
10.7.5 Allergenicity/Hypersensitivity 163
10.7.6 Genotoxicity 163
10.7.7 Carcinogenicity 165
10.8 Animal Pharmacology 166
10.8.1 General Principles 166
10.8.2 Specific Pharmacological Actions 166
10.8.3 General Pharmacological Actions – Essential Safety Pharmacology 166
10.8.4 Follow-up and Supplemental Safety Pharmacology Studies 167
10.8.5 Conditions under which Safety Pharmacology Studies are not Necessary 168
10.8.6 Timing of Safety Pharmacology Studies in Relation to Clinical Development 168
10.9 Safety Assessment Requirements: Indian Schedule Y and International Guidelines 168
10.10 Good Laboratory Practice Quality System in India 168
10.10.1 Indian National Compliance Monitoring Authority (NGCMA) 168
10.10.2 Mutual Acceptance of Data (MAD) 171
10.11 Safety Assessment Test Facilities in India 171
10.12 Investigational New Drug Application for Undertaking Clinical Trials 173
References 173

11 Asia Pacific: Australia 175

Douglas Francis

11.1 Introduction 175
11.2 Australian Therapeutic Goods Administration (TGA) 176
11.2.1 Introduction 176
11.2.2 Legislative Backing 176
11.2.3 Information to be Supplied to the TGA to Support Inclusion of Therapeutic Goods in the ARTG 178
11.2.4 Evaluation Categories 180
11.2.5 Evaluation Fees and Timeframes 183
11.3 Clinical Trials in Australia 183
11.3.1 Introduction 183
11.3.2 Clinical Trial Schemes in Australia 183
11.3.3 Clinical Trial Process 184
11.3.4 CTN Scheme 185
11.3.5 CTX Scheme 186
11.3.6 Conducting Clinical Trials in Australia 187

11.4 Nonclinical Data to Support the Conduct of Clinical Trials in Australia
and Marketing Application to the TGA 188
11.4.1 Introduction 188
11.4.2 Chemistry, Manufacturing and Controls 188
11.4.3 Nonclinical Pharmacology and Pharmacokinetics 189
11.4.4 Nonclinical Toxicology 190
11.4.5 Nonclinical Toxicology Studies 191

References 195

Part II Toxicology Studies Supporting Clinical Development 197

12 Repeated-Dose Toxicity Studies in Nonclinical Drug Development 199
Shana Azri-Meehan and Louise Latriano

12.1 Introduction 199

12.2 General Considerations 200
12.2.1 Duration and Timing of Repeated-Dose Toxicology Studies 200
12.2.2 Anticancer Therapeutics 201
12.2.3 Assessment of Systemic Exposure 202
12.2.4 Qualification of Drug Substance and Product 203
12.2.5 Other Types of Applications/Submissions 203

12.3 Study Design Considerations 205
12.3.1 Selection of Animal Model 205
12.3.2 Size of Treatment Groups 206
12.3.3 Dose and Administration 208
12.3.4 Dose Selection 209
12.3.5 Test Article (Drug Substance) and Drug Formulation 210

12.4 Study Observations and Assessments 211
12.4.1 General 211
12.4.2 Clinical Observations 211
12.4.3 Food Consumption/Body Weight 213
12.4.4 Clinical Chemistry 213
12.4.5 Haematology 213
12.4.6 Urinalysis 213
12.4.7 Ophthalmologic Examinations 214
12.4.8 Electrocardiographic Examinations 214
12.4.9 Macroscopic Examination 214
12.4.10 Organ Weights 214
12.4.11 Histopathology 215
12.4.12 Additional Parameters 215
12.4.13 Medical Devices 216

Acknowledgement 216
References 216
13 Evaluation of Potential Carcinogenicity

James A. Popp and Matthew S. Bogdanffy

13.1 Introduction
13.1.1 Short History of Carcinogenicity Testing
13.1.2 Objective of Carcinogenicity Testing
13.1.3 Overview of Regulatory Guidelines for Testing Carcinogenicity of Pharmaceuticals

13.2 Preparation for the Carcinogenicity Study
13.2.1 Timing in Relation to the Regulatory Submission
13.2.2 Evaluation of Available Toxicology Data

13.3 Elements of the Protocol/Study Plan
13.3.1 Species and Strain Selection
13.3.2 Route of Administration
13.3.3 Analysis of Drug and Dosage Formulation
13.3.4 Age of Animals
13.3.5 Group Size
13.3.6 Control Groups
13.3.7 Food Restriction
13.3.8 Routine Measurements
13.3.9 Dose Selection
13.3.10 Toxicokinetics
13.3.11 Clinical Pathology
13.3.12 Pathology
13.3.13 Satellite Groups for Mechanistic Studies
13.3.14 Review of Study Plan
13.3.15 Summary of Development of a Study Plan

13.4 Study Performance
13.4.1 Study Oversight During the In-Life Phase
13.4.2 Pathological Evaluation

13.5 Alternative Models to Evaluate Potential Carcinogenicity in Lieu of a 2-Year Mouse Study

13.6 Special Consideration for Carcinogenicity Evaluation of Biotherapeutics

13.7 Regulatory Implications of a Study Identifying an Animal Carcinogenic Response

13.8 Interpreting the Relevance of Positive Results for Human Safety

13.9 Communicating the Results in the Product Label

References

14 Genetic Toxicology

Mark W. Powley

14.1 Background

14.2 Regulations Guiding Drug Development
14.2.1 Genetic Toxicology Assays
14.2.2 ICH Genetic Toxicology Battery 258
14.2.3 Positive Results and Follow-up 259
14.2.4 Timing 261
14.3 Genotoxic Impurities 261
14.3.1 In Silico Predictions 261
14.3.2 Empirical Testing 262
14.3.3 Safe Levels of Genotoxic Impurities 262
14.4 Regulatory Decision Making 263
References 263

15 Developmental and Reproductive Toxicology 265
Robert M. Parker and Raymond G. York

15.1 Introduction 265
15.2 Standard Reproduction and Developmental Toxicity Study Designs 266
15.2.1 ICH 4.1.1 The Fertility and General Reproductive Performance Study (“Segment I”; Stages A to B) 266
15.2.2 ICH 4.1.2. The Prenatal and Postnatal Study (“Segment III”; Stages C to F) 268
15.2.3 ICH 4.1.3 The Developmental Toxicity or Embryotoxicity Study (“Segment II”; Stages C to D) 270
15.3 Timing of Preclinical Developmental and Reproductive Toxicity Studies 273
15.3.1 Based on Sex and Reproductive Potential 273
15.4 Based on Disease Indication 275
15.4.1 Anticancer Pharmaceuticals 275
15.4.2 Topical Microbicides Intended for Prevention of Viral Sexually Transmitted Diseases Including Human Immunodeficiency Virus (HIV) 277
15.4.3 Drugs Intended to Prevent the Transmission of Sexually Transmitted Diseases (STD) and/or for the Development of Drugs Intended to Act as Vaginal Contraceptives 277
15.4.4 Human Insulin Analogues 278
15.5 Based on Pharmaceutical Characteristic 279
15.5.1 Biotechnology-derived Products 279
15.5.2 Biosimilars 282
15.5.3 Vaccines 283
15.5.4 Botanical Drug Products 290
15.5.5 Contraceptive Steroids 290
15.5.6 Synthetic Sex Steroids Used in Food-Producing Animals 291
15.6 Other Reasons to Conduct Preclinical Reproductive and Developmental Toxicity Studies 291
15.6.1 Drug Combinations 291
15.6.2 Drug Metabolites 293
15.7 Excipients 293
15.8 Conclusion 293
References 294
16 Juvenile Animal Toxicity Studies: Regulatory Expectations, Decision Strategies and Role in Paediatric Drug Development
Melissa S. Tassinari, Luc M. De Schaepdrijver, and Mark E. Hurtt

16.1 Introduction 297
16.2 Regulatory Environment 298
 16.2.1 US Paediatric Laws: PREA and BPCA 298
 16.2.2 EU Regulation 300
 16.2.3 Guidances for Conduct of Juvenile Animal Studies 301
16.3 Relevance and Place in Drug Development 302
16.4 Strategies for Decision Making: When are Studies Needed and Appropriate? 304
 16.4.1 Study Approach and Design 305
16.5 Case Studies: Application of Data Review and Decision Making 307
 16.5.1 Adequacy of Existing Data to Support Clinical Development in Paediatric Populations 307
 16.5.2 Nonclinical Juvenile Safety Testing to Support Clinical Development 308
 16.5.3 Nonclinical Juvenile Safety Testing in Two Species 309
16.6 Summary 309
References 310

17 Immunotoxicology
Leigh Ann Burns-Naas and Marc J. Pallardy

17.1 Introduction 313
17.2 Regulatory Expectations for the Immunotoxicology Evaluation of Pharmaceuticals 314
 17.2.1 Adverse (Unintended) Immunomodulation – ICH S8, the Weight of Evidence Review, and Determination of “Cause for Concern” 314
 17.2.2 Hypersensitivity 331
 17.2.3 Autoimmunity 334
17.3 Special Considerations 335
 17.3.1 Immunomodulatory Drugs 335
 17.3.2 Biopharmaceuticals 335
 17.3.3 Drugs in Pregnancy and Children – Developmental Immunotoxicology 338
17.4 Summary 342
References 342

18 Nonclinical Safety Assessment: Biotechnology-Derived Pharmaceuticals
Christopher E. Ellis, Melanie T. Hartsough, Martin D. Green, and Hanan Ghantous

18.1 Introduction 347
18.2 Unique Characteristics of Biopharmaceuticals 348
18.3 Species Selection 349
 18.3.1 Defining a Pharmacologically Relevant Species 350
21 Degradants, Impurities, Excipients and Metabolites

Robert E. Osterberg and Mark W. Powley

21.1 Degradants, Impurities, and Excipients
 21.1.1 Introduction and History
 21.1.2 ICH Impact
 21.1.3 Impurities/Degradants in Drug/Biological Products
 21.1.4 Impurities in New Drug Substances
 21.1.5 Impurities in New Drug Products
 21.1.6 Residual Solvents
 21.1.7 Extractables and Leachables

21.2 Metabolites
 21.2.1 Metabolites and Nonclinical Evaluation
 21.2.2 The FDA and ICH
 21.2.3 Systemic Exposure Threshold
 21.2.4 Safety Assessment Strategy
 21.2.5 Timing
 21.2.6 Exceptions
 21.2.7 Data Collection
 21.2.8 In Vitro Data
 21.2.9 In Vivo Metabolite Data
 21.2.10 Regulatory Decision Making

References

Index
List of Contributors

Shana Azri-Meehan, Forest Research Institute, Jersey City, USA
Matthew S. Bogdanffy, Boehringer Ingelheim Pharmaceuticals, Ridgefield, USA
William J. Brock, Brock Scientific Consulting, Montgomery Village, USA
Leigh Ann Burns-Naas, Gilead Sciences Inc., Foster City, USA
Cristiana Leslie Corrêa, Planitox, Campinas, Brazil
Luc M. De Schaepdrijver, Johnson & Johnson, Belgium
Jamie L. Doran, Intrinsik Health Sciences Inc., Mississauga, Canada
Christopher E. Ellis, CDER, Office of New Drugs, FDA, Silver Spring, USA
Fariza Feraoun, Laboratoires SERB, France
Malik Feraoun, Clinique Feraoun, France
Paul Donald Forbes, Toxarus Inc., Malvern, USA
Douglas Francis, DF Pre-clinical Services Pty Ltd., Hughes ACT, Australia
Lijie Fu, SNLB, China
Osamu Fueki, Pharmaceuticals and Medical Devices Agency, Japan
Hanan Ghantous, CDER, Office of New Drugs, FDA, Silver Spring, USA
Mark T. Goldberg, PlantForm Corporation and Karamella Consulting Inc., Guelph, Canada
Martin D. Green, CBER, FDA, Rockville, USA
Melanie T. Hartsough, Biologics Consulting Group Inc., Derwood, USA
Kenneth L. Hastings, Sanofi, Bethesda, USA
Robert V. House, DynPort Vaccine Company LLC, Frederick, USA
Mark E. Hurtt, Pfizer, Groton, USA
Louise Latriano, ToxPharm Consulting LLC, Scotch Plains, USA
Kathy M. McGown, FoxKiser, USA
Kazuichi Nakamura, Shionogi & Co. Ltd., Global Regulatory Affairs Department, Japan
S. Natesan, Advinus Therapeutics Limited, India
List of Contributors

Robert E. Osterberg, Osterberg Pharm-Tox Consulting, Rockville, USA
Marc J. Pallardy, School of Pharmacy and INSERM, University Paris-Sud, Chatenay, Malabry, France
Robert M. Parker, Huntingdon Life Sciences, East Millstone, USA
James A. Popp, Stratoxon, Lancaster, USA
Mark W. Powley, CDER, Office of New Drugs, FDA, Silver Spring, USA
K.S. Rao, Rao Toxicology Foundation (RTF), Sanjayanagar, India
Christopher P. Sambuco, Downingtown, USA
Giuliana Selmi, Planitox, Campinas, Brazil
Melissa S. Tassinari, CDER, Office of New Drugs, FDA, Silver Spring, USA
Jan-Willem van der Laan, FTBB, Medicines Evaluation Board, The Netherlands
Qingli Wang, Center for Drug Evaluation, SFDA, China
Adam Woolley, ForthTox Ltd., UK
Raymond G. York, RG York & Associates LLC, Manlius, USA
Flávio Ailton Duque Zambrone, Planitox, Campinas, Brazil
Preface

This book, *Nonclinical Safety Assessment: A Guide to International Pharmaceutical Regulations*, was conceived as an update to the Alder and Zbinden text on international nonclinical testing regulations. This out-of-print text was published in 1988 prior to ICH but, at the time, represented a reasonably complete description of the testing requirements for pharmaceuticals. Since that time, the pharmaceutical industry has seen the implementation of ICH, development of new guidance and guidelines from FDA and the EU (CHMP), a new regulatory process in China and other regions, implementation of FDAMA, and so on. It is hoped that this book provides a practical description of nonclinical drug development regulations in the major market regions although we do recognize that this is not a static but a dynamic process that continues to evolve almost on a daily or weekly basis. Although we attempted to capture the state-of-the-art in regulatory toxicology development, we also recognize that certain aspects will change even during the publishing process. Not all regions are covered in this edition of the book. However, with the evolution of ICH, it is likely that all pharmaceutical regions will adopt the ICH concept with minimal alternatives in the testing strategy.

Regardless, the objective of this text is to provide a guide for those involved in nonclinical drug development. As you will see from the layout of the book, the initial section discusses the legislative and regulations for different regions. This is followed by specific chapters on the conduct, interpretation and regulatory considerations of nonclinical studies. The final section of the book describes biotechnology-derived products, vaccines, and so on and the nonclinical challenges and solutions for the clinical development of these sometimes difficult therapeutics.

This text is intended for those actively involved in the clinical development of a pharmaceutical product, whether as a toxicologist, pharmacologist, clinician, project manager, and other functional responsibilities. The approaches and methodologies described throughout this book provide a useful and scientifically valid means to drug approval.

We hope you find this a very useful resource.

The Editors
December 2012
Part I

International Regulations and Nonclinical Studies for Pharmaceuticals
Introduction

The Drug Development Process and the Pharmaceutical Market

Kathy M. McGown and William J. Brock

1 FoxKiser, USA
2 Brock Scientific Consulting, Montgomery Village, USA

The world market for drugs is large and growing. At the end of 2011, global sales of pharmaceuticals topped $950 billion. The United States (US), Canada, European Union 5 (EU5) and Japan account for almost 85% of pharmaceutical sales (IMS, 2012a) with the balance of the market spread across the rest of the world (ROW). With the consolidation of major corporations and the emergence of small worldwide pharmaceutical enterprises, the face of the pharmaceutical industry continues to evolve. Within this changing global landscape, individual countries and regions continue to have unique regulations and guidances that drug companies must follow for product approval in those regions. Although the larger markets are often the first that are targeted for regulatory submission and approval, this does not mean that an applicant should minimize the regulatory requirements of other areas, in particular those of the “Pharmerging” markets such as India, South America and China. These markets are expected to expand significantly over the next five years and potentially outpace the growth in the more traditional geographic regions. Approvals in those regions can be rigorous and time consuming. However, a basic premise of the
industry continues to be that the first to market captures a major portion of the sales while the successive entries in a drug class fight to develop a market presence and maintain market share. Therefore, regardless of the geographic region and the associated challenges, drug development and nonclinical programmes must always integrate this “first to market” view as part of their regulatory strategy.

In this era of evolution, development and marketing has become fiercely competitive. The industry spends millions of dollars on developing new drugs although it is well known that the chance of any single candidate reaching the marketplace is extremely low. Overall, it has been estimated that for every 5000–10 000 candidate drugs, on average only one successfully reaches the consumer market (DiMasi, 2001; PhRMA, 2012), and the probability of that new drug entering the market is highly dependent on the therapeutic class (Adams and Brantner, 2006; Kaitin and DiMasi, 2011). Therefore, industry proceeds with some caution as it pursues development and branches into new classes of drugs or biologics. Companies will often invest a great deal of capital into rapid screening technology to better eliminate those compounds that show limited promise. With the advent of the various “omics” technologies and emphasis on the development of biomarkers of disease, the hope is that these technologies will allow for the targeting of specific disease endpoints and therefore a more selected market segment. Indeed, the development of pharmacogenomics has led to the possibility, as yet unrealized, of personalized medicine and the development of drugs and treatments for targeted subpopulations. Regardless of these advances, early stage drug candidates will still drop out of the development process for a variety of reasons, though most often these will be related to toxicity discovered during the preclinical phase or within the early clinical programme. Later stage development dropouts are most often due to lack of efficacy in the target population although economics plays an increasingly larger role in the choice to discontinue developing a drug or biologic candidate. This later scenario is common with small pharmaceutical enterprises that are dependent on venture firms and other sources of external funding to continue to fuel their development activities.

Efficacy, societal concern for safety and global leveraging of regulatory requirements are driving forces in the processes for drug development. In these processes, drug development strategies and the associated nonclinical safety assessment must consider certain “facts”. First, the cost of developing drugs and biologics is extremely high, with investments increasing sharply with each stage of development (DiMasi et al., 2003). Second, as stated earlier, most products will fail during development. While the true success rate for drug development is certainly greater than the often stated 1-in-5000 or more, it is clear that only 3–5% of those products that enter initial clinical evaluations become marketed drugs. With this in mind, many companies choose to undertake only those safety and screening studies “required” to start clinical studies. Larger companies often take a broader, more conservative investigative approach in order to ensure clinical safety and to address anticipated requirements across regions. The downside to this latter approach is that a large number of resources are devoted to a more comprehensive nonclinical programme when later stage clinical success of the candidate is not assured. Over time, several priorities in the nonclinical programmes have developed. First, “kill the losers” as early as possible and, second, minimize the time spent in developing a potentially unsuccessful drug. These principles have produced a spectrum of strategies in the
nonclinical safety assessment of drugs, best illustrated by looking at the two extremes.

Strategy A: Do Only What You Must. Financial limitations, particularly in small companies, drive the nonclinical and clinical planning. At later stages of development the candidate therapeutic will be licensed to, or a partnership developed with, a larger company. Therefore, the focus is to undertake only the minimum technical and regulatory steps necessary to get a molecule to that critical partnering point in development.

Strategy Z: Minimize the Risk of Subsequent Failure. Development proceeds through a series of well-defined and carefully considered milestone decision points. Studies and technical tasks are not often limited to the minimum needed for early development but are often augmented by additional study components. Many of the additional components are short-term toxicity screens or studies which are inexpensive and could be repeated later in the development process. Exactly what these “extra” components include will vary from company to company, and frequently reflect past experiences.

Clearly, most nonclinical programmes fall somewhere in between. Regardless of the strategy chosen, the studies performed to meet regulatory nonclinical safety assessment requirements can be thought of as belonging to three major categories:

- Those necessary to support the successful filing of an Investigational New Drug (IND) application, a Clinical Trial Authorization or equivalent, and to ensure subject safety in the subsequent first in human clinical studies.
- Those required to support the continued long-term clinical development of a drug, up to and including Phase 3 studies. These often include the longer subchronic and speciality studies.
- Those studies required to support a marketing approval application. These nonclinical studies typically include carcinogenicity studies and reproductive toxicity studies. In some cases, the timing of these studies could extend into the post-approval phase of the product lifecycle.

Exactly which study fits into what category is somewhat fluid, and this is heavily influenced by the therapeutic indication, the mechanism of action and the targeted treatment population.

In this book, we examine the international regulations for nonclinical drug development and how the safety of human pharmaceutical products is evaluated around the globe. Clearly, the guidance and regulations established by the US Food and Drug Administration (FDA) over the decades have played a critical role and have provided a baseline or framework for many of the regulations established worldwide. More recently the International Conference on Harmonization (ICH) has emerged as an essential process to consolidate guidance and regulations across the US, Europe and Japan. Although most countries have adopted the concepts of ICH, and many others are expected do so, there still remain country-specific requirements that are necessary for approval. The authors included within this book represent dozens of years of experience in the area of national and international nonclinical drug development. Therefore, we hope to provide a practical, if not comprehensive, assessment of the regulations required for nonclinical toxicology studies around the globe.
1.1 The Global Pharmaceutical Market

The pharmaceutical industry and all of its components operate as part of a global market. This globalization can be seen in all areas, including research, nonclinical and clinical evaluation and production of finished commercial products. Well-known examples of this exist in the sectors of chemical intermediates, active pharmaceutical ingredients (APIs) and in the manufacture of generic drugs. Over the last few decades, these industry segments have made major geographic shifts, with the chemical manufacturing of intermediates and APIs relocating almost entirely from the “West” to India and Asia. Whereas 20 or 30 years ago, Research and Development (R&D) and manufacturing of pharmaceutical products originated in the intended market region, it is now not uncommon to find bulk and finish production occurring in one part of the world for marketing and distribution in an entirely different geographical region.

Over the last 20 years, as the pharmaceutical market has seen robust growth and globalization, the overall cost of health care has been increasing at an alarming rating. Despite widespread public perception, the cost of pharmaceuticals, at least in the US, has not been the driving force behind this spending increase. According to the latest data from Centers for Medicare and Medicaid services (CMS, 2012), pharmaceutical expenditure in the US accounted for only 10% of total healthcare spending in 2010, versus 8.8% in 2000. Regardless of expenditure source, the end result has been heightened media and legislative scrutiny with, in some countries, the healthcare debates taking on a political “life-of-its-own” and the research-based pharmaceutical industry coming under fire as an easy target. It is expected and hoped that healthcare costs will begin to stabilize over time. The effect of currently proposed or future legislative reforms on the pharmaceutical industry is unknown but there is expectation that whatever “fixes” are put in place will result in some negative impact on the industry. With the high cost of pharmaceutical development and outside pressure on the industry, companies will continue to make efforts to control and improve development methods and optimize their expenditures. As part of this trend, there has been an increase in partnering, in-licensing of drug candidates, mergers and acquisitions, and the creation of fully integrated pharmaceutical networks or FIPnets (Kaitin and DiMasi, 2011). The industry has seen larger companies acquiring smaller competitors for R&D expertise, intellectual property, pipelines or marketed portfolio such as Sanofi’s acquisition of Genzyme or Takeda’s acquisition of Nycomed. There have been several major consolidations, including Pfizer’s acquisition of Wyeth and Merck’s merger with Schering Plough. As companies continue to examine cost-cutting initiatives, options of mergers and acquisitions and a variety of other “value adding” measures, the overall trend in the pharmaceutical industry appears to be that of consolidation and shrinkage.

In 2011, worldwide sales of drugs were $956 billion, an increase of 5.1% over 2010, with branded drugs accounting for nearly two-thirds of pharmaceutical spending. This branded share is projected to decline, however, to as low as 50% by 2016 as many of the large market products continue to come off-patent (IMS, 2012a; 2012b). The US still accounts for the largest share of the global pharmaceutical market with about $320 billion in annual sales, a slight gain of approximately 3.6% over 2010 (IMS, 2012c). For the same time period, sales in Europe remained relatively flat while Japan saw modest growth of 5.6%. The Pharmederging markets, which include China, Brazil, India and Russia,
outpaced the more developed markets with a 29% gain in pharmaceutical spending in 2011. This growth was largely attributable to increased spending on generic drugs; however, these emerging markets are expected to continue to expand rapidly and could account for as much as 30% of global spending by 2016 (IMS, 2011; 2012a).

The global top 10 branded pharmaceuticals for 2011, which accounted for approximately 8.5% of the total worldwide sales, are presented in Table 1.1.

This list will see dramatic changes over the next few years due to patent expirations and the potential for new competition from biosimilars. Overall, the therapeutic areas that have seen the greatest development have been those encompassing large populations and chronic diseases, resulting in the model of the billion dollar “blockbuster” drug.

The concentration of total sales for a limited number of pharmaceuticals is thought to have distorted, at least for a time, the therapeutic research direction of new drug development. Now, with many of the blockbusters losing patent protection, development is moving away from that paradigm to one of focused therapeutics and specific patient populations. While precise international costs are not available, US pharmaceutical R&D spending is currently estimated to be at least $50–65 billion, based on an estimated 3500 pharmaceutical companies in the US (PhRMA, 2011; 2012). It is expected that there are similar numbers of companies and levels of R&D spending in Europe, and significant value coming from other parts of the world such as China, Australia, India, and Israel. While most of the public focuses on the largest companies, such as those in Table 1.2, the vast majority of companies are mid-sized, small and startups. Significantly, the innovations leading to new molecular entities (NME) and biologics appear to be arising primarily from these smaller organizations, with the larger companies licensing these new therapies or purchasing the technology outright.

Table 1.1 Top 10 global pharmaceuticals by sales, 2011.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Medicine</th>
<th>Company</th>
<th>Primary medical use</th>
<th>2011 sales (USD, billion)</th>
<th>Percent growth vs. 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lipitor</td>
<td>Pfizer</td>
<td>Cholesterol</td>
<td>12.5</td>
<td>-3.3</td>
</tr>
<tr>
<td>2</td>
<td>Plavix/Iscover</td>
<td>Bristol-Myers Squibb, Sanofi</td>
<td>Thrombotic events</td>
<td>9.3</td>
<td>3.7</td>
</tr>
<tr>
<td>3</td>
<td>Advair/Seretide</td>
<td>GlaxoSmithKline</td>
<td>Asthma</td>
<td>8.7</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>Crestor</td>
<td>AstraZeneca</td>
<td>Cholesterol</td>
<td>8.0</td>
<td>14.4</td>
</tr>
<tr>
<td>5</td>
<td>Nexium</td>
<td>AstraZeneca</td>
<td>Gastrointestinal disorders</td>
<td>7.9</td>
<td>-6.2</td>
</tr>
<tr>
<td>6</td>
<td>Seroquel</td>
<td>AstraZeneca, Astellas Pharmaceuticals</td>
<td>Schizophrenia</td>
<td>7.6</td>
<td>9.5</td>
</tr>
<tr>
<td>7</td>
<td>Humira</td>
<td>Abbott</td>
<td>Rheumatoid arthritis</td>
<td>7.3</td>
<td>17.8</td>
</tr>
<tr>
<td>8</td>
<td>Enbrel</td>
<td>Amgen, Pfizer</td>
<td>Rheumatoid arthritis</td>
<td>6.8</td>
<td>6.7</td>
</tr>
<tr>
<td>9</td>
<td>Remicade</td>
<td>Johnson & Johnson, Merck, Tanabe</td>
<td>Rheumatoid arthritis</td>
<td>6.8</td>
<td>8.4</td>
</tr>
<tr>
<td>10</td>
<td>Abilify</td>
<td>Otsuka</td>
<td>Schizophrenia</td>
<td>6.3</td>
<td>14.3</td>
</tr>
</tbody>
</table>

(IMS, 2012d).
Over the last several years, focused development in targeted therapeutic areas has been the mainstay of many companies. The therapeutic areas that have received the greatest interest over the past decade are shown in Table 1.3. As suggested by this information, the trend has been to pursue therapies for the treatment of chronic diseases, particularly those that affect the ageing population. At the same time, several older or discarded drugs have been repurposed for new uses, such as thalidomide for multiple myeloma, doxepine hydrochloride for insomnia, or the combination of dextromethorphan and quinidine for pseudobulbar affect, and some very old drugs, such as digoxin, continue to be in use. In

<table>
<thead>
<tr>
<th>Rank</th>
<th>Pharmaceutical company</th>
<th>2011 sales (USD, million)</th>
<th>Percent change vs. 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pfizer</td>
<td>56 427</td>
<td>−0.7</td>
</tr>
<tr>
<td>2</td>
<td>Novartis</td>
<td>51 632</td>
<td>10.1</td>
</tr>
<tr>
<td>3</td>
<td>Merck & Co</td>
<td>40 119</td>
<td>6.9</td>
</tr>
<tr>
<td>4</td>
<td>Sanofi</td>
<td>39 478</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>AstraZeneca</td>
<td>36 974</td>
<td>2.9</td>
</tr>
<tr>
<td>6</td>
<td>Roche</td>
<td>34 869</td>
<td>5.7</td>
</tr>
<tr>
<td>7</td>
<td>GlaxoSmithKline</td>
<td>34 491</td>
<td>1.3</td>
</tr>
<tr>
<td>8</td>
<td>Johnson & Johnson</td>
<td>27 664</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Abbott</td>
<td>25 871</td>
<td>6.6</td>
</tr>
<tr>
<td>10</td>
<td>Teva</td>
<td>23 872</td>
<td>−2.5</td>
</tr>
<tr>
<td>11</td>
<td>Lilly</td>
<td>23 716</td>
<td>7.3</td>
</tr>
<tr>
<td>12</td>
<td>Takeda</td>
<td>17 767</td>
<td>6.1</td>
</tr>
<tr>
<td>13</td>
<td>Bristol-Myers Squibb</td>
<td>16 446</td>
<td>9.7</td>
</tr>
<tr>
<td>14</td>
<td>Bayer</td>
<td>16 390</td>
<td>4.3</td>
</tr>
<tr>
<td>15</td>
<td>Amgen</td>
<td>16 323</td>
<td>4.6</td>
</tr>
</tbody>
</table>

(IMS, 2012e; IMS, 2012f).

Table 1.3 Top global therapeutic classes by sales, 2011.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Therapeutic class</th>
<th>2011 sales (USD, billion)</th>
<th>Percent growth vs. 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oncologics</td>
<td>62.2</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>Respiratory agents</td>
<td>39.4</td>
<td>7.3</td>
</tr>
<tr>
<td>3</td>
<td>Antidiabetics</td>
<td>39.2</td>
<td>11.4</td>
</tr>
<tr>
<td>4</td>
<td>Lipid regulators</td>
<td>38.7</td>
<td>3.7</td>
</tr>
<tr>
<td>5</td>
<td>Antipsychotics</td>
<td>28.4</td>
<td>9.4</td>
</tr>
<tr>
<td>6</td>
<td>Angiotensin II Antagonists</td>
<td>27.4</td>
<td>−0.7</td>
</tr>
<tr>
<td>5</td>
<td>Anti-ulcerants</td>
<td>26.9</td>
<td>−6.4</td>
</tr>
<tr>
<td>8</td>
<td>Autoimmune Agents</td>
<td>24.4</td>
<td>14.1</td>
</tr>
<tr>
<td>9</td>
<td>Antidepressants</td>
<td>20.4</td>
<td>−1.5</td>
</tr>
<tr>
<td>10</td>
<td>HIV Antivirals</td>
<td>17.4</td>
<td>9.5</td>
</tr>
<tr>
<td>11</td>
<td>Platelet Aggregation Inhibitors</td>
<td>16.4</td>
<td>4.1</td>
</tr>
<tr>
<td>12</td>
<td>Anti-Epileptics</td>
<td>14.1</td>
<td>10.1</td>
</tr>
<tr>
<td>13</td>
<td>Vitamins & Minerals</td>
<td>13.9</td>
<td>6.1</td>
</tr>
<tr>
<td>14</td>
<td>Vaccines</td>
<td>13.4</td>
<td>13.0</td>
</tr>
<tr>
<td>15</td>
<td>Narcotic Analgesics</td>
<td>12.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>

(IMS, 2012a).