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Preface

Back in 1980, two young physics professors – one (JF) in Würzburg, the other
(WLB) in Carbondale, Illinois – authored the German textbook ENERGIE,
which was published by R. Oldenbourg Verlag, München Wien. The book
gave a thorough survey of energy-related physics and technology, described
the energy situation, discussed global energy problems, and highlighted
energy research and development. A second 600-page edition, published
in 1984, was also sold out soon. For the next three decades, our profes-
sional obligations kept us from writing a revised version of this successful
textbook.

Now, more than a quarter of a century later, we both are retired physics professors,
but still teaching at our universities. We have taken a new initiative. As energy
problems during recent decades have become global and more urgent, we have
written a new book, this time in English. We have attempted a more compact
treatment, as students today probably would despair of a 600-page book. The new
textbook treats the basic physics of present energy technology and its consequences
and discusses ideas of future interest. This new book also contains many new
problems and their solutions.

We discuss quantitatively and qualitatively the physics and technology of all
energy sources of present and likely future interest. The book can be used as
textbook for advanced undergraduate and beginning graduate students. A physics
background will be helpful. The mathematical level is mostly algebra, but also
includes calculus.

General readers with a technical background should also be able to benefit from
reading parts of the book. There is sufficient narrative in the text to understand the
basic ideas without working through all the formulas and numbers. We hope that
in this way the book will serve as a survey of all important energy sources and be
useful to a broader audience.

The reader will notice that one of our concerns in the book is the anthropogenic
greenhouse effect that results from the burning of fossil fuels. It is very likely
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that this effect could change our world beyond recognition and threaten terrestrial
life in many parts of the globe, unless changes in energy production and use are
made.

November 2012 Jochen Fricke
Walter L. Borst

Würzburg (Germany)
Lubbock (USA)
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1
Introduction

1.1
Global Energy Flow

The global demand for primary energy has grown enormously during the past
decades. It is now about 5.0 · 1020 J per year or 16 TW (Figure 1.1). Most of this
energy is dissipated as waste heat. As the solar power reaching the Earth (insolation)
is 170 000 TW, we recognize that, on a global scale, the heat dissipation caused
by human activities is about 10 000 times smaller than the solar input. However,
inside cities, the anthropogenic heat dissipation and the solar input can become
comparable. This leads to a warmer microclimate.

1.2
Natural and Anthropogenic Greenhouse Effect

A much more severe and global problem associated with the flow of energy is
the anthropogenic emission of greenhouse gases. Most important among these is
carbon dioxide (CO2) released by burning of fossil carbon (Table 1.1). The average
dwell time of CO2 in the atmosphere is about 120 years. CO2 is a natural constituent
of the atmosphere together with water vapor, the latter being the dominant
greenhouse gas. These gases interact with a thermal radiation of 1.1 · 1017 W or
about 220 W/m2 from the Earth (Figures 1.1 and 1.2). Their molecules either have
a permanent electric dipole moment, as with H2O, or are vibrationally excited, as
in the case of CO2 and CH4, another greenhouse gas.

These gases thus reduce the radiative heat transfer from the Earth into space,
raising the global mean temperature from −18 to +15 ◦C, a precondition for a
habitable Earth. A stable mean temperature requires a balance between solar input
and thermal output (Figure 1.3).

It is important to answer the question why the concentration of CO2 is of
any consequence. After all, the concentration of water vapor is about 100 times
larger. Figure 1.4 shows that some of the absorption bands of CO2 coincide with
‘‘windows’’ in the H2O spectrum. Thus, a relatively small amount of CO2 can
reduce the thermal flow, that would otherwise escape into space through these
windows. The effect of the other greenhouse gases on the thermal flow into space

Essentials of Energy Technology: Sources, Transport, Storage, and Conservation, First Edition.
Jochen Fricke and Walter L. Borst.
© 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1.1 Present global energy flow in
Watt. The numbers in parentheses are rel-
ative to the solar input. About 80% of our
primary energy is provided by fossil fuels,
about 10% by biomass, and 6% by nuclear

reactors. The contributions from photo-
voltaics, solar thermal, wind, geothermal,
and tides are not shown, as each of them
still amount to <1% of the primary energy
demand. (Source: Adapted from [1].)

Table 1.1 The amount of CO2 emitted per thermal kilowatt hour depends strongly on the
atomic carbon/hydrogen ratio of the fossil fuel (1 kg of C is oxidized into 3.7 kg CO2).

Carbon source Lignite Anthracite Mineral oil Methane

kg CO2/kWhthermal 0.40 0.33 0.29 0.19

is characterized by the global warming potential (GWP). For example, CH4 has a
GWP ≈ 25, indicating that one molecule of CH4 is 25 times more effective than
one molecule of CO2.

CO2 and other noncondensing greenhouse gases together account for about 25%
of the terrestrial greenhouse effect. Atmospheric modeling [3] shows that these
gases via feedback processes provide the necessary infrared absorption to sustain
the present levels of water vapor and clouds, which make up the remaining 75%
of the terrestrial greenhouse effect. (Without CO2 and the other noncondensing
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Figure 1.2 Hypothetical atmosphere of the
Earth without infrared-active trace gases as-
sumed in the left half of the figure. About
two-thirds of the incoming solar radiation is
absorbed at the surface of the Earth (with an
albedo or reflectivity of 0.35), reemitted as
thermal radiation, and completely given off
into space. The resulting temperature would
be about 18 ◦C below zero, preventing life

as we know it. Greenhouse gases present in
the real atmosphere are added in the right
half of the figure. They absorb part of the
outgoing thermal radiation and send it back
to Earth. This greenhouse effect provides
life-supporting temperatures of +15 ◦C. The
most important greenhouse gas is H2O with
typically 1–2% by weight, followed by CO2,
CH4, NOx, and so on.
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Figure 1.3 Normalized solar radiation input and thermal radiation at 300 K as a function
of wavelength. The solar blackbody spectrum at 6000 K is modified by absorption in the
Earth’s atmosphere.

greenhouse gases, the atmospheric water vapor would condense. The terrestrial
greenhouse would collapse within a few decades, sending Earth into an ice-bound
state.)

In summary, the natural greenhouse effect determined the climate on the Earth
in the past and supported the development of life. About 150 years of anthropogenic
activities, however, accompanied by the burning of coal, oil, and natural gas, have
led to a drastic increase in the concentration of greenhouse gases in the atmosphere.
This is causing an additional, human-related reduction in the thermal radiation
transfer to space. The imbalance, also called radiative forcing, is about 1 W/m2
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Figure 1.4 Relative spectral absorption of
water vapor and carbon dioxide in the at-
mosphere. A value of 1 means a saturated
absorption or complete opaqueness, 0 indi-
cates a ‘‘window’’ for radiative escape. One
sees, for example, that CO2 drastically re-
duces the escape of thermal radiation in the

H2O-window of 4–5 μm. Note that the three
CO2-absorption bands shown are saturated
only in their center but not in the flanks.
Therefore, a further increase in CO2 in the
atmosphere can definitely enhance the green-
house effect. (Source: Adapted from [2].)
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Figure 1.5 The concentration of CO2 in
the atmosphere at present is increasing by
nearly two parts per million by volume per
year (ppmv) and was about 390 ppmv in
2010. The oscillations on the continuous
rise are about 6.5 ppmv peak-to-peak and
are caused by annual variations in bioactivity

and oxidation of biomass. Photosynthesis in
summer causes a relative minimum in
September/October, while oxidation of
biomass in winter leads to a relative max-
imum in May. The preindustrial value was
280 ppmv. (Source: Adapted from Mauna
Loa, Hawaii.)

today [4]. This is only a 0.5% contribution to the total radiative heat transfer from
the Earth. Furthermore, the large thermal mass of the oceans has stored large
amounts of heat. Nonetheless, a global warming of about 0.8 K since 1870 and
0.6 K since about 1960 is observed.

The main culprit for the warming of the Earth is anthropogenic CO2. Its
concentration in the atmosphere rose from a preindustrial value of 280 to about
390 ppm in the year 2010 (Figure 1.5).

In order to put the anthropogenic influence on our climate in perspective, we have
to look at the history of CO2. The CO2 concentration during the past 400 000 years
fluctuated between about 180 and 280 ppm, and never exceeded 300 ppm. A higher
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CO2 concentration was always accompanied by warmer temperatures and vice
versa. The increase to 390 ppm thus is rather dramatic. The retreat of mountain
glaciers and the north polar ice sheet appear to be manifestations of the problem.

Problem 1.1
A warmer atmosphere can hold more moisture [5] and thus more torrential rains
can be expected. Calculate the relative increase in water vapor pressure for an
atmosphere at 20 ◦C, assuming a temperature increase of 1 K. The exponential
dependence of vapor pressure on temperature is p(T) = p0 · exp[−�E/(kB · T)]. (In
order to find �E, start with the mass specific heat of vaporization, then find the
molar mass of water and the number of water molecules per mole.)

We should mention here that aerosols in the atmosphere are responsible for
a negative radiative forcing. Combustion caused by humans has increased the
amount of atmospheric aerosols substantially. The interaction between these
aerosols and solar radiation leads to a direct cooling of the atmosphere. In addition,
aerosols enhance the condensation of moisture and modify the optical properties of
clouds. The sign of this indirect aerosol effect – whether positive or negative – is still
uncertain. A third indirect aerosol effect involves the change of biochemical cycles
[6]. All three effects may have reduced global warming substantially. Anticipating
future worldwide installations of scrubbing devices, much higher CO2 mitigation
costs could result than previously thought.

1.3
Limit to Atmospheric CO2 Concentration

In order to prevent catastrophic climate changes in the future, causing, for example,
a rise in sea level of several meters, the CO2 concentration in the atmosphere will
have to be limited. The actual limit is the subject of much discussion at present.

As an example, let us consider a maximum tolerable CO2 concentration of
560 ppm, that is, twice the preindustrial value. From the known global annual use
of fossil fuels and the measured CO2 increase in the atmosphere, one can obtain
the following estimate [7]: For each 4 Gt of burned carbon, the CO2 concentration in
the atmosphere increases by 1 ppm. (If about one-half of the emitted CO2 were not
absorbed in the ocean and by forests, the parts per million increase would be about
twice as high). This amount of carbon corresponds to 4 · (12 + 32)/12 Gt = 14.7 Gt
of CO2.

A limit of 560 ppm would ‘‘allow’’ an increase in CO2 concentration of
(560 − 390) ppm = 170 ppm. This corresponds to a maximum total CO2 emis-
sion of 170 ppm · 14.7 Gt/ppm = 2500 Gt. If we assume the present annual global
CO2 emission of 35 Gt to be constant in the future, we find a time span of about
70 years for ‘‘allowed’’ CO2 emissions. After that, any CO2 emission would have to
stop. If we limit the CO2 concentration to 450 ppm, as many scientists suggest, the
time span would shrink dramatically.
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Problem 1.2
Calculate the remaining time span for a maximal CO2 concentration of 450 ppm.
Assume that the global CO2 output due to human activities is kept at 35 Gt per year.

This type of estimate suggests how strongly the CO2 emission has to be reduced in
the near future. As a reduction of the anthropogenic CO2 emission remains rather
elusive, some concerned scientists have proposed geoengineering, the intentional
large-scale alteration of the climate system [8]. The proposals include light shades
positioned in space, ocean fertilization, aerosol injection into the stratosphere, and
cloud brightening with saltwater droplets.

Considering the CO2 problem, we find that the discussion about ‘‘peak oil
production or consumption’’ can be misleading. The carbon limit resulting from
the above CO2 emission limit is 2500 · (12/44) Gt ≈ 680 Gt. Releasing this amount
would severely worsen the greenhouse problem, but this amount is small compared
to the still available fossil carbon resources. It seems that we will not be able to
consume these resources.

On the other hand, we note that there are no energy or electricity sources that are
entirely CO2-free. Even if a power plant emits no CO2 during operation, this green-
house gas is emitted during construction of the plant. Thus electricity and thermal
energy even from nuclear reactors and renewable sources are not CO2-free, but they
have a low CO2 ‘‘footprint.’’ Perhaps in the far future, nonfossil energy systems will
provide the energy needed for constructing power plants without a CO2 footprint.

Problem 1.3
Which reactions generate heat in a coal-fired power plant and in a nuclear reactor?

1.4
Potential Remedies

A compulsory lower CO2 production will be extremely difficult to accomplish in the
next few decades if we keep in mind the magnitude of 13 TW of power produced
from fossil fuels. In the following, we discuss some possible measures for reducing
the emission of CO2 in the near term:

• Energy conservation
• Rational energy production and use
• Carbon capture and storage (CCS)
• Nuclear energy
• Renewable energies.

1.4.1
Energy Conservation

A most efficient way to conserve energy is the thermal insulation of buildings. This
especially applies to heating in cold climates and cooling in hot climates. Here,
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consumption could be reduced by a factor of 3 or more if existing houses were
converted into low or ultra-low-energy houses. Many new houses in Germany are
‘‘passive houses,’’ where the demand for heating is below 30 kWh per m2 of living
space and year. In Germany, 20 cm thick conventional fiber or foam insulation is
the insulation standard for walls at the present time. In the United States, similar
measures could be applied to a greater extent. Quite independent of this, much
energy could be saved with more efficient and smaller cars.

Problem 1.4
A rather heavy car of mass m = 2000 kg stops every 0.5 km in city traffic and
then accelerates again to v = 50 km/h. Calculate the extra number N of liters of
diesel fuel (volume specific enthalpy h = 40 MJ/l) needed for this over a distance
l = 100 km. Assume an engine efficiency of η = 0.35. If the fuel mileage of the
car is 7 l per 100 km or about 34 miles per gallon (mpg) during steady highway
driving, what is it during city driving? Comment on alternatives to obtain a better
fuel mileage.

1.4.2
Rational Energy Production and Use

Gas-fired, combined-cycle power plants employing gas and steam turbines in
combination can achieve efficiencies of 60% for the generation of electricity. Fossil
energy can be converted into electricity plus useful heat with efficiencies of over
80% if the power plant is connected to a district heating system. In the near future,
coal-fired power plants with steam temperatures of 700 ◦C and efficiencies around
50% are feasible.

Another area with a large potential for higher energy efficiency is refrigeration.
Refrigerators manufactured with an innovative insulation technology, using VIPs
(vacuum insulation panels) with a nearly 10-fold improved insulation capability,
consume 40–60% less electricity than conventionally insulated systems.

Replacing incandescent light bulbs by compact fluorescent lamps (CFL) and
light-emitting diodes (LEDs) reduces the electricity demand for lighting by about a
factor of 5.

1.4.3
Carbon Capture and Storage (CCS)

The extraction of CO2 from flue gases is being tested worldwide in pilot plants
[9, 10]. The CO2 is absorbed at low temperatures in an amine solution and desorbed
at higher temperatures for compression and storage, for example, in saline aquifers.
Another technique, the oxifuel process, uses oxygen for combustion instead of air.
This renders an extraction unnecessary but requires the separation of nitrogen
and oxygen. The attitude of ‘‘not in my backyard’’ characterizes the difficulties
of finding suitable underground storage sites for CO2. However, as 80% of our
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primary energy supply is still provided by fossil resources, carbon capture and
storage (CCSs) seems a must.

1.4.4
Nuclear Energy

Worldwide, 437 nuclear reactors with a total installed power of about 390 GW
were operating in 31 countries as of December 2011 [11]. They provide roughly
2600 TWh per year of base-load electricity. This corresponds to about 12% of the
global annual electricity production of 22 000 TWh [12]. At present, 63 nuclear
reactors with a total electric power output of 65 GW are under construction in 15
countries.

The reactors under development, so-called generation IV reactors, have improved
safety features and higher efficiencies and they produce less radioactive waste than
conventional reactors. For example, the European Union had been supporting
a $400-million-a-year international effort to develop such reactors before the
Fukushima reactor disaster [13]. The thorium high-temperature reactor (THTR)
in Germany, operated in the 1980s and decommissioned in 1989, already had
characteristics of a Gen IV reactor. The molten salt reactor (MSR) developed and
operated in the 1960s at Oak Ridge National Laboratory in Tennessee used thorium
fuel and had improved safety features compared to light water reactors, that is, a
low pressure and a core that cools down and solidifies by itself.

After Fukushima, several countries have decided to phase out nuclear reactors,
while others adhere to their commitment for more nuclear power. The German
government announced in May 2011 that it would shut down all 17 German
reactors. Italian voters opted for a non-nuclear future. On the other hand, South
Korea announced plans in November 2012 to add 17 reactors to its 20 existing
reactors by 2030 and to begin research and development on next-generation
reactors. South Korean companies are preparing to build four reactors in the
United Arab Emirates. China has 14 operating reactors and 27 reactors under
construction. However, after Fukushima, it suspended approvals for new reactor
construction. Vietnam, Turkey, Bangladesh, and Belarus are planning their first
nuclear reactors with imports from abraod, primarily Russia. In the United States,
the Nuclear Regulatory Commission granted the first construction permits for new
reactors since 1978. The price tag for a new reactor is about $10 billion today
compared to about $2 billion then and may pose an impediment [13].

In many countries, the commitment to nuclear power is strong. Largely unre-
solved is the storage or burial of the spent fuel in many parts of the world. Positive
exceptions are Switzerland, Sweden, and Finland.

1.4.5
Renewable Energies

Hydroelectricity with 1000 GW installed power delivers about 3500 TWh per year
or 16% of base-load electricity [12]. It has risen since 1965 at a rate of about
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50 TWh/a, and has potential for further growth. In many countries, however,
the growth is being slowed by environmental concerns. Base-load electricity from
biomass amounts to about 400 TWh (2%). Wind energy with 240 GW installed
power in 2011 provides a comparable but fluctuating output [12]. Geothermal
sources with an output of 11 GW deliver 70 TWh (0.3%) of base load. Nearly
70 GW (fluctuating) from photovoltaics provided an amount of 70 TWh (0.3%)
in 2011 [12]. Investments especially in wind turbines and photovoltaic and
solar–thermal power plants are rising steeply today. With increasing installed
power, the fluctuating electricity output of wind turbines and photovoltaic in-
stallations will pose problems for the stability of the electrical grid. Supply
and demand have to be balanced on time scales ranging from seconds to
months.

Energy storage facilities such as pumped water storage and electrochemical
batteries are scarce. Highly dynamic power plants will have to cover the required
loads in times of calm wind or overcast sky. Related to this is the search for suitable
‘‘smart grids.’’ These are intended to switch on and off electricity-consuming
devices such as refrigerators and batteries of electric cars, depending on the
availability from the grid.

If one considers the long times necessary for changes to our energy system and
the yet very low worldwide electricity production from renewable sources, it is
difficult to assess the impact of these in the future. In the very long term, that is,
a century and beyond, solar, wind, and nuclear energy are likely to dominate our
electricity supply.

Problem 1.5
The delivery of electricity from hydroelectric and photovoltaic installations differs
fundamentally. Please state the difference.
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Solutions

Solution 1.1 dp/dT = p0 · exp[−�E/(kB · T)](+�E/kB · T2) = p(T) · (+�E/kB ·
T2); dp/p0 = dT · �E/(kB · T0

2). With kB = 1.38 · 10−23 J/K, heat of vaporization of
one molecule �E = 7 · 10−20 J, �T = 1 K and T0 = 293 K, we obtain dp/p0 ≈ 0.06
or 6% for the increase in water vapor pressure.

Solution 1.2 t(450) = (450 − 390) ppm · (14.7 Gt/ppm)/(35 Gt/a) ≈ 25 years.

Solution 1.3 The two heat-generating reactions are, respectively, C + O2 → CO2

and U235 + n(thermal) → fission products + 2.3 n(fast).

Solution 1.4 The extra number N of liters of fuel needed in the stop-
and-go traffic of city driving is N = 2 · l · (m · v2/2)/(η · h) = 2 · 100 · 2000 ·
(502/3.62)/(2 · 0.35 · 40 · 106) l ≈ 2.8 l. This means a fuel consumption of 9.8 l per
100 km or 24 mpg in the city for this heavy car compared to 7 l per 100 km or
34 mpg on the highway. Comment: Driving a smaller car would save energy.
Regenerative breaking with an electric motor/generator combination would save
even more energy.

Solution 1.5 Hydroelectricity is base-load electricity; photovoltaics provides fluc-
tuating electricity with capacity factors between 10 and 20%, depending on the
number of sunshine hours.


