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Preface

I have been teaching probability and mathematical statistics to graduate students for
close to 50 years. In my career I realized that the most difficult task for students is
solving problems. Bright students can generally grasp the theory easier than apply it.
In order to overcome this hurdle, I used to write examples of solutions to problems and
hand it to my students. I often wrote examples for the students based on my published
research. Over the years I have accumulated a large number of such examples and
problems. This book is aimed at sharing these examples and problems with the
population of students, researchers, and teachers.

The book consists of nine chapters. Each chapter has four parts. The first part
contains a short presentation of the theory. This is required especially for establishing
notation and to provide a quick overview of the important results and references. The
second part consists of examples. The examples follow the theoretical presentation.
The third part consists of problems for solution, arranged by the corresponding sec-
tions of the theory part. The fourth part presents solutions to some selected problems.
The solutions are generally not as detailed as the examples, but as such these are
examples of solutions. I tried to demonstrate how to apply known results in order to
solve problems elegantly. All together there are in the book 167 examples and 431
problems.

The emphasis in the book is on statistical inference. The first chapter on proba-
bility is especially important for students who have not had a course on advanced
probability. Chapter Two is on the theory of distribution functions. This is basic to
all developments in the book, and from my experience, it is important for all students
to master this calculus of distributions. The chapter covers multivariate distributions,
especially the multivariate normal; conditional distributions; techniques of determin-
ing variances and covariances of sample moments; the theory of exponential families;
Edgeworth expansions and saddle-point approximations; and more. Chapter Three
covers the theory of sufficient statistics, completeness of families of distributions,
and the information in samples. In particular, it presents the Fisher information, the
Kullback–Leibler information, and the Hellinger distance. Chapter Four provides a
strong foundation in the theory of testing statistical hypotheses. The Wald SPRT is

xv



xvi PREFACE

discussed there too. Chapter Five is focused on optimal point estimation of differ-
ent kinds. Pitman estimators and equivariant estimators are also discussed. Chap-
ter Six covers problems of efficient confidence intervals, in particular the problem of
determining fixed-width confidence intervals by two-stage or sequential sampling.
Chapter Seven covers techniques of large sample approximations, useful in estima-
tion and testing. Chapter Eight is devoted to Bayesian analysis, including empirical
Bayes theory. It highlights computational approximations by numerical analysis and
simulations. Finally, Chapter Nine presents a few more advanced topics, such as
minimaxity, admissibility, structural distributions, and the Stein-type estimators.

I would like to acknowledge with gratitude the contributions of my many ex-
students, who toiled through these examples and problems and gave me their impor-
tant feedback. In particular, I am very grateful and indebted to my colleagues,
Professors A. Schick, Q. Yu, S. De, and A. Polunchenko, who carefully read parts
of this book and provided important comments. Mrs. Marge Pratt skillfully typed
several drafts of this book with patience and grace. To her I extend my heartfelt
thanks. Finally, I would like to thank my wife Hanna for giving me the conditions
and encouragement to do research and engage in scholarly writing.

Shelemyahu Zacks
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C H A P T E R 1

Basic Probability Theory

PART I: THEORY

It is assumed that the reader has had a course in elementary probability. In this chapter
we discuss more advanced material, which is required for further developments.

1.1 OPERATIONS ON SETS

Let S denote a sample space. Let E1, E2 be subsets of S. We denote the union by
E1 ∪ E2 and the intersection by E1 ∩ E2. Ē = S − E denotes the complement of
E . By DeMorgan’s laws E1 ∪ E2 = Ē1 ∩ Ē2 and E1 ∩ E2 = Ē1 ∪ Ē2.

Given a sequence of sets {En, n ≥ 1} (finite or infinite), we define

sup
n≥1

En =
⋃
n≥1

En, inf
n≥1

En =
⋂
n≥1

En. (1.1.1)

Furthermore, lim inf
n→∞ and lim sup

n→∞
are defined as

lim inf
n→∞ En =

⋃
n≥1

⋂
k≥n

Ek, lim sup
n→∞

En =
⋂
n≥1

⋃
k≥n

Ek . (1.1.2)

If a point of S belongs to lim sup
n→∞

En , it belongs to infinitely many sets En . The sets

lim inf
n→∞ En and lim sup

n→∞
En always exist and

lim inf
n→∞ En ⊂ lim sup

n→∞
En. (1.1.3)

Examples and Problems in Mathematical Statistics, First Edition. Shelemyahu Zacks.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 BASIC PROBABILITY THEORY

If lim inf
n→∞ En = lim sup

n→∞
En , we say that a limit of {En, n ≥ 1} exists. In this case,

lim
n→∞ En = lim inf

n→∞ En = lim sup
n→∞

En. (1.1.4)

A sequence {En, n ≥ 1} is called monotone increasing if En ⊂ En+1 for all n ≥ 1. In

this case lim
n→∞En =

∞⋃
n=1

En . The sequence is monotone decreasing if En ⊃ En+1, for

all n ≥ 1. In this case lim
n→∞En =

∞⋂
n=1

En . We conclude this section with the definition

of a partition of the sample space. A collection of sets D = {E1, . . . , Ek} is called
a finite partition of S if all elements of D are pairwise disjoint and their union

is S, i.e., Ei ∩ E j = ∅ for all i 
= j ; Ei , E j ∈ D; and
k⋃

i=1

Ei = S. If D contains a

countable number of sets that are mutually exclusive and
∞⋃

i=1

Ei = S, we say that D

is a countable partition.

1.2 ALGEBRA AND σ -FIELDS

Let S be a sample space. An algebra A is a collection of subsets of S satisfying

(i) S ∈ A;

(ii) if E ∈ A then Ē ∈ A;

(iii) if E1, E2 ∈ A then E1 ∪ E2 ∈ A.

(1.2.1)

We consider ∅ = S̄. Thus, (i) and (ii) imply that ∅ ∈ A. Also, if E1, E2 ∈ A then
E1 ∩ E2 ∈ A.

The trivial algebra is A0 = {∅,S}. An algebra A1 is a subalgebra of A2 if all sets
of A1 are contained in A2. We denote this inclusion by A1 ⊂ A2. Thus, the trivial
algebra A0 is a subalgebra of every algebra A. We will denote by A(S), the algebra
generated by all subsets of S (see Example 1.1).

If a sample space S has a finite number of points n, say 1 ≤ n < ∞, then the col-
lection of all subsets of S is called the discrete algebra generated by the elementary
events of S. It contains 2n events.

Let D be a partition of S having k, 2 ≤ k, disjoint sets. Then, the algebra generated
by D, A(D), is the algebra containing all the 2k − 1 unions of the elements of D and
the empty set.



PART I: THEORY 3

An algebra on S is called a σ -field if, in addition to being an algebra, the following
holds.

(iv) If En ∈ A, n ≥ 1, then
∞⋃

n=1

En ∈ A.

We will denote a σ -field by F . In a σ -field F the supremum, infinum, limsup, and
liminf of any sequence of events belong to F . If S is finite, the discrete algebra A(S)
is a σ -field. In Example 1.3 we show an algebra that is not a σ -field.

The minimal σ -field containing the algebra generated by {(−∞, x],−∞ < x <

∞} is called the Borel σ -field on the real line R.
A sample space S, with a σ -field F , (S,F) is called a measurable space.
The following lemmas establish the existence of smallest σ -field containing a

given collection of sets.

Lemma 1.2.1. Let E be a collection of subsets of a sample space S. Then, there
exists a smallest σ -field F(E), containing the elements of E .

Proof. The algebra of all subsets of S, A(S) obviously contains all elements of E .
Similarly, the σ -field F containing all subsets of S, contains all elements of E . Define
the σ -field F(E) to be the intersection of all σ -fields, which contain all elements of
E . Obviously, F(E) is an algebra. QED

A collection M of subsets of S is called a monotonic class if the limit of any
monotone sequence in M belongs to M.

If E is a collection of subsets of S, let M∗(E) denote the smallest monotonic class
containing E .

Lemma 1.2.2. A necessary and sufficient condition of an algebra A to be a σ -field
is that it is a monotonic class.

Proof. (i) Obviously, if A is a σ -field, it is a monotonic class.
(ii) Let A be a monotonic class.

Let En ∈ A, n ≥ 1. Define Bn =
n⋃

i=1

Ei . Obviously Bn ⊂ Bn+1 for all n ≥ 1. Hence

lim
n→∞Bn =

∞⋃
n=1

Bn ∈ A. But
∞⋃

n=1

Bn =
∞⋃

n=1

En . Thus, sup
n≥1

En ∈ A. Similarly,
∞⋂

n=1

En ∈ A.

Thus, A is a σ -field. QED

Theorem 1.2.1. Let A be an algebra. Then M∗(A) = F(A), where F(A) is the
smallest σ -field containing A.



4 BASIC PROBABILITY THEORY

Proof. See Shiryayev (1984, p. 139).
The measurable space (R,B), where R is the real line and B = F(R), called the

Borel measurable space, plays a most important role in the theory of statistics.
Another important measurable space is (Rn,Bn), n ≥ 2, where R

n = R × R × · · · ×
R is the Euclidean n-space, and Bn = B × · · · × B is the smallest σ -field containing
R

n , ∅, and all n-dimensional rectangles I = I1 × · · · × In , where

Ii = (ai , bi ], i = 1, . . . , n, −∞ < ai < bi < ∞.

The measurable space (R∞,B∞) is used as a basis for probability models of
experiments with infinitely many trials. R

∞ is the space of ordered sequences
x = (x1, x2, . . .), −∞ < xn < ∞, n = 1, 2, . . .. Consider the cylinder sets

C(I1 × · · · × In) = {x : xi ∈ Ii , i = 1, . . . , n}

and

C(B1 × · · · × Bn) = {x : xi ∈ Bi , i = 1, . . . , n}

where Bi are Borel sets, i.e., Bi ∈ B. The smallest σ -field containing all these cylinder
sets, n ≥ 1, is B(R∞). Examples of Borel sets in B(R∞) are

(a) {x : x ∈ R
∞, sup

n≥1
xn > a}

or

(b) {x : x ∈ R
∞, lim sup

n→∞
xn ≤ a}.

1.3 PROBABILITY SPACES

Given a measurable space (S,F), a probability model ascribes a countably additive
function P on F , which assigns a probability P{A} to all sets A ∈ F . This function
should satisfy the following properties.

(A.1) If A ∈ F then 0 ≤ P{A} ≤ 1.

(A.2) P{S} = 1. (1.3.1)

(A.3) If {En, n ≥ 1} ∈ F is a sequence of disjoint

sets inF , then P

{ ∞⋃
n=1

En

}
=

∞∑
n=1

P{En}. (1.3.2)
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Recall that if A ⊂ B then P{A} ≤ P{B}, and P{ Ā} = 1 − P{A}. Other properties
will be given in the examples and problems. In the sequel we often write AB for
A ∩ B.

Theorem 1.3.1. Let (S,F , P) be a probability space, where F is a σ -field of subsets
of S and P a probability function. Then

(i) if Bn ⊂ Bn+1, n ≥ 1, Bn ∈ F , then

P
{

lim
n→∞Bn

}
= lim

n→∞P{Bn}. (1.3.3)

(ii) if Bn ⊃ Bn+1, n ≥ 1, Bn ∈ F , then

P
{

lim
n→∞Bn

}
= lim

n→∞P{Bn}. (1.3.4)

Proof. (i) Since Bn ⊂ Bn+1, lim
n→∞Bn =

∞⋃
n=1

Bn . Moreover,

P

{ ∞⋃
n=1

Bn

}
= P{B1} +

∞∑
n=2

P{Bn − Bn−1}. (1.3.5)

Notice that for n ≥ 2, since B̄n Bn−1 = ∅,

P{Bn − Bn−1} = P{Bn B̄n−1}
= P{Bn} − P{Bn Bn−1} = P{Bn} − P{Bn−1}.

(1.3.6)

Also, in (1.3.5)

P{B1} +
∞∑

n=2

P{Bn − Bn−1} = lim
N→∞

(
P{B1} +

N∑
n=2

(P{Bn} − P{Bn−1})
)

= lim
N→∞

P{BN }. (1.3.7)
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Thus, Equation (1.3.3) is proven.

(ii) Since Bn ⊃ Bn+1, n ≥ 1, B̄n ⊂ B̄n+1, n ≥ 1. lim
n→∞Bn =

∞⋂
n=1

Bn . Hence,

P
(

lim
n→∞ Bn

)
= 1 − P

⎧⎨⎩
∞⋂

n=1

Bn

⎫⎬⎭
= 1 − P

{ ∞⋃
n=1

B̄n

}
= 1 − lim

n→∞ P{B̄n} = lim
n→∞ P{Bn}.

QED

Sets in a probability space are called events.

1.4 CONDITIONAL PROBABILITIES AND INDEPENDENCE

The conditional probability of an event A ∈ F given an event B ∈ F such that
P{B} > 0, is defined as

P{A | B} = P{A ∩ B}
P{B} . (1.4.1)

We see first that P{· | B} is a probability function on F . Indeed, for every A ∈ F ,
0 ≤ P{A | B} ≤ 1. Moreover, P{S | B} = 1 and if A1 and A2 are disjoint events in
F , then

P{A1 ∪ A2 | B} = P{(A1 ∪ A2)B}
P{B}

= P{A1 B} + P{A2 B}
P{B} = P{A1 | B} + P{A2 | B}.

(1.4.2)

If P{B} > 0 and P{A} 
= P{A | B}, we say that the events A and B are depen-
dent. On the other hand, if P{A} = P{A | B} we say that A and B are independent
events. Notice that two events are independent if and only if

P{AB} = P{A}P{B}. (1.4.3)

Given n events in A, namely A1, . . . , An , we say that they are pairwise independent
if P{Ai A j } = P{Ai }P{A j } for any i 
= j . The events are said to be independent in
triplets if

P{Ai A j Ak} = P{Ai }P{A j }P{Ak}
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for any i 
= j 
= k. Example 1.4 shows that pairwise independence does not imply
independence in triplets.

Given n events A1, . . . , An of F , we say that they are independent if, for any
2 ≤ k ≤ n and any k-tuple (1 ≤ i1 < i2 < · · · < ik ≤ n),

P

⎧⎨⎩
k⋂

j=1

Ai j

⎫⎬⎭ =
k∏

j=1

P{Ai j }. (1.4.4)

Events in an infinite sequence {A1, A2, . . .} are said to be independent if
{A1, . . . , An} are independent, for each n ≥ 2. Given a sequence of events A1, A2, . . .

of a σ -field F , we have seen that

lim sup
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak .

This event means that points w in lim sup
n→∞

An belong to infinitely many of the events

{An}. Thus, the event lim sup
n→∞

An is denoted also as {An , i.o.}, where i.o. stands for

“infinitely often.”
The following important theorem, known as the Borel–Cantelli Lemma, gives

conditions under which P{An , i.o.} is either 0 or 1.

Theorem 1.4.1 (Borel–Cantelli). Let {An} be a sequence of sets in F .

(i) If
∞∑

n=1

P{An} < ∞, then P{An, i.o.} = 0.

(ii) If
∞∑

n=1

P{An} = ∞ and {An} are independent, then P{An, i.o.} = 1.

Proof. (i) Notice that Bn =
∞⋃

k=n

Ak is a decreasing sequence. Thus

P{An, i.o.} = P

{ ∞⋂
n=1

Bn

}
= lim

n→∞ P{Bn}.

But

P{Bn} = P

{ ∞⋃
k=n

Ak

}
≤

∞∑
k=n

P{Ak}.
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The assumption that
∞∑

n=1

P{An} < ∞ implies that lim
n→∞

∞∑
k=n

P{Ak} = 0.

(ii) Since A1, A2, . . . are independent, Ā1, Ā2, . . . are independent. This implies
that

P

{ ∞⋂
k=1

Āk

}
=

∞∏
k=1

P{ Āk} =
∞∏

k=1

(1 − P{Ak}).

If 0 < x ≤ 1 then log(1 − x) ≤ −x . Thus,

log
∞∏

k=1

(1 − P{Ak}) =
∞∑

k=1

log(1 − P{Ak})

≤ −
∞∑

k=1

P{Ak} = −∞

since
∞∑

n=1

P{An} = ∞. Thus P

{ ∞⋂
k=1

Āk

}
= 0 for all n ≥ 1. This implies that

P{An, i.o.} = 1. QED

We conclude this section with the celebrated Bayes Theorem.
Let D = {Bi , i ∈ J } be a partition of S, where J is an index set having a finite or

countable number of elements. Let B j ∈ F and P{B j } > 0 for all j ∈ J . Let A ∈ F ,
P{A} > 0. We are interested in the conditional probabilities P{B j | A}, j ∈ J .

Theorem 1.4.2 (Bayes).

P{B j | A} = P{B j }P{A | B j }∑
j ′∈J

P{B j ′ }P{A | B j ′ }
. (1.4.5)

Proof. Left as an exercise. QED

Bayes Theorem is widely used in scientific inference. Examples of the application
of Bayes Theorem are given in many elementary books. Advanced examples of
Bayesian inference will be given in later chapters.

1.5 RANDOM VARIABLES AND THEIR DISTRIBUTIONS

Random variables are finite real value functions on the sample space S, such that
measurable subsets of F are mapped into Borel sets on the real line and thus can be


