WILEY-VCH

ULLMANN'S Fine Chemicals

Ullmann's Fine Chemicals

ULLMANN'S Encyclopedia of Industrial Chemistry

...built from generations of expertise, for generations to come.

The format to meet your needs.

Online	DVD	Print
 Over 1,150 articles are available police 		CHERRY OF REAL PROVIDED IN THE PROVIDED INTERPOVED INTERP
 Over 3,000 authors from over 30 countries have contributed. Offers flexible access 24/7 from your library, home, or on the road. 	 Released once a year. Fully networkable for up to 200 users. 	 ULLMANN's is available as a comprehensive 40 Volume-Set. The 7th Edition published in August 2011.
 Updated 6 times per year. ISBN: 978-3-527-30673-2 	 2013 Edition ISBN: 978-3-527-33311-0 	ISBN: 978-3-527-32943-4
<image/> <image/> <image/> <image/> <section-header><section-header><section-header><image/><text></text></section-header></section-header></section-header>	interested in a special f ULLMANY'S ULLMANY ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY'S ULLMANY ULLMANY ULLMANY ULLMANY ULLMANY ULLMANY ULLMANY ULLMANY UL	topic? ULIMANN'S ULI
The Wiley The Online	LIBRARY	WILEY-VCH
www.wi	ley.com/go	/ullmanns

Ullmann's Fine Chemicals

Editor-in-Chief:

Dr. Barbara Elvers, Hamburg, Germany

All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <<u>http://dnb.d-nb.de</u>>.

© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33477-3

 Cover Design
 Grafik-Design Schulz

 Typesetting
 Thomson
 Digital, Noida, India

 Printing and Binding
 Markono
 Print Media
 Pte Ltd, Singapore

Printed on acid-free paper

Preface

This handbook features selected articles from the 7th edition of *ULLMANN'S Encyclopedia of Industrial Chemistry*, including newly written articles that have not been published in a printed edition before. True to the tradition of the ULLMANN'S Encyclopedia, products and processes are addressed from an industrial perspective, including production figures, quality standards and patent protection issues where appropriate. Safety and environmental aspects which are a key concern for modern process industries are likewise considered.

More content on related topics can be found in the complete edition of the ULLMANN'S Encyclopedia.

About ULLMANN'S

ULLMANN'S Encyclopedia is the world's largest reference in applied chemistry, industrial chemistry, and chemical engineering. In its current edition, the Encyclopedia contains more than 30,000 pages, 15,000 tables, 25,000 figures, and innumerable literature sources and cross-references, offering a wealth of comprehensive and well-structured information on all facets of industrial chemistry.

1,100 major articles cover the following main areas:

- Agrochemicals
- Analytical Techniques
- · Biochemistry and Biotechnology
- Chemical Reactions
- Dyes and Pigments
- Energy
- · Environmental Protection and Industrial Safety
- Fat, Oil, Food and Feed, Cosmetics
- Inorganic Chemicals
- Materials
- Metals and Alloys
- Organic Chemicals
- Pharmaceuticals
- Polymers and Plastics
- Processes and Process Engineering
- Renewable Resources
- Special Topics

First published in 1914 by Professor Fritz Ullmann in Berlin, the *Enzyklopädie der Technischen Chemie* (as the German title read) quickly became the standard reference work in industrial chemistry. Generations of chemists have since relied on ULLMANN'S as their prime reference source. Three further German editions followed in 1928–1932, 1951–1970, and in 1972–1984. From 1985 to 1996, the 5th edition of ULLMANN'S Encyclopedia of Industrial Chemistry was the first edition to be published in English rather than German language. So far, two more complete English editions have been published; the 6th edition of 40 volumes in 2002, and the 7th edition in 2011, again comprising 40 volumes. In addition, a number of smaller topic-oriented editions have been published.

Since 1997, ULLMANN'S Encyclopedia of Industrial Chemistry has also been available in electronic format, first in a CD-ROM edition and, since 2000, in an enhanced online edition. Both electronic editions feature powerful search and navigation functions as well as regular content updates.

Vol. 1

Contents

Volume 1
Symbols and Units
Conversion Factors
Abbreviations
Country Codes
Dania dia Tabla of Elementa
Final Chambre of Elements
Fine Unemicals
Alcohols, Polyhydric
Aldehydes, Araliphatic
Allyl Compounds
Aluminum Compounds, Organic
Amines, Aliphatic
Amino Acids
Antimony Compounds, Organic
Arsenic Compounds, Organic
Aziridines
Benzenesulfonic Acids and their
Derivatives
Benzidine and Benzidine Derivatives
Benzoic Acid and Derivatives
Benzoquinone
Benzyl Alcohol
Benzyl Chloride and Other Side-Chain
Chlorinated Aromatic Hydrocarbons
Boron Compounds
Bromine Compounds, Organic
Butyrolactone
Carbamates and Carbamoyl Chlorides
Carbonic Esters
Volume 2
Carboxylic Acids, Aliphatic
Carboxylic Acids, Aromatic
Chloroacetaldehydes
Chloroacetic Acids
Chloroamines
Chloroformic Esters
Chlorohydrins
Chlorophenoxyalkanoic Acids
Cinnamic Acid
Crown Ethers
Cvanuric Acid and Cvanuric Chloride
Cyclododecatriene, Cyclooctadiene and
4-Vinvlcvclohexene
Cyclopentadiene and Cyclopentene
Dicarboxylic Acids. Aliphatic
Dithiocarbamic Acid and Derivatives
Dianocaroanne riera ana Derivarives

	Epoxides	629
	Ethylenediaminetetraacetic Acid and	
XI	Related Chelating Agents	645
XIII	Glyoxal	651
XVIII	Guanidine and Derivatives	657
XIX	Hydrides	673
1	Hydroxycarboxylic Acids, Aliphatic	703
37	Hydroxycarboxylic Acids, Aromatic	715
59	Imidazole and Derivatives	725
67	Indole	735
91	Ionic Liquids	741
113	Iron Compounds, Organic	771
165	Isocyanates, Organic	781
223	Ketenes	801
227	Ketones	817
233	Lithium Compounds, Organic	839
	Magnesium Compounds, Organic	845
241	Malonic Acid and Derivatives	851
279		001
297	Volume 3	
311	Mercaptoacetic Acid and Derivatives	869
317	Naphthalene Derivatives	873
	Nickel Compounds, Organic	927
327	Nitriles	933
345	Nitrilotriacetic Acid	949
367	Nitro Compounds, Aliphatic	955
301	Nitro Compounds, Aromatic	965
300	Oxocarboxylic Acids	1015
407	Pentanols	1023
407	Phenol Derivatives	1037
	Phosphorus Compounds, Organic	1099
435	Purine Derivatives	1131
449	2-Pyrrolidone	1137
461	Quinoline and Isoquinoline	1145
473	Sulfinic Acids and Derivatives	1151
491	Sulfones and Sulfoxides	1169
497	Terpenes	1185
505	Thiocyanates and Isothiocyanates.	
510	Organic	1203
520	Thiols and Organic Sulfides	1213
529	Thionhene	1213
542	Thiourea and Thiourea Derivatives	1241
343	Tin Compounds Organic	1255
565	In Compounds, Organic	1209
202		1213
569	Author Index	1705
583	Aumor muex	1283
601	Subject Index	1291

Symbols and Units

a_B activity of substance B A_r relative atomic mass (atomic weight) A m^2 c_B mol/m ² , mol/L (M)concentration of substance B C C/V electric capacity c_p, c_v Jkg ⁻¹ K ⁻¹ specific heat capacity d cm, mdiameter d mol/m ² /sdiffusion coefficient D m^2/s diffusion coefficient D Gy (=J/kg)absorbed dose e Celementary charge E Jenergy E Velectric field strength E Jenergy F V/melectroficient F_A Jactivity coefficient F_A Jactivity coefficient F Nforce g m/s^2 activity coefficient F Nforce g m/s^2 electroin due to gravity G JGibbs free energy h mheight h Mgibbs h m f rate constant of a chemical reaction k J/K Boltzmann constant f rate constant of a chemical reaction k J/K Boltzmann constant f mneight m m f m f actore constant (6.023 × 10 ²³ mol ⁻¹) f mmol f m f m f m f gas consta	Symbol	Unit	Physical Quantity
A_r relative atomic mass (atomic weight) A m ² area C_n mol/m ³ , mol/L (M)concentration of substance B C C/V electric capacity c_p, c_v J kg ⁻¹ K ⁻¹ specific heat capacity d cm, mdiffusion coefficient d m ² /sdiffusion coefficient D m ² /sdiffusion coefficient D Gy (=J/kg)absorbed dose e Celementary charge E Jenergy E V/melectric field strength E V/melectromotive force A_A Jactivation energy f activity coefficient F C/molFaraday constant F Nforce g m/s ² acceleration due to gravity G JGibbs free energy h mheight h M s ² Planck constant H Jelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/K Boltzmann constant I mlength m_m q_k kg, t m_m q_k kg M_r q_k constant H q_k the entropy k M_s^{-1} mol ⁻¹ <t< td=""><td>a_B</td><td></td><td>activity of substance B</td></t<>	a _B		activity of substance B
A m^2 areac _n mol/m ³ , mol/L (M)concentration of substance BCC/Velectric capacity c_p, c_v J kg ⁻¹ K ⁻¹ specific heat capacitydcm, mdiameterdrelative density ($g/gwater$)D m^2/s diffusion coefficientD m^2/s diffusion coefficientD m^2/s absorbed doseeCelementary chargeEJenergyEV/melectric field strengthEVelectromotive force E_A Jactivation energyfactivation energyfactivation energygm/s ² acceleration due to gravityGJGibbs free energyhmheighthWs ² Planck constantHHJenthalpyIcdluminous intensityk(variable)rate constant of a chemical reactionkJKKBoltzmann constant m mlengthmmol ⁻¹ Acogator constant (6.023 × 10 ²³ mol ⁻¹) P_p^{20} mrative molecular mass (molecular weight) n_p^{20} JKentropy $r<$ mradius R_r m_r^{-1} gas constant	$A_{\rm r}$		relative atomic mass (atomic weight)
c_B mol/m ³ , mol/L (M)concentration of substance B C C/V electric capacity C C/V electric capacity d cm, mdiameter d cm, mdiameter d m^2/s diffusion coefficient D m^2/s diffusion coefficient D $Gy (=J/kg)$ absorbed dose e C elementary charge e J energy E J energy E V/m electromotive force E_A J activation energy f T activation energy f T activation energy f G J F N force g m/s^2 acceleration due to gravity G J G f M force g m/s^2 Planck constant f M G f A electric current f	Α	m^2	area
C CV electric capacity c_p, c_v $Ikg^{-1}K^{-1}$ specific heat capacity d cm, mdiameter d relative density (Q/Qwater) D m^2/s diffusion coefficient D m^2/s diffusion coefficient D Gy ($=J/kg$)absorbed dose e Celementary charge e Jenergy E Jenergy E Velectromotive force E_A Jactivity coefficient F C/molFaraday constant F C/molforce g m/s^2 acceleration due to gravity G JGibbs free energy h mheight h $W \cdot s^2$ Planck constant H Jenthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/K Boltzmann constant I mg, kg, t m m_0^{-1} Avogadro constant (6.023 × 10^{23} mol^{-1}) P P_a, bar^* pressure Q Jquantity of heat r m radius R Q electric resistance S_A J/K entopy r r m r Q	c _B	mol/m ³ , mol/L (M)	concentration of substance B
c_p, c_v Jkg ⁻¹ K ⁻¹ specific heat capacitydcm, mdiameterdrelative density ($Q/qwater$)Dm²/sdiffusion coefficientDGy (=J/kg)absorbed doseeCelementary chargeEJenergyEV/melectric field strengthEVelectric field strengthEVelectric force E_A Jactivation energyfactivity coefficientFC/molFaraday constantFNforcegm/s²acceleration due to gravityGJGibbs free energyhmheighthMs²Planck constantHHJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantK(variable)equilibrium constantImlengthmg, kg, tmass m_p^{00} mol amount of substance N_A mol^{-1}Avogadro constant (6.023 × 10 ²³ mol^{-1})PPa, bar*pressureQJquantity of heatrmclectric resistanceSJ/Kelectric resistanceSJ/Kelectric resistanceSJ/Kelectric resistanceNASelectric resistanceV <td>С</td> <td>C/V</td> <td>electric capacity</td>	С	C/V	electric capacity
d cm, mdiameter relative density ($\rho/qwater$) D m^2/s diffusion coefficient D Gy (=J/kg)absorbed dose e C elementary charge E J energy E V/m electric field strength E V electromotive force E_A J activation energy f C/mol Faraday constant F C/mol Faraday constant F C/mol Faraday constant F N force g m/s^2 acceleration due to gravity G J Gibbs free energy h m height h M enthalpy I A electric current I Cd luminous intensity k J/K Boltzmann constant K (variable)rate constant of a chemical reaction k J/K Boltzmann constant K (variable)relative molecular mass (molecular weight)) n_D^{20} m mol m ength m m ga constant M_r m^{-1} $Avogadro constant (s.023 × 10^{23} mol^{-1})$) P P_a bar*pressure Q J quantity of heat r m radius R M^{-1} mol^{-1}ga constant R G electric resistance S J/K entropy r m radius R <td>c_p, c_v</td> <td>$\mathrm{Jkg^{-1}K^{-1}}$</td> <td>specific heat capacity</td>	c_p, c_v	$\mathrm{Jkg^{-1}K^{-1}}$	specific heat capacity
drelative density ($g/qwater$)D m^2/s diffusion coefficientDGy (=J/kg)absorbed doseeCelementary chargeeJenergyEJenergyEV/melectron field strengthEVelectrom ofive force E_A Jactivation energyfactivation energyfforcegm/s2gm/s2fgfacceleration due to gravityfAfgfforcefforcefforceggfforceggfforcegforcegforcegforceggfforcefgfgfgfforcegggkg, t <td< td=""><td>d</td><td>cm, m</td><td>diameter</td></td<>	d	cm, m	diameter
D m²/s diffusion coefficient D Gy (=J/kg) absorbed dose e C elementary charge E J energy E V/m electric field strength E V electromotive force E_A J activation energy f activity coefficient F C/mol Faraday constant F N force g m/s² acceleration due to gravity G J Gibbs free energy h M horce g m/s² Planck constant H J enthalpy I A electric current I cd luminous intensity k (variable) rate constant of a chemical reaction k JK Boltzmann constant I m length m eleftit mass m g, kg, t mass mathethy relative molecular mass (molecular weight) n ^P pa, bar* </td <td>d</td> <td></td> <td>relative density (Q/Qwater)</td>	d		relative density (Q/Qwater)
DGy (=J/kg)absorbed doseeCelementary chargeEJenergyEV/melectric field strengthEVelectric field strengthEVelectromotive force E_A Jactivation energyfactivity coefficientFC/molFaraday constantFNforcegm/s²acceleration due to gravityGJGibbs free energyhmheightħW·s²Planck constantHJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJKKBoltzmann constantK(variable)equilibrium constantlmlengthmg, kg, tmass m_p^{2D} refactive molecular mass (molecular weight) n_p^{2D} refactive index (sodium p-line, 20 °C)nmolamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, ba*pressureQJquantity of heatrmclectric resistanceSJKentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocity	D	m ² /s	diffusion coefficient
e Celementary charge energy E Jenergy E V/melectric field strength E Velectronotive force E_A Jactivation energy activity coefficient F C/molFaraday constant F Nforce g m/s²acceleration due to gravity G JGibbs free energy h mheight h W·s²Planck constant H Jenthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/KBoltzmann constant I mlength m g, kg, tmass M_r refactive index (sodium p-line, 20 °C) n molavogafor constant ($6.023 \times 10^{23} mol^{-1}$) P Pa, ba*pressure Q Jquantity of heat r mradius R $M^{-1} mol^{-1}$ gas constant R Ω electric resistance S J/Kentropy r mradius R $M^{-1} mol^{-1}$ gas constant R Ω electric resistance S J/Kentropy r π electric resistance S J/Kentropy r π abolute temperature I K abolute temperature I	D	Gy (=J/kg)	absorbed dose
EJenergyEV/melectric field strengthEVelectromotive forceEAJactivation energyfactivation energyfraday constantFC/molFaraday constantFNforcegm/s²acceleration due to gravityGJGibbs free energyhmheighthW·s²Planck constantHJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantK(variable)rate constant of a chemical reactionkg, kg, tmassmg, kg, tmassmmolamount of substanceNAmol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, bar*pressureQJquantity of heatrmradiusR K^{-1} mol ⁻¹ gas constantR Ω electric resistanceSJ/Kentropyts, min, h, month, atimet°CtemperatureTKabolute temperatureUVelectric rostantia	е	C	elementary charge
E V/melectric field strength E Velectromotive force E_A Jactivity coefficient F C/molFaraday constant F Nforce g m/s^2 acceleration due to gravity G JGibbs free energy h mheight h W·s ² Planck constant H Jenthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/KBoltzmann constant K (variable)equilibrium constant I mlength m g, kg, tmass m_{20}^{20} relative molecular mass (molecular weight) n^{20} molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R Ω electric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature u m/svelocity u u/s velocity	Ε	J	energy
EVelectromotive fore E_A Jactivation energy activity coefficientFC/molFaraday constantFNforcegm/s²acceleration due to gravityGJGibbs free energyhmheighthW·s²Planck constantHJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantImlengthmg, g, tmass n_D^{-1} Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, bar*pressureQJquantity of heatrmradiusRJK ⁻¹ mol ⁻¹ gas constantR Ω electric resistanceSJ/Kentropyts, min, h, d, month, atimet°Ctemperatureum/svelocityvelocityvelocityvelocityvelocity	Ε	V/m	electric field strength
E_A Jactivation energy activity coefficient F C/molFaraday constant F Nforce g m/s²acceleration due to gravity G JGibbs free energy h mheight h Menthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/KBoltzmann constant K (variable)equilibrium constant I mlength m g, kg, tmass M_r relative molecular mass (molecular weight) refractive index (sodium D-line, 20 °C) n mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R J/K electric resistance S J/Kentropy r mradius R Q J r m r m R M^{-1} mol ⁻¹ R Q J/K entropy r m R M_r r m R M_r r m R M_r R M_r R M_r R R R M_r R M_r R M_r R M_r R	Ε	V	electromotive force
factivity coefficientFC/molFaraday constantFNforcegm/s²acceleration due to gravityGJGibbs free energyhmheighthMS²Planck constantHJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantK(variable)equilibrium constantlmlengthmg, kg, tmass M_r molamount of substance N_A mol^{-1}Avogadro constant (6.023 × 10^{23} mol^{-1})PPa, bar*pressureQJquantity of heatrmradiusR M_r^{-1} mol^{-1}gas constantR M_r^{-1} mol^{-1}gas constant	E_{Δ}	J	activation energy
F C/molFaraday constant F Nforce g m/s^2 acceleration due to gravity G JGibbs free energy h mheight h M·s²Planck constant H Jenthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/KBoltzmann constant K (variable)equilibrium constant l mlength m g, kg, tmass n_{D}^{20} refractive index (sodium p-line, 20 °C) n molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R M^{-1} gas constant R Ω electric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature u m/svelocity u m/svelocity	f		activity coefficient
F Nforce g m/s^2 acceleration due to gravity G JGibbs free energy h mheight h W·s²Planck constant H Jenthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/KBoltzmann constant K (variable)equilibrium constant I mlength m g, kg, tmass M_r relative molecular mass (molecular weight) refractive index (sodium p-line, 20 °C) n molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R Q electric resistance S J/K entropy t s, min, h, d, month, atime t °Ctemperature u m/svelocity U Velectric rotential	F	C/mol	Faraday constant
g m/s^2 acceleration due to gravityGJGibbs free energyhmheighthmheighthW·s ² Planck constantHJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantK(variable)equilibrium constantlmlengthmg, kg, tmass M_r relative molecular mass (molecular weight)) n_D^{20} molamount of substanceN_Amol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, bar*pressureQJquantity of heatrmradiusRJ/Kelectric resistanceSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityVelectric rotential	F	Ν	force
G JGibbs free energy h mheight h M·s²Planck constant H Jenthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k (variable)equilibrium constant I mlength m g, kg, tmass M_r relative index (sodium p-line, 20 °C) n molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar [*] pressure Q Jquantity of heat r mradius R J/Kelectric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature T Kabsolute temperature u m/svelocity U Velectric potential	Q	m/s^2	acceleration due to gravity
hmheighthmheighthW·s²Planck constantHJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantk(variable)equilibrium constantlmlengthmg, kg, tmass M_r relative molecular mass (molecular weight) n_D^{2D} refractive index (sodium p-line, 20 °C)nmolamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, bar*pressureQJquantity of heatrmradiusRQelectric resistanceSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric prestrial	° G	J	Gibbs free energy
\hbar W·s²Planck constant H Jenthalpy I Aelectric current I cdluminous intensity k (variable)rate constant of a chemical reaction k J/KBoltzmann constant K (variable)equilibrium constant l mlength m g, kg, tmass M_r relative molecular mass (molecular weight) n_{DD}^{2D} refractive index (sodium D-line, 20 °C) n molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R Qelectric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature T Kabsolute temperature u m/svelocity U Velectric prestrial	h	m	height
HJenthalpyIAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantK(variable)equilibrium constantlmlengthmg, kg, tmass M_r relative molecular mass (molecular weight) n_D^{20} relative molecular mass (molecular weight) n_D^{20} molnmol n_D^{20} amount of substance N_A mol ⁻¹ A vogadro constant ($6.023 \times 10^{23} \text{ mol}^{-1}$) P Pa, bar* Q J q quantity of heat r m R JK ⁻¹ mol ⁻¹ Q J R Ω S J/K R Ω S J/K R Ω S J/K R Ω S J/K R Ω R M R Ω R M M M R M M M R M	ħ	$\overline{W} \cdot s^2$	Planck constant
IAelectric currentIcdluminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantk(variable)equilibrium constantlmlengthmg, kg, tmass M_r relative molecular mass (molecular weight) n_D^{2D} refractive index (sodium D-line, 20 °C)nmolamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, bar*pressureQJquantity of heatrmradiusRJK ⁻¹ mol ⁻¹ gas constantRQelectric resistanceSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric potential	H	J	enthalpy
IcdIuminous intensityIcdIuminous intensityk(variable)rate constant of a chemical reactionkJ/KBoltzmann constantK(variable)equilibrium constantlmlengthmg, kg, tmass M_r relative molecular mass (molecular weight) n_{2D}^{0D} refractive index (sodium D-line, 20 °C)nmolamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, ba*pressureQJquantity of heatrmradiusRQelectric resistanceSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric potential	I	A	electric current
k(variable)rate constant of a chemical reactionkJ/KBoltzmann constantk(variable)equilibrium constantlmlengthmg, kg, tmass M_r relative molecular mass (molecular weight) n_D^{20} refractive index (sodium D-line, 20 °C)nmolamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, bar*pressureQJquantity of heatrmadiusRJK ⁻¹ mol ⁻¹ gas constantSJ/Kelectric resistanceSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric rostantic	I	cd	luminous intensity
kJ/KBoltzmann constantkJ/KBoltzmann constantK(variable)equilibrium constantlmlengthmg, kg, tmass M_r relative molecular mass (molecular weight) refractive index (sodium p-line, 20 °C)nmolamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹)PPa, bar*pressureQJquantity of heatrmradiusRJK ⁻¹ mol ⁻¹ gas constantRQelectric resistanceSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric potential	k	(variable)	rate constant of a chemical reaction
K(variable)equilibrium constant l mlength m g, kg, tmass M_r relative molecular mass (molecular weight) n_D^{20} refractive index (sodium D-line, 20 °C) n molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R JK ⁻¹ mol ⁻¹ gas constant R Qelectric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature u m/svelocity U Velectric potential	k	I/K	Boltzmann constant
l mequation l mlength m g, kg, tmass M_r relative molecular mass (molecular weight) n_D^{20} refractive index (sodium D-line, 20 °C) n molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R JK ⁻¹ mol ⁻¹ gas constant R Qelectric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature u m/svelocity U Velectric potential	ĸ	(variable)	equilibrium constant
m g, kg, t $mass$ m_r g, kg, t $mass$ M_r $relative molecular mass (molecular weight)$ n_D^{20} $refractive index (sodium D-line, 20 °C)$ n mol $amount of substance$ N_A mol^{-1} $Avogadro constant (6.023 × 10^{23} mol^{-1})$ P Pa, bar^* $pressure$ Q J $quantity of heat$ r m $radius$ R $JK^{-1} mol^{-1}$ $gas constant$ R Q $electric resistance$ S J/K $entropy$ t $s, min, h, d, month, a$ time t $^{\circ}C$ temperature U M_s $velocity$ U V $electric rotential$	1	m	length
M_r relative molecular mass (molecular weight) n_D^{20} relative molecular mass (molecular weight) n_D^{20} refractive index (sodium D-line, 20 °C) n mol N_A mol ⁻¹ N_A mol ⁻¹ P Pa, bar* Q J $quantity of heat$ r m r m R JK ⁻¹ mol ⁻¹ Q gas constant R Q Q V_K r electric resistance S J/K r entropy t s, min, h, d, month, a t °C T K u m/s $velocity$ U V $velocity$	m	g, kg, t	mass
n_D^{20} refractive index (sodium b-line, 20 °C) n molamount of substance N_A mol ⁻¹ Avogadro constant (6.023 × 10 ²³ mol ⁻¹) P Pa, bar*pressure Q Jquantity of heat r mradius R JK ⁻¹ mol ⁻¹ gas constant R Ω electric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature T Kabsolute temperature u m/svelocity U V electric potential	M	8,8, 0	relative molecular mass (molecular weight)
n_D molamount of substance n molamount of substance N_A mol ⁻¹ Avogadro constant ($6.023 \times 10^{23} \text{mol}^{-1}$) P Pa, bar*pressure Q Jquantity of heat r mradius R JK ⁻¹ mol ⁻¹ gas constant R Qelectric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature T Kabsolute temperature u m/svelocity U Velectric potential	n_{20}^{20}		refractive index (sodium p-line 20°C)
N_A molAvogadro constant (6.023 × 10 ²³ mol P Pa, bar*pressure Q Jquantity of heat r mradius R JK ⁻¹ molgas constant R Qelectric resistance S J/Kentropy t s, min, h, d, month, atime t °Ctemperature T Kabsolute temperature u m/svelocity	n	mol	amount of substance
P Pa, bar*pressure Q Jquantity of heat r mradius R $JK^{-1} mol^{-1}$ gas constant R Q electric resistance S J/K entropy t s, min, h, d, month, atime t °Ctemperature T Kabsolute temperature u m/svelocity	N .	mol^{-1}	Avogadro constant (6.023 \times 10 ²³ mol ⁻¹)
Q Jquantity of heat r mradius R $JK^{-1} mol^{-1}$ gas constant R Ω electric resistance S J/K entropy t s, min, h, d, month, atime t °Ctemperature T Kabsolute temperature u m/svelocity	P	Pa bar [*]	nressure
	0	I	quantity of heat
R $JK^{-1} mol^{-1}$ gas constant R Q electric resistance S J/K entropy t s, min, h, d, month, atime t °Ctemperature T K absolute temperature u m/s velocity	e r	m	radius
R Ω gas constantR Ω electric resistanceSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric potential	R	IK^{-1} mol ⁻¹	gas constant
KIICCSJ/Kentropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric potential	R	0	electric resistance
bbbchropyts, min, h, d, month, atimet°CtemperatureTKabsolute temperatureum/svelocityUVelectric potential	S	I/K	entrony
t°Ctemperature T Kabsolute temperature u m/svelocity U Velectric potential	t	s min h d month a	time
T K absolute temperature u m/s velocity U V electric potential	t	°C	temperature
Image: Non-sector of the sector of the se	Т	ĸ	absolute temperature
U V electric notential	1	m/s	velocity
	u II	V	electric notential

Symbols and units agree with SI standards (for conversion factors see page XI). The following list gives the most important symbols used in the encyclopedia. Articles with many specific units and symbols have a similar list as front matter.

Symbols and Units (Continued from p. IX)

Symbol	Unit	Physical Quantity
U	J	internal energy
V	m ³ , L, mL, μL	volume
W		mass fraction
W	J	work
x_B		mole fraction of substance B
Z		proton number, atomic number
α		cubic expansion coefficient
α	$Wm^{-2}K^{-1}$	heat-transfer coefficient (heat-transfer number)
α		degree of dissociation of electrolyte
[α]	$10^{-2} \text{deg cm}^2 \text{g}^{-1}$	specific rotation
η	Pa·s	dynamic viscosity
θ	°C	temperature
х		c_p/c_v
λ	$Wm^{-1}K^{-1}$	thermal conductivity
λ	nm, m	wavelength
μ		chemical potential
v v	Hz, s^{-1}	frequency
ν	m ² /s	kinematic viscosity (η/ρ)
π	Pa	osmotic pressure
0	g/cm ³	density
σ	N/m	surface tension
τ	$Pa (N/m^2)$	shear stress
φ	. ,	volume fraction
x	Pa^{-1} (m ² /N)	compressibility

^{*}The official unit of pressure is the pascal (Pa).

SI unit	Non-SI unit	From SI to non-SI multiply by
Mass		
kg	pound (avoirdupois)	2.205
kg	ton (long)	$9.842 imes 10^{-4}$
kg	ton (short)	1.102×10^{-3}
Volume		
m ³	cubic inch	$6.102 imes 10^4$
m ³	cubic foot	35.315
m ³	gallon (U.S., liquid)	2.642×10^{2}
m ³	gallon (Imperial)	2.200×10^{2}
Temperature		
°Č	°F	$^{\circ}\text{C} \times 1.8 + 32$
Force		
Ν	dyne	$1.0 imes 10^5$
Energy, Work		
J	Btu (int.)	$9.480 imes 10^{-4}$
J	cal (int.)	2.389×10^{-1}
J	eV	6.242×10^{18}
J	erg	$1.0 imes 10^7$
J	kW⋅h	2.778×10^{-7}
J	kp∙m	$1.020 imes 10^{-1}$
Pressure		
MPa	at	10.20
MPa	atm	9.869
MPa	bar	10
kPa	mbar	10
kPa	mm Hg	7.502
kPa	psi	0.145
kPa	torr	7.502

Conversion Factors

Powers of Ten

E (exa)	10 ¹⁸	d (deci)	10^{-1}
P (peta)	10 ¹⁵	c (centi)	10^{-2}
T (tera)	10 ¹²	m (milli)	10^{-3}
G (giga)	10 ⁹	μ (micro)	10^{-6}
M (mega)	10^{6}	n (nano)	10^{-9}
k (kilo)	10^{3}	p (pico)	10^{-12}
h (hecto)	10^{2}	f (femto)	10^{-15}
da (deca)	10	a (atto)	10^{-18}

Abbreviations

The following is a list of the abbreviations used in the text. Common terms, the names of publications and institutions, and legal agreements are included along with their full identities. Other abbreviations will be defined wherever they first occur in an article. For further abbreviations, see page IX, Symbols and Units; page XVI, Frequently Cited Companies (Abbreviations), and page XVII, Country Codes in patent references. The names of periodical publications are abbreviated exactly as done by Chemical Abstracts Service.

abs.	absolute	BGA	Bundesgesundheitsamt (Federal
a.c.	alternating current		Republic of Germany)
ACGIH	American Conference of Governmental	BGB1.	Bundesgesetzblatt (Federal Republic
	Industrial Hygienists		of Germany)
ACS	American Chemical Society	BIOS	British Intelligence Objectives Subcom-
ADI	acceptable daily intake		mittee Report (see also FIAT)
ADN	accord européen relatif au transport	BOD	biological oxygen demand
	international des marchandises danger-	bp	boiling point
	euses par voie de navigation interieure	B.P.	British Pharmacopeia
	(European agreement concerning the	BS	British Standard
	international transportation of dangerous	ca.	circa
	goods by inland waterways)	calcd.	calculated
ADNR	ADN par le Rhin (regulation concerning	CAS	Chemical Abstracts Service
	the transportation of dangerous goods on	cat.	catalyst, catalyzed
	the Rhine and all national waterways of	CEN	Comité Européen de Normalisation
	the countries concerned)	cf.	compare
ADP	adenosine 5'-diphosphate	CFR	Code of Federal Regulations (United
ADR	accord européen relatif au transport		States)
	international des marchandises danger-	cfu	colony forming units
	euses par route (European agreement	Chap.	chapter
	concerning the international transporta-	ChemG	Chemikaliengesetz (Federal Republic
	tion of dangerous goods by road)		of Germany)
AEC	Atomic Energy Commission (United	C.I.	Colour Index
	States)	CIOS	Combined Intelligence Objectives Sub-
a.i.	active ingredient		commitee Report (see also FIAT)
AIChE	American Institute of Chemical	CLP	Classification, Labelling and Packaging
	Engineers	CNS	central nervous system
AIME	American Institute of Mining,	Co.	Company
	Metallurgical, and Petroleum Engineers	COD	chemical oxygen demand
ANSI	American National Standards Institute	conc.	concentrated
AMP	adenosine 5'-monophosphate	const.	constant
APhA	American Pharmaceutical Association	Corp.	Corporation
API	American Petroleum Institute	crit.	critical
ASTM	American Society for Testing and	CSA	Chemical Safety Assessment according
	Materials		to REACH
ATP	adenosine 5'-triphosphate	CSR	Chemical Safety Report according to
BAM	Bundesanstalt für Materialprüfung		REACH
	(Federal Republic of Germany)	CTFA	The Cosmetic, Toiletry and
BAT	Biologischer Arbeitsstofftoleranzwert		Fragrance Association
	(biological tolerance value for a		(United States)
	working material, established by MAK	DAB	Deutsches Arzneibuch, Deutscher
	Commission, see MAK)		Apotheker-Verlag, Stuttgart
Beilstein	Beilstein's Handbook of Organic Chem-	d.c.	direct current
	istry, Springer, Berlin – Heidelberg –	decomp.	decompose, decomposition
	New York	DFG	Deutsche Forschungsgemeinschaft
BET	Brunauer – Emmett – Teller		(German Science Foundation)

dil.	dilute, diluted	
DIN	Deutsche Industrienorm (Federal Republic	
	of Germany)	
DMF	dimethylformamide	
DNA	deoxyribonucleic acid	G
DOE	Department of Energy (United States)	
DOT	Department of Transportation –	
	Materials Transportation Bureau	
	(United States)	
στα	differential thermal analysis	
FC	effective concentration	G
EC	European Community	C
ad	aditor adition aditad	
eu.	for example	
e.g.		
E	Electromotive force	
EmS	Emergency Schedule	
EN	European Standard (European	
	Community)	G
EPA	Environmental Protection Agency	
	(United States)	
EPR	electron paramagnetic resonance	
Eq.	equation	
ESCA	electron spectroscopy for chemical	
	analysis	
esp.	especially	G
ESR	electron spin resonance	G
Et	ethyl substituent $(-C_2H_5)$	
et al	and others	
etc	et cetera	G
EVO	Fisenbahnverkehrsordnung (Federal	Ц
LVO	Penublic of Germany)	
avn ()	$a^{()}$ methometical exponent	1
$exp(\ldots)$	E a d and A minuter Operation	
ГАU	(United National)	т
	(United Nations)	П
FDA	Food and Drug Administration	
	(United States)	H
FD&C	Food, Drug and Cosmetic Act	L
	(United States)	L
FHSA	Federal Hazardous Substances Act	
	(United States)	L
FIAT	Field Information Agency, Technical	
	(United States reports on the chemical	
	industry in Germany, 1945)	I
Fig.	figure	
fp	freezing point	i.
Friedländer	P. Friedländer. Fortschritte der	i.
	Teerfarbenfabrikation und verwandter	П
	Industriezweige Vol 1–25 Springer	
	Berlin 1888_1942	п
FT	Fourier transform	11
ΓI		т.
(g)	gas, gaseous	. 11
	gas chromatography	1.
GetStoffV	Geranrstoffverordnung (regulations in	ll
	the Federal Republic of Germany con-	13
	cerning hazardous substances)	
GGVE	Verordnung in der Bundesrepublik	Π
	Deutschland über die Beförderung	

	gefährlicher Güter mit der Eisenbahn (regulation in the Federal Republic of Germany concerning the transportation
	of dangerous goods by rail)
GGVS	Verordnung in der Bundesrepublik
	Deutschland über die Beförderung
	gefährlicher Güter auf der Straße
	(regulation in the Federal Republic of
	Germany concerning the transportation
	of dangerous goods by road)
GGVSee	Verordnung in der Bundesrepublik
	Deutschland über die Beförderung
	gefährlicher Güter mit Seeschiffen
	(regulation in the Federal Republic of
	Germany concerning the transportation
	of dangerous goods by sea-going
	vessels)
GHS	Globally Harmonised System of Chemi-
	cals (internationally agreed-upon system,
	created by the UN, designed to replace the
	various classification and labeling stan-
	dards used in different countries by using
	consistent criteria for classification and
	labeling on a global level)
чс	gas-liquid chromatography
Smelin	Gmelin's Handbook of Inorganic
Jineim	Chemistry 8th ed Springer Berlin -
	Heidelberg New York
SPAS	generally recognized as safe
	halogon substituent (E Cl Pr I)
Jouhan	Mathadan dan ananiaahan
Wavl	Chamie 4th ad Casua Thiana Varlag
weyi	Chemie, 4in ed., Georg Thieme Verlag,
	Siuligari
IPLC	high performance liquid
T	chromatography
1 statement	hazard statement in GHS
AEA	International Atomic Energy Agency
ARC	International Agency for Research on
	Cancer, Lyon, France
ATA-DGR	International Air Transport
	Association, Dangerous Goods
	Regulations
CAO	International Civil Aviation
	Organization
.e.	that is
.m.	intramuscular
MDG	International Maritime Dangerous
	Goods Code
MO	Inter-Governmental Maritime Consul-
	tive Organization (in the past: IMCO)
nst.	Institute
.p.	intraperitoneal
R	infrared
SO	International Organization for
	Standardization
UPAC	International Union of Pure and
	Applied Chemistry

i.v.	intravenous
Kirk-	Encyclopedia of Chemical Technology,
Othmer	3rd ed., 1991–1998, 5th ed., 2004–2007.
	John Wiley & Sons, Hoboken
(1)	liquid
(1) Londolt	Zehlenworte u Euritionen aus Dhusik
Dimetria	Chamic Astronomic Coordinations,
Bornstein	Chemie, Astronomie, Geophysik u.
	Technik, Springer, Heidelberg 1950–
	1980; Zahlenwerte und Funktionen aus
	Naturwissenschaften und Technik,
	Neue Serie, Springer, Heidelberg,
	since 1961
LC ₅₀	lethal concentration for 50% of the test
20	animals
LCLo	lowest published lethal concentration
LD ₅₀	lethal dose for 50% of the test animals
	lowest published lethal dose
LDL0	logarithm (hass a)
LNG	liquened natural gas
log	logarithm (base 10)
LPG	liquefied petroleum gas
М	mol/L
М	metal (in chemical formulas)
MAK	Maximale Arbeitsplatzkonzentration
	(maximum concentration at the
	workplace in the Federal Republic of
	Germany): cf. Deutsche Forschungsge-
	meinschaft (ed.): Maximale Arbeits-
	nlatzkonzentrationen (MAK) und
	Piologische Arbeitestofftelerenzwerte
	(DAT) WILEY VCII Verler
	(BAT), WILEY-VCH verlag,
	Weinheim (published annually)
max.	maximum
MCA	Manufacturing Chemists Association
	(United States)
Me	methyl substituent (–CH ₃)
Methodicum	Methodicum Chimicum, Georg Thieme
Chimicum	Verlag, Stuttgart
MFAG	Medical First Aid Guide for Use in
	Accidents Involving Dangerous
	Goods
MIK	maximale Immissionskonzentration
	(maximum immission concentration)
min	minimum
	malting point
mp	
MS	mass spectrum, mass spectrometry
NAS	National Academy of Sciences (United
	States)
NASA	National Aeronautics and Space
	Administration (United States)
NBS	National Bureau of Standards
	(United States)
NCTC	National Collection of Type Cultures
	(United States)
NIH	National Institutes of Health
	(United States)
	(Onico States)

NIOSH	National Institute for Occupational Safety and Health (United States)
NMR	nuclear magnetic resonance
no.	number
NOEL	no observed effect level
NRC	Nuclear Regulatory Commission
NIDDO	(United States)
NRDC	National Research Development
NEC	Vorporation (United States)
NSC	National Service Center (United States)
INSE	(United States)
NTOD	(United States) National Transportation Safaty Board
INTSD	(United States)
OECD	Organization for Economic Cooperation
	and Development
OSHA	Occupational Safety and Health
	Administration (United States)
p., pp.	page, pages
Patty	G.D. Clayton, F.E. Clayton (eds.):
5	Patty's Industrial Hygiene and
	Toxicology, 3rd ed., Wiley Interscience,
	New York
PB	Publication Board Report (U.S.
report	Department of Commerce, Scientific
	and Industrial Reports)
PEL	permitted exposure limit
Ph	phenyl substituent (—C ₆ H ₅)
Ph. Eur.	European Pharmacopoeia, Council of
	Europe, Strasbourg
phr	part per hundred rubber (resin)
PNS	peripheral nervous system
ppm	parts per million
P statement	precautionary statement in GHS
q.v.	which see (quod vide)
REACH	Registration, Evaluation, Authorisation
	and Restriction of Chemicals (EU
	regulation addressing the production
	and use of chemical substances, and
	health and the anying ment)
rof	refer reference
resp	respectively
R.	respectively
R H	relative humidity
RID	réglement international concernant le
MD	transport des marchandises dangereuses
	par chemin de fer (international con-
	vention concerning the transportation of
	dangerous goods by rail)
RNA	ribonucleic acid
R phrase	risk phrase according to
(R-Satz)	ChemG and GefStoffV (Federal
	Republic of Germany)
rpm	revolutions per minute
RTECS	Registry of Toxic Effects of
	Chemical Substances, edited by the

	National Institute of Occupational		VCH Verlagsgesellschaft, Weinheim
	Safety and Health (United States)		1985–1996; Ullmanns Encyklopädie der
(s)	solid		Technischen Chemie, 4th ed., Verlag
SAE	Society of Automotive Engineers		Chemie, Weinheim 1972–1984; 3rd ed.,
	(United States)		Urban und Schwarzenberg, München
SAICM	Strategic Approach on International		1951–1970
	Chemicals Management (international	USAEC	United States Atomic Energy
	framework to foster the sound man-		Commission
	agement of chemicals)	USAN	United States Adopted Names
s.c.	subcutaneous	USD	United States Dispensatory
SI	International System of Units	USDA	United States Department of Agriculture
SIMS	secondary ion mass spectrometry	U.S.P.	United States Pharmacopeia
S phrase	safety phrase according to	UV	ultraviolet
(S-Satz)	ChemG and GefStoffV (Federal	UVV	Unfallverhütungsvorschriften der Ber-
(B Buil)	Republic of Germany)	0	ufsgenossenschaft (workplace safety
STEL	Short Term Exposure Limit (see TLV)		regulations in the Federal Republic of
STP	standard temperature and pressure $(0^{\circ}C)$		Germany)
511	101 325 kPa	VbF	Verordnung in der Bundesrepublik
Т	glass transition temperature	101	Deutschland über die Errichtung und
TA Luft	Technische Anleitung zur Reinhaltung		den Betrieh von Anlagen zur
I'r Durt	der Luft (clean air regulation in Federal		Lagerung Abfüllung und Beförderung
	Penublic of Germany)		brannharer Elüssigkeiten (regulation in
TALärm	Technische Anleitung zum Schutz		the Federal Pepublic of Germany con
IA Laim	rechnische Ameritung zum Schutz		arming the construction and operation
	Endered Depublic of Company)		of plants for storage filling and trans
	lawast published toxis dose		or plants for storage, infing, and trans-
	lowest published toxic dose		fortion of flammable fiquids; classi-
			lication according to the flash point of
TLC	thin layer chromatography		liquids, in accordance with the classifi-
ILV	Infeshold Limit Value (IWA	UDE	cation in the United States)
	and STEL); published annually by	VDE	Verband Deutscher Elektroingenieure
	the American Conference of Govern-		(Federal Republic of Germany)
	mental Industrial Hygienists (ACGIH),	VDI	Verein Deutscher Ingenieure (Federal
	Cincinnati, Ohio		Republic of Germany)
TOD	total oxygen demand	vol	volume
TRK	Technische Richtkonzentration	vol.	volume (of a series of books)
	(lowest technically feasible level)	vs.	versus
TSCA	Toxic Substances Control Act	WGK	Wassergefährdungsklasse (water hazard
	(United States)		class)
TÜV	Technischer Überwachungsverein	WHO	World Health Organization (United
	(Technical Control Board of the Federal		Nations)
	Republic of Germany)	Winnacker-	Chemische Technologie, 4th ed., Carl
TWA	Time Weighted Average	Küchler	Hanser Verlag, München, 1982-1986;
UBA	Umweltbundesamt (Federal		Winnacker-Küchler, Chemische Tech-
	Environmental Agency)		nik: Prozesse und Produkte, Wiley-
Ullmann	Ullmann's Encyclopedia of Industrial		VCH, Weinheim, 2003–2006
	Chemistry, 6th ed., Wiley-VCH,	wt	weight
	Weinheim 2002; Ullmann's Encyclo-	\$	U.S. dollar, unless otherwise stated
	pedia of Industrial Chemistry, 5th ed.,		

Frequently Cited Companies (Abbreviations)

Air	Air Products and Chemicals	IFP	Institut Français du Pétrole
Products		INCO	International Nickel Company
Akzo	Algemene Koninklijke Zout	3M	Minnesota Mining and
	Organon		Manufacturing Company
Alcoa	Aluminum Company of America	Mitsubishi	Mitsubishi Chemical Industries
Allied	Allied Corporation	Chemica	1
Amer.	American Cyanamid	Monsanto	Monsanto Company
Cyanamid	Company	Nippon	Nippon Shokubai Kagaku Kogyo
BASF	BASF Aktiengesellschaft	Shokuba	
Bayer	Bayer AG	PCUK	Pechiney Ugine Kuhlmann
BP	British Petroleum Company	PPG	Pittsburg Plate Glass Industries
Celanese	Celanese Corporation	Searle	G.D. Searle & Company
Daicel	Daicel Chemical Industries	SKF	Smith Kline & French Laboratories
Dainippon	Dainippon Ink and Chemicals Inc.	SNAM	Societá Nazionale Metandotti
Dow	The Dow Chemical Company	Sohio	Standard Oil of Ohio
Chemical	l	Stauffer	Stauffer Chemical Company
DSM	Dutch Staats Mijnen	Sumitomo	Sumitomo Chemical Company
Du Pont	E.I. du Pont de Nemours & Company	Toray	Toray Industries Inc.
Exxon	Exxon Corporation	UCB	Union Chimique Belge
FMC	Food Machinery & Chemical	Union	Union Carbide Corporation
	Corporation	Carbide	
GAF	General Aniline & Film Corporation	UOP	Universal Oil Products Company
W.R.	W.R. Grace & Company	VEBA	Vereinigte Elektrizitäts- und Bergwerks-
Grace			AG
Hoechst	Hoechst Aktiengesellschaft	Wacker	Wacker Chemie GmbH
IBM	International Business Machines		
	Corporation		
ICI	Imperial Chemical Industries		

Country Codes

The following list contains a selection of standard country codes used in the patent references.

AT	Austria	IL	Israel
AU	Australia	IT	Italy
BE	Belgium	JP	Japan [*]
BG	Bulgaria	LU	Luxembourg
BR	Brazil	MA	Morocco
CA	Canada	NL	Netherlands [*]
CH	Switzerland	NO	Norway
CS	Czechoslovakia	NZ	New Zealand
DD	German Democratic Republic	PL	Poland
DE	Federal Republic of Germany	PT	Portugal
	(and Germany before 1949)*	SE	Sweden
DK	Denmark	SU	Soviet Union
ES	Spain	US	United States of America
FI	Finland	YU	Yugoslavia
FR	France	ZA	South Africa
GB	United Kingdom	EP	European Patent Office [*]
GR	Greece	WO	World Intellectual Property
HU	Hungary		Organization
ID	Indonesia		-

^{*}For Europe, Federal Republic of Germany, Japan, and the Netherlands, the type of patent is specified: EP (patent), EP-A (application), DE (patent), DE-OS (Offenlegungsschrift), DE-AS (Auslegeschrift), JP (patent), JP-Kokai (Kokai tokkyo koho), NL (patent), and NL-A (application).

0 18

Periodic Table of Elements

element symbol, atomic number, and relative atomic mass (atomic weight)

1A "European" group designation and old IUPAC recommendation 1 group designation to 1986 IUPAC proposal

IA .	American	i group c	resignatic	in, also us	seu by the	e Chemica	al Abstrac	is Servic	e until the	end of I	980						VIIIA
1	2A											3B	4B	5B	6B	7B	2
н	2											13	14	15	16	17	He
1.0079	IIA	_										IIIA	IVA	VA	VIA	VIA	4.0026
3	4											5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12	ЗA	4A	5A	6A	7A	8	8	8	1B	2B	13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI	Si	Р	S	CI	Ar
22.990	24.305	IIIB	IVB	VB	VIB	VIIB	VIII	VIII	VIII	IB	IIB	26.982	28.086	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
V	-				-		_	-		-		-	-		-	_	
n.	Ca	SC	I TI		Cr	Mn	⊢e	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	Ca 40.078	SC 44.956	47.867	V 50.942	Cr 51.996	Mn 54.938	⊢e 55.845	Co 58.933	NI 58.693	63.546	Zn 65.409	Ga 69.723	Ge 72.61	As 74.922	Se 78.96	Br 79.904	Kr 83.80
39.098 37	Ca 40.078 38	44.956 39	47.867 40	V 50.942 41	Cr 51.996 42	Mn 54.938 43	⊢e 55.845 44	58.933 45	NI 58.693 46	63.546 47	Zn 65.409 48	Ga 69.723 49	Ge 72.61 50	As 74.922 51	5e 78.96 52	Br 79.904 53	Kr 83.80 54
39.098 37 Rb	Ca 40.078 38 Sr	39 Y	47.867 40 Zr	V 50.942 41 Nb	Cr 51.996 42 Mo	Mn 54.938 43 Tc*	Fe 55.845 44 Ru	Co 58.933 45 Rh	Ni 58.693 46 Pd	63.546 47 Ag	Zn 65.409 48 Cd	Ga 69.723 49 In	Ge 72.61 50 Sn	As 74.922 51 Sb	52 78.96	Br 79.904 53 I	Kr 83.80 54 Xe
39.098 37 Rb 85.468	Ca 40.078 38 Sr 87.62	Sc 44.956 39 Y 88.906	47.867 40 Zr 91.224	V 50.942 41 Nb 92.906	Cr 51.996 42 Mo 95.94	Mn 54.938 43 Tc* 98.906	Fe 55.845 44 Ru 101.07	Co 58.933 45 Rh 102.91	Ni 58.693 46 Pd 106.42	Cu 63.546 47 Ag 107.87	Zn 65.409 48 Cd 112.41	Ga 69.723 49 In 114.82	Ge 72.61 50 Sn 118.71	As 74.922 51 Sb 121.76	Se 78.96 52 Te 127.60	Br 79.904 53 I 126.90	Kr 83.80 54 Xe 131.29
39.098 37 Rb 85.468 55	Ca 40.078 38 Sr 87.62 56	Sc 44.956 39 ¥ 88.906	47.867 40 Zr 91.224 72	V 50.942 41 Nb 92.906 73	Cr 51.996 42 Mo 95.94 74	Mn 54.938 43 Tc* 98.906 75	Fe 55.845 44 Ru 101.07 76	Co 58.933 45 Rh 102.91 77	Ni 58.693 46 Pd 106.42 78	Cu 63.546 47 Ag 107.87 79	Zn 65.409 48 Cd 112.41 80	Ga 69.723 49 In 114.82 81	Ge 72.61 50 Sn 118.71 82	As 74.922 51 Sb 121.76 83	Se 78.96 52 Te 127.60 84	Br 79.904 53 1 126.90 85	Kr 83.80 54 Xe 131.29 86
x 39.098 37 Rb 85.468 55 Cs	Ca 40.078 38 Sr 87.62 56 Ba	Sc 44.956 39 Y 88.906	47.867 40 Zr 91.224 72 Hf	V 50.942 41 Nb 92.906 73 Ta	Cr 51.996 42 Mo 95.94 74 W	Mn 54.938 43 Tc* 98.906 75 Re	Fe 55.845 44 Ru 101.07 76 Os	Co 58.933 45 Rh 102.91 77 Ir	Ni 58.693 46 Pd 106.42 78 Pt	Cu 63.546 47 Ag 107.87 79 Au	Zn 65.409 48 Cd 112.41 80 Hg	Ga 69.723 49 In 114.82 81 TI	Ge 72.61 50 Sn 118.71 82 Pb	As 74.922 51 Sb 121.76 83 Bi	Se 78.96 52 Te 127.60 84 Po*	Br 79.904 53 I 126.90 85 At*	Kr 83.80 54 Xe 131.29 86 Rn*
x 39.098 37 Rb 85.468 55 Cs 132.91	Ca 40.078 38 Sr 87.62 56 Ba 137.33	Sc 44.956 39 Y 88.906	47.867 40 Zr 91.224 72 Hf 178.49	V 50.942 41 Nb 92.906 73 Ta 180.95	Cr 51.996 42 Mo 95.94 74 W 183.84	Mn 54.938 43 Tc* 98.906 75 Re 186.21	Fe 55.845 44 Ru 101.07 76 Os 190.23	Co 58.933 45 Rh 102.91 77 Ir 192.22	Ni 58.693 46 Pd 106.42 78 Pt 195.08	Cu 63.546 47 Ag 107.87 79 Au 196.97	Zn 65.409 48 Cd 112.41 80 Hg 200.59	Ga 69.723 49 1n 114.82 81 TI 204.38	Ge 72.61 50 Sn 118.71 82 Pb 207.2	As 74.922 51 Sb 121.76 83 Bi 208.98	Se 78.96 52 Te 127.60 84 Po* 208.98	Br 79.904 53 I 126.90 85 At* 209.99	Kr 83.80 54 Xe 131.29 86 Rn* 222.02
R 39.098 37 Rb 85.468 55 Cs 132.91 87	Ca 40.078 38 Sr 87.62 56 Ba 137.33 88	39 Y 88.906	Ti 47.867 40 Zr 91.224 72 Hf 178.49 104	V 50.942 41 Nb 92.906 73 Ta 180.95 105	Cr 51.996 42 Mo 95.94 74 W 183.84 106	Mn 54.938 43 Tc* 98.906 75 Re 186.21 107	Fe 55.845 44 101.07 76 Os 190.23 108	Co 58.933 45 Rh 102.91 77 Ir 192.22 109	Ni 58.693 46 Pd 106.42 78 Pt 195.08 110	Cu 63.546 47 Ag 107.87 79 Au 196.97 111	Zn 65.409 48 Cd 112.41 80 Hg 200.59 112	Ga 69.723 49 In 114.82 81 TI 204.38 113	Ge 72.61 50 Sn 118.71 82 Pb 207.2 114	As 74.922 51 Sb 121.76 83 Bi 208.98 115	Se 78.96 52 Te 127.60 84 Po* 208.98 116	Br 79.904 53 I 126.90 85 At* 209.99	Kr 83.80 54 Xe 131.29 86 Rn* 222.02 118
K 39.098 37 Rb 85.468 55 Cs 132.91 87 Fr*	Ca 40.078 38 87.62 56 Ba 137.33 88 Ra*	39 Y 88.906	TI 47.867 40 Zr 91.224 72 Hf 178.49 104 Rf *	V 50.942 41 Nb 92.906 73 Ta 180.95 105 Db *	Cr 51.996 42 Mo 95.94 74 W 183.84 106 Sg	Mn 54.938 43 Tc* 98.906 75 Re 186.21 107 Bh	Fe 55.845 44 Ru 101.07 76 Os 190.23 108 Hs	Co 58.933 45 Rh 102.91 77 Ir 192.22 109 Mt	Ni 58.693 46 Pd 106.42 78 Pt 195.08 110 Ds	Cu 63.546 47 Ag 107.87 79 Au 196.97 111 Rg	Zn 65.409 48 Cd 112.41 80 Hg 200.59 112 Cn	Ga 69.723 49 1n 114.82 81 TI 204.38 113 Uut ^a	Ge 72.61 50 Sn 118.71 82 Pb 207.2 114 Fl	As 74.922 51 Sb 121.76 83 Bi 208.98 115 Uup ^a	Se 78.96 52 Te 127.60 84 Po* 208.98 116 Lv	Br 79.904 53 I 126.90 85 At* 209.99	Kr 83.80 54 Xe 131.29 86 Rn* 222.02 118 Uuo ^a

^a provisional IUPAC symbol

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm*	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	146.92	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac*	Th*	Pa*	U*	Np*	Pu*	Am*	Cm*	Bk*	Cf*	Es*	Fm*	Md*	No*	Lr*
227.03	232.04	231.04	238.03	237.05	244.06	243.06	247.07	247.07	251.08	252.08	257.10	258.10	259.10	260.11

* radioactive element; mass of most important isotope given.

Fine Chemicals

PETER POLLAK, Fine Chemicals Business Consultant, Reinach, Switzerland

RAYMOND VOUILLAMOZ, Granois (Savièse), Switzerland

1.	Introduction	5.
1.1.	History 1	6.
1.2.	Definition	6.
2.	The Fine Chemical Industry 3	6.
2.1.	Overview	6.
2.2.	Fine Chemical/Custom Manufacturing	6.
	Companies	6.
2.3.	Contract Research Organizations 5	6.
2.4.	Laboratory Chemical Suppliers	7.
3.	Products	8.
3.1.	Small Molecules 7	8.
3.2.	Big Molecules	8.
4.	Technologies	8.
4.1.	Traditional Chemical Synthesis	9.
4.2.	Biotechnology	9.
4.2.1.	White Biotechnology 11	9.
4.2.2.	Red Biotechnology 14	9.
5.	Production	
5.1.	Plant Design	

2.	Plant Operation	23
	Uses	23
1.	Offering (Standard/Custom Manufacturing)	23
2.	Market Size	25
3.	Target Markets	25
3.1.	Pharmaceuticals	25
3.2.	Agrochemicals	26
3.3.	Other Specialty Chemical Industries	28
	Regulatory Requirements	28
	Safety, Health and Environment	30
1.	Safety and Occupational Hygiene	30
2.	Risk Minimization	30
3.	Environment: Waste Elimination	31
	Economic Aspects	32
1.	Investment Cost	32
2.	Manufacturing Costs	32
3.	Profitability	34
	References	34

1. Introduction

1.1. History

The roots of both the term "fine chemicals" and the emergence of the fine chemical industry as a distinct entity date back to the second half of the 1970s. As an illustrative example, the US/UK pharmaceutical company Smith, Kline & French (now GlaxoSmithKline) was overwhelmed by the success of its new anti-ulcer drug Tagamet (cimetidine), the first representative of a new therapeutic class, namely, H2 receptor antagonists, which inhibit gastric acid secretion and prevent stomach ulcer. As the demand by far exceeded SKF's in-house production capacity, third-party chemical companies with capabilities in organic intermediates manufacture were approached for custom manufacturing parts of the cimetidine active ingredient. Lonza, Switzerland, became the main supplier of precursor fine chemicals. In a similar way, Fine Organics, UK became the supplier of the thioethyl-N'-methyl-2-nitro-1,1- ethenediamine moiety of ranitidine, the second H2 receptor antagonist, marketed as Zantac by Glaxo. Other pharmaceutical and agrochemical companies gradually followed suit and also started outsourcing the procurement of fine chemicals.

In the 1980s the fine chemical industry developed rapidly. The first multipurpose plants designed purposely for custom manufacturing came on-stream. In the case of important projects, engineering and financial support by the customers was not unusual. The latter often were Anglo-Saxon pharmaceutical and agrochemical companies, which both had a large demand for fine chemicals and were prone to outsourcing.

In the 1990s the industry benefited from strong demand. The pharmaceutical industry launched a large number of new proprietary drugs. The record year was 1997 with 53 new drug launches. The emergence of generics expanded the customer base. The agrochemical industry launched a new category of highly active, low-volume products. Lacking in-house production capabilities for the production of these sophisticated compounds, it turned to outsourcing. Management had to cope with rapidly increasing regulatory requirements. In production, tight operating guidelines, the so-called Good Manufacturing Practices (GMP), were imposed by the U.S. FDA. As a result, a kind of standard, cross-contamination-proof, multipurpose plant for the production of complex pharmaceutical fine chemicals (PFCs) with molecular weight up to 500 became the state of the art. The observance of more severe legislation regarding safety, health, and environment necessitated infrastructure expansions, e.g., for waste incinerators and water-treatment plants.

In the early 2000s the "irrational exuberance of the nineties" came to a sudden halt. An unfortunate coincidence of sluggish demand and the emergence of many new plants, particularly in China and India, led to overcapacity, which, in turn, impaired the profitability of the whole industry.

In terms of process technology, *biotechnology* unlocked promising new opportunities. In conventional small-molecule synthesis, *biocatalysis* enables both more economical and more ecological production processes. For active ingredients for the emerging biopharmaceuticals, demanding *mammalian cell culture* technology is needed. The production of these very expensive (> \$10⁶/kg) high molecular

weight fine chemicals requires special highcontainment plants.

1.2. Definition

Fine chemicals are complex, single, pure chemical substances. They are produced mainly by traditional organic synthesis in multipurpose plants in limited volumes (< 1000 t/a) and at relatively high prices (> \$10/kg) according to exacting specifications (see Table 1). Biotechnical processes are gaining ground. Whereas the delineations between commodities and both fine and specialty chemicals are clear-cut, the transition between commodities and fine chemicals is gradual (see [1, p. 4]). Fine chemicals are used as starting materials for specialty chemicals, particularly pharmaceuticals and agrochemicals. Custom manufacturing for the life sciences industry plays a big role.

The class of fine chemicals is further subdivided on the basis of

- 1. The *added value* or degree of sophistication. It extends all the way from small or low molecular weight (LMW) to big or high molecular weight (HMW) substances. The former are conventionally called building blocks, unregulated and regulated intermediates, and active ingredients. The latter comprise inter alia proteins and nucleotides (see Section 3.2).
- 2. The pharmaceutical industry distinguishes between *drug substance*, which is the active ingredient, a fine chemical, and *drug product*, which is the formulated, finished drug, a specialty.
- 3. The *type of business transaction*, namely, standard or exclusive products (see Section 6.1).

Table 1. Definition of fine chemicals

	Commodities	Fine chemicals	Specialties
Identity	single pure	e chemical substances	mixtures
Characteristic	S	pecifications	performance
Total production value	$\approx 10^{12}$	\approx \$90 \times 10 ⁹	\approx \$1.4 \times 10 ⁹
Production volume per product	>1000 t/a	<1000 t/a	undifferentiated
Plant type	dedicated, continuous	multipurpose, batch	formulation (dissolution, mixing)
Sales channel	business to business	business to business, captive use	business-to-consumer

2. The Fine Chemical Industry

2.1. Overview

Within the chemical universe, the fine chemical industry is positioned between the commodity and specialty chemical industries, which are their suppliers and customers, respectively. Among the customers, life sciences, especially the pharmaceutical industry, prevail (see Chap. 6). Fine chemical companies represent a wide variety of several 1000 enterprises offering mainly products and services along the drug supply chain (see Fig. 1). They extend from small, privately owned laboratories all the way to large, publicly owned manufacturing companies. Large Western fine chemical companies still dominate in sales revenues. Most of the small ones are located in Asia, particularly in China and India.

A comprehensive list of about 1400 fine chemical companies (including traders) can be found in the "event catalogue" of the CPhI exhibition [2].

The main raison d'être of the fine chemical industry is to satisfy the product and process development needs of the life sciences, primarily pharmaceutical and agrochemical industries, and other specialty chemical firms. It has its own characteristics with regard to finance, R&D, production, and marketing. The R&D expenditure is highest within the industry. Its main task is process development ("small r, big D"). Production takes place in asset-intense multipurpose plants.

Depending on their specific activities, one distinguishes three types of fine chemical companies, namely fine chemical/custom manufacturing companies (CM or CMO), contract research organizations (CRO), and laboratory chemical suppliers.

2.2. Fine Chemical/Custom Manufacturing Companies

Fine chemical/custom manufacturing companies are active in process development, scale up, pilot plant (trial) production, industrial-scale manufacture, and marketing. Custom manufacturing or its counterpart, outsourcing, has remained the most important discipline of the Western firms (see Chap. 6). Due to their advantage of low costs, the Asian companies have a strong position in active ingredients for generics [3].

Figure 1. Drug development stages (HTS: high-throughput synthesis) Source: Lonza

Company			Fine chemicals unit					
Name	Sales ^a	Name	Sales ^a	Notes				
Lonza, Switzerland	2900	Custom Manufacturing	1440	HMW/LMW ≈55/45				
Sumitomo Chem., Japan	24 300	Fine Chemicals	1090	includes some polymer additives				
DSM, The Netherlands	18 300	DPP^{b}, DSP^{c}	890	joint venture for β-lactam APIs				
Boehringer-Ingelheim, Germany	17 100	Industrial Customers ^d	800	HMW/LMW ≈85/15				
Sigma-Aldrich, USA	2500	$SAFC^{e}$	730	custom cell engineering, HPAIs				
BASF, Germany	97 750	$P.I.\&S^{f}$	660	includes excipients				
Lanxess, Germany	11 700	Saltigo	550*	ex Bayer Fine Chemicals				
CSPC ^g , P.R. China	1500	Pharma F.C.'s	550 ^E	mainly APIs for antibiotics				
Evonik-Degussa, Germany	18 900	Exclusive Synthesis ^h	500	amino acids				
Dr. Reddy's, India	2 000	PSAI ⁱ	492					

^a\$10⁶ (2011).

^bDSM Pharmaceutical Products.

^cDSM Sinochem Pharmaceuticals.

^dBiopharmaceuticals and Pharmaceutical Production.

^eSigma Aldrich Fine Chemicals.

^fPharmaceutical Ingredients & Services, business unit of Care Chemicals.

^g Shijiazhuang Pharmaceutical Group, PRC.

^hNext higher level is Consumer, Health & Nutrition Div.; sales 6.4×10^9 .

¹Pharmaceutical Services & Active Ingredients.

Despite some consolidation, mainly among the Western players, the fine chemical industry is still fragmented. The top ten companies have a combined market share of 25%. In comparison the top ten pharmaceutical companies have more than 40%. The top ten individually have sales of $(0.5-1.5) \times 10^9$ per year (see Table 2). Most are divisions of large, diversified chemical companies. Six are headquartered in Europe, and one each in China, India, Japan, and the USA. All are active both in standard products (especially APIfor-Generics) and custom manufacturing. They have extensive resources in terms of specialists, plants, process knowledge, backwards integration, international presence, etc. The manufacturing plants spread over many different locations. Many have grown to their present size through massive acquisitions.

The portfolios of the *midsized companies* also comprise both exclusive synthesis and API-for-Generics. Sales are in the range of $100-500 \times 10^6$ per annum. They include both subsidiaries of major public companies and family owned independents. Examples of the latter are Bachem, Switzerland; Dishman, India; F.I.S. and SIMS, Italy; Hikal, India; and Hovione, Portugal. Most of the midsized fine chemical companies are located in Europe, particularly in France, Germany, Italy, the UK, and Switzerland. Italy and Spain, where international drug patent laws were not recognized until 1978 and 1992, respectively, are strongholds of API-for-Generics (see Section 6.1). Because of a lack of *economy in* size, the large fine chemical companies traditionally do not perform better than the midsized ones. As most fine chemicals are produced in quantities of not more than a few tens of tonnes per annum in multipurpose plants (see Section 5.1), the production trains are similar in size throughout the industry. Their main constituents, the reaction vessels, have a median size of $4-6 \text{ m}^3$. Various products are made throughout a year in campaigns. Therefore, the unit cost per cubic meter per hour (see Section 5.2) hardly depends on the size of the company. Last but not least, the large fine chemical companies operate many small rather sites than one big one. An example in case is Lonza. The Custom Manufacturing division alone operates 11 sites worldwide.

Finally, there are hundreds of *small independents* with sales below \$100 million per annum. Most of them are located in Asia. They have only limited capabilities and often specialize in niche technologies, such as reactions with hazardous gases (e.g., ammonia/amines, diazomethane, ethylene oxide, halogens, hydrogen cyanide, hydrogen sulfide, mercaptans, ozone, nitrous oxides, and phosgene). The plants of big and medium-size fine chemical companies comply with *current good manufacturing practice* (cGMP) regulations governing the production of pharmaceutical fine chemicals (see Chap. 7). With the exception of biopharmaceuticals, which are manufactured by only a few, the technology toolboxes of all these companies are similar. This means that they can carry out most types of chemical reactions. They differ in the breadth and quality of the offered service.

The minimum economical size of a fine chemical company depends on the availability of infrastructure. If a company is located in an industrial park, where analytical services; utilities, safety, health, and environmental (SHE) services, and warehousing are readily available, there is practically no lower limit.

Several large pharmaceutical companies market fine chemicals by themselves as subsidiary activity to their production for captive use, e.g., Abbott, USA; Bayer Schering Pharma, Boehringer-Ingelheim, Germany; Daiichi-Sankyo (after the takeover of Ranbaxy), Japan; Johnson & Johnson, USA; and Merck KGaA, Germany; and Pfizer (formerly Upjohn), USA.

Whereas the pharmaceutical industry is the dominant customer base for most fine chemical companies, some have a significant share of products and services for the agrochemical industry. Examples are Archimica, Saltigo (both Germany), DSM (The Netherlands), Pyosa (Mexico), and Hikal, India.

2.3. Contract Research Organizations

Contract research organizations (CROs) concentrate on research and process development, providing laboratory-scale process development and bench-scale synthesis services to the specialty chemical industry along product development. There are more than 2000 CROs operating worldwide, representing revenues of more than $$20 \times 10^9$. One distinguishes between "patient" CROs and "product" CROs.

Product CROs, a.k.a. chemical CROs, provide primarily process research and development services. An overlap with CMOs exists with regard to pilot plants (100 kg quantities), which are part of the arsenal of both CMOs and product CROs. Their tasks are described in Table 3. Companies offering both contract research and manufacturing services (CRAMS), a.k.a. one-stop shops, also exist.

The offerings of *patient CROs*, a.k.a. clinical CROs, comprise more than 30 tasks addressing the clinical part of pharmaceutical development at the interface between drugs, physicians, hos-

 Table 3. Tasks of "product" contract research organizations

Task	Description
Sample p	reparation
Synthetic PFCs	laboratory preparation of PFCs, impurities, metabolites, etc.
Natural products	product extraction, purification, and characterization
Process d	evelopment
General	upgrading of laboratory procedures to economically and ecologically viable industrial- scale manufacturing processes (including examination of process parameters)
Route screening	evaluation of the most suitable synthetic or biotechnological route (mostly by literature search)
Proof of principle	confirmation of selected route based upon economic and quality criteria, equipment specifications, etc.
Sample preparation	reference & impurity standards of PFCs
Safety and toxicology studies	hazard and toxicological (including genotoxicity) tests required for industrial-scale manufacture
Analytics	analytical method development and validation
Process research	process optimization, definition of the parameters for industrial-scale manufacture, method validation, stability studies
Regulatory affairs	production permits, API submissions (IND, NDA support)
Scale-up (kg laboratory/pilot and industrial-scale plant production)	confirmatory testing of the process, preclinical and clinical trial quantities, validation manufacturing (Phase III and beyond)

* Source: Jan Oudenes, Alphora Research, Mississauga, Canada (personal communication).

Table 4. Pros and cons of the one-stop-shop concept

Pros	Cons
Fine chemical	l/custom manufacturing company
 Chance to establish a relationship with a drug company early on Higher overall added value	 In >90% of cases, projects are stopped at the lab-sample stage Need to master two different skills. "quick and dirty" lab scale vs. economically viable and ecologically safe large-scale production
Ph	armaceutical company
• Reduction of number of suppliers	In contrast to the policy of selecting specialists for each step of drug developmentOverdependence on one supplier

pitals, and patients. Only in a few cases (e.g., Aptuit, Cardinal Health, and Charles River Laboratories) do they also provide chemical R&D services.

There are about 50-100 product CROs in developed countries, either standalone companies or divisions of larger chemical companies, with a widely differing degree of width and depth of their offerings. Major customers for CRO services are the large global pharmaceutical companies. Half a dozen "Big Pharmas" (Pfizer, GlaxoSmithKline, Sanofi-Aventis, AstraZeneca, Johnson & Johnson, and Merck) alone absorb about one-third of all CRO spending. As for CMOs and also for CROs, biotech start-up companies with their dichotomy between ambitious drug development programs and limited resources are the second most promising prospects after Big Pharma. Contrary to manufacturing companies, the "currency" of CROs is not the unit product price, but full-time equivalents (FTEs), that is, the cost of a scientist working one year on a given customer assignment. Asian, especially Chinese and Indian, companies are emerging as low-cost contract research providers. The largest Chinese chemical CRO is WuXi AppTec, Shanghai WaiGaoQiao Free Trade Zone. Set up in the year 2001 and led by 50 returnees. 4500 employees generated sales of 334×10^6 in 2011.

Contract research and manufacturing organizations (CRAMs) are hybrids combining the activities of CROs and CMOs [4]. Their history is either a forward integration of a CRO, which adds industrial-scale capabilities (an early example is Suven, India; recent ones are AMRI Global and Cambridge Major in the USA), or backwards integration of a CMO. It is questionable, though, whether one-stop shops really fulfill a need. The pros and cons are summarized in Table 4.

The first pro entry in Table 4, "chance to establish..." is particularly noteworthy. Most new drugs fail in early-stage development. The situation has worsened over the years. Nowadays, even for developmental drugs in phase II, the probability of reaching the market is less than 10%. Furthermore, as there is little repeat business, and as in Big Pharma different functions are in charge of placing orders, CRO projects only rarely evolve to industrial-scale supplies. Actually, the large fine chemical companies consider the preparation of samples more as a marketing tool (and expense) rather than a profit contributor.

2.4. Laboratory Chemical Suppliers

Before the life sciences industry, colleges and universities, medical research institutions, hospital research labs, government agencies, and other facilities can initiate any chemical research activity they need chemicals (a.k.a. reagents), solvents, and laboratory equipment. The laboratory chemical suppliers offer a large number (tens of thousands) of fine chemicals in small quantities for research purposes. Their combined revenues are about $$10 \times 10^9$. Major companies or business units are listed in Table 5. Online ordering is possible from all these companies.

Apart from the top five, there are many laboratory chemical suppliers with smaller catalogues geared to specific needs, such as Honeywell Riedel-de-Haën for inorganic chemicals, BioCatalytics, which offers a ketoreductase kit with

 Table 5. Laboratory chemical suppliers

	Company		Laboratory chemicals					
	Name	Sales*	Business unit	Sales*	Products	Notes		
1	Sigma-Aldrich	2505	Research Specialties	924	167 000	chemicals		
2	VWR International	4100	Chemicals	820	750 000	including equipment		
3	Thermo-Fisher Scientific	11790	Laboratory Products Group	578	15 000	fine organic chemicals		
5	Johnson Matthey	18 800	Alfa Aesar	124	18 000	research chemicals		
4	Tokyo Chemical Industries (TCI)	N/A	Fine Chemicals	N/A	22 000	organic chemicals		

 $(* \$ \times 10^6 (2011)).$

about 100 enzymes, or Chiral Technologies, a division of Daicel, Japan, which offers a range of 175 immobilized and coated polysaccharide chiral stationary phases for use with high-pressure liquid chromatography (HPLC), supercritical fluid (SCF), and simulated moving-bed (SMB) equipment. A selection of *N*-heterocyclic compounds, especially azaindoles, naphthyridines, pyridines, and pyrrolidines, is offered by Adesis, USA. Peptide building blocks are offered by Bachem, Switzerland (9000 products).

3. Products

In terms of molecular structure, one distinguishes first between low molecular weight (LMW) and high molecular weight (HMW) products. The generally accepted threshold between LMW and HMW is a molecular weight of about 700. The LMW fine chemicals, also designated small molecules, are produced by traditional chemical synthesis, by white biotechnology (see Section 4.2.1), or by extraction from plants and animals. In the production of modern life sciences products, total synthesis from petrochemicals prevails. The HMW fine chemicals, a.k.a. big molecules, are obtained mainly by red biotechnology processes. Peptides and proteins are the most important product categories.

3.1. Small Molecules

Many natural or synthetic LMW fine chemicals contain heterocyclic moieties. Widely occurring natural products are chlorophyll, hemoglobin, nucleosides (e.g., uridine), and the vitamins biotin (H), folic acid, niacin (PP), pyridoxine HCl (B_6) , riboflavin (B_2) , and thiamine (B_1) .

Uridine (1-β-D-ribofuranosyluracil)

In life sciences, eight out of the top ten smallmolecule proprietary pharmaceuticals contain one or more heterocyclic moieties; six of them contain an N heterocycle, one an S heterocycle, and one both an N and an S heterocycle (see Table 12). The same 8/10 share of molecules with a heterocyclic moiety is found within the top ten agrochemicals (see [1, Table 11.7, p. 118]. Further examples of pharmaceuticals are the β-lactam and quinolone antibiotics, the benzodiazepine antidepressants and the "-vir" antivirals. Widely used heterocyclic agrochemicals are the dipyridyl and triazine herbicides, the neonicotinoid, pyrazole, and anthranilic diamide insecticides and triazole "conazole" and aminopyrimidine and benzimidazole fungicides.

Even modern pigments, such as diphenylpyrazolopyrazoles, quinacridones, and engineering plastics, such as polybenzimidazoles, polyimides, and triazine resins, exhibit an *N*heterocyclic structure.

3.2. Big Molecules

Big molecules are mostly oligomers or polymers of small molecules or chains of amino acids. Thus, within pharmaceutical sciences, peptides, proteins, and oligonucleotides constitute the major categories.

Peptides and *proteins* are oligomers or polycondensates of amino acid residues linked together by a carboxamide group. The threshold between the two is as at about 50 amino acid residues. Because of their unique biological functions, a significant and growing part of new drug discovery and development is focused on this class of biomolecules.

For the synthesis of *peptides*, four categories of fine chemicals, commonly referred to as peptide building blocks (PBBs), are used. In order of increasing sophistication they are amino acids (= starting materials), protected amino acids, peptide fragments, and peptides themselves [5] (see also Section 4.1). Along the way, the molecular weights increase from about 10^2 up to 10^4 and the unit prices from about $$10^{\circ}$ up to $$10^{\circ}$ per kilogram. However, only a small part of the total amino acid production is used for peptide synthesis. In fact, L-glutamic acid, D,L-methionine, Laspartic acid, and L-phenylalanine are used in large quantities as food and feed additives. Nowadays, about 50 peptide drugs are commercialized. The number of amino acid residues that make up a specific peptide varies widely. At the low end are the dipeptides. The most important drugs with a dipeptide (L-alanyl-L-proline) moiety are the "-pril" cardiovascular drugs, such as enalapril, captopril, imidapril, and lysinopril. Also the artificial sweetener Aspartame (N-L- α -aspartyl-L-phenylanaline 1-methyl ester) is a dipeptide. At the high end there is the anticoagulant hirudin (MW \approx 7000), which is composed of 65 amino acids.

The total production volume (excluding Aspartame) of chemically synthesized, pure peptides is about 1500 kg and sales approach $$500 \times$ 10^{6} on the API level and 10×10^{9} on the finished drug level. The numbers would be much higher, about 10% of total pharma sales, if also peptidomimetics and APIs which contain peptide sequences as part of a molecule were included, such as the above mentioned "-prils" or the first generation anti-AIDS drugs, the "-navirs". The bulk of the production of peptide drugs is outsourced to a few specialized contract manufacturers, such as Bachem Switzerland; Chengu GT Biochem, China; Chinese Peptide Company, China; Lonza, Switzerland; and Polypeptide, Denmark.

Proteins are very high molecular weight ($M > 100\,000$) fine chemicals consisting of amino acid sequences linked by peptide bonds. They are essential to the structure and function of all living cells and viruses and are among the most actively studied molecules in biochemistry. They can be made only by advanced biotechnological processes, primarily mammalian cell cultures (see Section 4.2.2). Monoclonal antibodies (mAb) prevail among human-made proteins. About a dozen of them are approved as pharmaceuticals, of which five rank among the top ten drugs (see Table 6).

Oligonucleotides are a third category of big molecules. They are oligomers of nucleotides, which in turn are composed of a five-carbon sugar (either ribose or desoxyribose), a nitrogenous base (a pyrimidine or a purine), and 1–3 phosphate groups. The best known representative of the nucleotides is the coenzyme adenosine triphosphate (ATP, M = 507.2). The maximum length of synthetic oligonucleotides hardly exceeds 200 nucleotide components.

Adenosine triphosphate

Peptides and *oligonucleotides* are now often summarized under the heading "tides". They are used in a variety of pharmaceutical applications including antisense agents, which inhibit undesirable cellular protein production, antiviral agents, and protein binding agents. An antisense drug in advanced (phase III) development is Genzyme's cholesterol-lowering drug Kynamro (mipomersen).

Antibody–drug conjugates (ADC) are a combination between small and big molecules. The small-molecule parts, up to four different APIs, are highly potent cytotoxic drugs. They are linked with a monoclonal antibody, a big molecule which is of little or no therapeutic value in itself but extremely discriminating for its targets, the cancer cells. The first commercialized ADCs were Isis's Formivirisen and, more recently,