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Preface

Statistical hypothesis testing has been introduced almost one hundred years ago and has
become a key tool in statistical inferences. The number of available tests has grown rapidly
over the decades. With this book we present an overview of common statistical tests and
how to apply them in SAS and R. For each test a general description is provided as well as
necessary prerequisites, assumptions and the formal test problem. The test statistic is stated
together with annotations on its distribution. Additionally two examples, one in SAS and
one in R, are given. Each example contains the code to perform the test using a tiny dataset,
along with output and remarks that explain necessary program parameters.

This book is addressed to you, whether you are an undergraduate student who must do
course work, a postgraduate student who works on a thesis, an academic or simply a practi-
tioner.We hope that the clear structure of our presentation of tests will enable you to perform
statistical tests much faster and more directly, instead of searching through documentation
or looking on the World Wide Web. Hence, the book may serve as a reference work for the
beginner as well as someone with more advanced knowledge or even a specialist.

The book is organized as follows. In the first part we give a short introduction to the
theory of statistical hypothesis testing and describe the programming philosophy of SAS
and R. This part also contains an example of how to perform statistical tests in both pro-
gramming languages and of the way tests are presented throughout the book. The second
part deals with tests on normally distributed data and includes well-known tests on the mean
and the variance for one and two sample problems. Part three explains tests on proportions
as parameters of binomial distributions while the fourth part deals with tests on parameters
of Poisson and exponential distributions. The fifth part shows how to conduct tests related
to the Pearson’s, Spearman’s and partial correlation coefficients. With Part six we change to
nonparametric tests, which include tests on location and scale differences. Goodness-of-fit
tests are handled in Part seven and include tests on normality and tests on other distribu-
tions. Part eight deals with tests to assess randomness. Fisher’s exact test and further tests
on contingency tables are covered in Part nine, followed by tests on outliers in Part ten. The
book finished with tests in regression analysis. We provide the used datasets in the appen-
dices together with some tables on critical values of the most common test distributions and
a glossary.

Due to the numerous statistical tests available we naturally can only present a selection
of them. We hope that our choice meets your needs. However, if you miss some particu-
lar tests please send us an e-mail at: book@d-taeger.de. We will try to publish these
missing tests on our book homepage. No book is free of errors and typos. We hope that the
errors follow a Poisson distribution, that is, the error rate is low. In the event that you find

mailto:book@d-taeger.de


xiv PREFACE

an error please send us an e-mail. We will publish corrections on the accompanying website
(http:\\www.d-taeger.de).

Last but not least we would like to thank Wiley for publishing our book and especially
Richard Davies from Wiley for his support and patience. We hope you will not reject the
null hypothesis that this book is useful for you.

Dirk Taeger
Sonja Kuhnt
Dortmund

http://www.d-taeger.de
http://www.d-taeger.de


Part I

INTRODUCTION
The theory of statistical hypothesis testing was basically founded one hundred years ago
by the Britons Ronald Aylmer Fisher, Egon Sharpe Pearson, and the Pole Jerzy Neyman.
Nowadays it seems that we have a unique test theory for testing statistical hypothesis, but
the opposite is true. On one hand Fisher developed the theory of significance testing and
on the other hand Neyman and Pearson the theory of hypothesis testing.

Whereas with the Fisher theory the formulation of a null hypothesis is enough,
Neyman’s and Pearson’s theory demands alternative hypotheses as well. They open the
door to calculating error probabilities of two kinds, namely of a false rejection (type I
error) and of a false acceptance (type II error) of the null hypothesis. This leads to the
well known Neyman–Pearson lemma which helps us to find the best critical region for a
hypothesis test with a simple alternative. The largest difference of both schools, however,
are the Fisherian measure of evidence (p-value) and the Neyman–Pearson error rate (𝛼).

With the Neyman–Pearson theory the error rate 𝛼 is fixed and must be defined before
performing the test. Within the Fisherian context the p-value is calculated from the value
of the test statistic as a quantile of the test statistic distribution and serves as a measure of
disproving the null hypothesis. Over the decades both theories have merged together. Today
it is common practice – and described by most textbooks – to perform a Neyman–Pearson
test and, instead of comparing the value of the test statistic with the critical region, to decide
from the p-value. As this book is on testing statistical hypothesis with SAS and R we follow
the common approach of mixing both theories. In SAS and R the critical regions are not
reported, only p-values are given. We want to make the reader aware of this situation. In
the next two chapters we shortly summarize the concept of statistical hypothesis testing and
introduce the performance of statistical tests with SAS and R.

Statistical Hypothesis Testing with SAS and R, First Edition. Dirk Taeger and Sonja Kuhnt.
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1

Statistical hypothesis testing

1.1 Theory of statistical hypothesis testing

Hypothesis testing is a key tool in statistical inference next to point estimation and
confidence sets. All three concepts make an inference about a population based on a
sample taken from it. Hypothesis testing aims at a decision on whether or not a hypothesis
on the nature of the population is supported by the sample.

In the following we shortly run through the steps of a statistical test procedure and
introduce the notation used throughout this book. For a detailed mathematical explanation
please refer to the book by Lehmann (1997).

We denote a sample of size n by x1,… , xn, where the xi are observations of identically
independently distributed random variables Xi, i = 1,… , n. Usually some further assump-
tions are needed concerning the nature of the mechanism generating the sample. These can
be rather general assumptions like a symmetric continuous distribution. Often a parametric
distribution is assumed with only parameter values unknown, for example, the Gaussian
distribution with both or either unknown mean and variance. In this case hypothesis tests
deal with statements on the unknown population parameters. We exemplify our general
discussion by this situation.

Each of the statistical tests presented in the following chapters is introduced by a verbal
description of the type of conjecture to be decided upon together with themade assumptions.
Next the test problem is formalized by the null hypothesisH0 and the alternative hypothesis
H1. If a statement on population parameters is of interest, often the parameter space Θ, is
partitioned into disjunct sets Θ0 and Θ1 with Θ0 ∪ Θ1 = Θ, corresponding to H0 and H1,
respectively.

As the next building stone of a statistical test the test statistic, which is a function
T = f (X1,… ,Xn) of the random sample, is stated. This function fulfills two criteria. First of
all its value must provide insight on whether or not the null hypothesis might be true.
Next the distribution of the test statistic must be known, given that the null hypothesis is
true. Table 1.1 shows the four possible outcomes of a statistical test. In two of the cases the
result of the test is a correct decision. Namely, a true null hypothesis is not rejected and a
false null hypothesis is rejected. If the null hypothesis is true but is rejected as a result of

Statistical Hypothesis Testing with SAS and R, First Edition. Dirk Taeger and Sonja Kuhnt.
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4 STATISTICAL HYPOTHESIS TESTING WITH SAS AND R

Table 1.1 Possible results in statistical testing.

Test decision
Do not reject H0 Reject H0

Nature
H0 true Correct decision Type I error

H0 false Type II error Correct decision

the test, a type I error occurs. In the opposite situation that H1 is true in nature but the test
does not reject the null hypothesis, a type II error occurs.

Generally, unless sample size or hypothesis are changed, a decrease in the probability
of a type I error causes an increase in the probability for a type II error and vice versa. With
the significance level 𝛼 the maximal probability of the appearance of a type I error is fixed
and the critical region of the test is chosen according to this condition. If the observed
value of the test statistic lies in the critical region, the null hypothesis is rejected. Hence,
the error probability is under control when a decision is made against H0 but not when the
decision is for H0, which needs to be kept in mind while drawing conclusions from test
results. If possible, the researcher’s conjecture corresponds to the alternative hypothesis
due to primarily controlling the type I error. However, in goodness-of-fit tests one is forced
to formulate the researcher’s hypothesis, that is, the specific distribution of interest, as null
hypothesis as it is otherwise usually unfeasible to derive the distribution of the test statistic.

The power function measures the quality of a test. It yields the probability of rejecting
the hypothesis for a given true parameter value 𝜃. The test with the greatest power among
all tests with a given significance level 𝛼 is called the most powerful test.

Traditionally a pre-specified significance level of 𝛼 = 0.5 or 𝛼 = 0.1 is selected.
However, there is no reason why a different value should not be chosen.

Up to here we are in the context of the Neyman–Pearson test theory. Most statistical
computer programs are not returning whether the calculated test statistic lies within the crit-
ical region or not. Instead the p-value (probability-value) is given. This is the probability to
obtain the observed value of the test statistic or a value that is more extreme in the direction
of the alternative hypothesis calculated when H0 is true. If the p-value is smaller than 𝛼 it
follows that H0 is rejected, otherwise H0 is not rejected.

As already mentioned in the introduction this is the common approach. For further
reading on the differences please refer to Goodman (1994), Hubbard and Bayarri (2003),
Johnstone (1987), and Lehmann (1993).

1.2 Testing statistical hypothesis with SAS and R

Testing statistical hypotheses with SAS and R is very convenient. A lot of tests are already
integrated in these software packages. In SAS tests are invoked via procedures while R uses
functions. Although many test problems are handled in this way situations may occur where
a SAS procedure or a R function is not available. Reasons are manifold. The SAS Institute
decides which statistical test to include in SAS. Even if a newly developed test is accepted
for inclusion in SAS it takes some time to develop a new procedure or to incorporate it in an
existing SAS procedure. If a test is not implemented in a SAS procedure or in the R standard
packages the likelihood is high to find the test as a SAS macro or in R user packages which
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are available through the World Wide Web. However, in this book we have refrained from
presenting tests from SAS macros or R user packages for several reasons. We do not know
how long macros, program code, or user packages are supported by the programmer and are
therefore available for newer versions of SAS or R. In addition it is not possible to trace if
the code is correct. If a statistical test is not implemented in the SAS software as procedure
or in the R standard packages we will provide an algorithm with small SAS and R code to
circumvent these problems. All presented statistical tests are accompanied by an example
of their use in a given dataset. So it is easy to retrace the example and to translate the code
to your own datasets. Sometimes more than one SAS procedure or R function is available to
perform a statistical test. We only present one way to do so.

1.2.1 Programming philosophy of SAS and R

Testing statistical hypothesis in SAS or R is not the same, while R is a matrix language ori-
entated software, SAS follows a different philosophy (except for SAS/IML). With a matrix
orientated language some calculations are easier. For instance the average of a few observa-
tions, for example, the age 1, 4, 2 and 5 of four children in a family, can be calculated with
one line of code in R by applying the function mean() to the vector containing the values,
c(1,4,2,5).

mean(c(1,4,2,5))

Here the numeric vector of data values to be analyzed is inserted directly in the R
function. However, it is also possible to call data from a previously defined object, for
example, a dataframe

children<-data.frame(age=c(1,4,2,5))
mean(children$age)

In SAS a little more effort is necessary due to the required division into data and proc
steps.

data children;
input age;
datalines;

1
4
2
5
;
run;

proc means;
var age;

run;

The dataset children holds the variable age with observed values 1, 4, 2 and 5. The
SAS procedure proc means calculates the mean value. This type of programming phi-
losophy must not be a disadvantage. It can save a lot of time, because the SAS procedures
are very powerful and incorporate many statistical calculations in one go.
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We assume that the reader is familiar with the basic programming features of SAS
or R, such as data input and output, and only remark on some important points related
to conducting statistical tests. Concerning data format usually one entry per observation
and a column for each variable are suitable. However, in some cases it may be required
to reorganize the dataset for test procedures. We accompany our examples with small
datasets (see Appendix A), such that it is easy to see how data need to be arranged for the
specific test.

In SAS most statistical tests are performed with procedures, which usually follow
the schema:

proc proc-name data=dataset-name options;
var variable-names options;
options;

run;

The data= statement identifies the dataset to be analyzed. If missing, the most recent
dataset is taken. In some procedures it is necessary to fix some options to set up the statistical
test, for example, to define the value to test against, or if the test is one or two sided. The
var statement is followed by the variables on which the test shall be performed. Sometimes
further options can be stated in separate command lines, for instance requesting an exact
test. Note, some procedures differ from this general set-up. The procedure proc freq
as an example has no var but a table statement. Occasionally the statement class
class-variable is needed indicating a grouping variable which assigns each observation to
a specific group. As options of procedures can be numerous and not all of them may be
needed for the treated test, we restrict our exposure to the indispensable options. The same
applies to the output we present for the examples.

Conducting a statistical test in the program R usually only requires one line of code.
The common layout of R functions is:

function-name(x, options)

The function-name identifies the function to be applied to the data x. In two-sample tests
data on a second variable are needed, such that the general layout is extended to:

function-name(x,y, options)

Options differ for each test, but the option alternative=alternative-hypothesis
occurs often. As alternative-hypothesis of "two.sided", "less", or "greater" is
chosen, depending on how the alternative hypothesis is to be specified. It suffices to state
only the first letter, that is, "t", "l", or "g". As in SAS we only present the options that
are necessary to perform the test and restrict the presented output to the relevant parts.

1.2.2 Testing in SAS and R – An example

To demonstrate the testing of hypothesis in SAS and R let us look at the ordinary t-test
which tests if a population mean 𝜇 differs from a given values 𝜇0. We employ the dataset in
Table A.1 from Appendix A containing observations on three variables for 55 people: sub-
ject number (no), status of the subject (status), and systolic blood pressure in millimeters of
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mercury (mmhg). Now, we want to test if the mean systolic blood pressure of the population
differs statistically significantly from 140 mmHg at the 5% level . The null hypothesis is
given by H0 ∶ 𝜇 = 140 and the alternative hypothesis is H1 ∶ 𝜇 ≠ 140. We assume that the
systolic blood pressure is normally distributed.1

SAS provides the procedure ttest to handle this test problem. The SAS code is:

proc ttest data=blood_pressure ho=140;
var mmhg;

run;

The dataset option data= specifies the dataset and the option ho= the null value to
test. With var mmhg you tell SAS that the variable mmhg is the variable which contains
the observations to be used. In the output containing, for example, the mean, standard error
and 95% confidence interval, the following refers to the statistical test:

DF t Value Pr > |t|
54 -3.87 0.0003

DF characterizes the degrees of freedom of the t-distribution, as the test statistic is
t-distributed. The value of the test statistic (t Value) is −3.87 and the corresponding
p-value (Pr > |t|) is 0.0003. So we can conclude that the mean value differs statistically
significantly from 140mmHg at a significance level of 5%.

As in SAS it is also simple in R to conduct a t-test:

t.test(blood_pressure$mmhg,mu=140)

The first argument calls the data on the variable mmhg from the dataset
blood_pressure. The second argument mu= specifies the value of the null hypothesis.
The most relevant part of the output for the testing problem is:

t = -3.8693, df = 54, p-value = 0.0002961

The values are the same as for the SAS procedure of course, except for the fact that they
are rounded to more digits. A nice feature of R is that it returns the alternative hypothesis
with the output:

alternative hypothesis: true mean is not equal to 140

If a ready to use SAS procedure or R function is not available, we have to calculate
the test statistic and compare it to the corresponding test statistic distribution by hand. The
formula for the test statistic of the t-test is given by:

T =
X − 𝜇0

s

√
n, with s =

√√√√ 1

n − 1

n∑
i=1

(Xi − X)2,

1 As the systolic blood pressure only takes positive values, the assumption of a normal distribution is strictly

speaking not appropriate. However, blood pressure measurements usually lie in a region far away from zero, so

that in this case the t-test can be expected to be reasonably robust against this violation.
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Figure 1.1 Critical regions (shaded areas) of a t-distribution with 54 degrees of freedom
with significance level 𝛼=0.05.

and follows a t-distribution with n − 1 degrees of freedom, where n is the sample size.
The null hypothesis is rejected if for the observed value t of T either t < t𝛼∕2,n−1 or t >
t1−𝛼∕2,n−1 holds. These quantiles are describing the critical regions of this test (see Figure 1.1
for 𝛼 = 0.05). The p-value is calculated as p = 2 P(T ≤ (−|t|)), where P(.) denotes the
probability function of the t-distribution with n − 1 degrees of freedom.

Let us start with SAS to program this test by hand.

* Calculate sample mean and standard deviation;
proc means data=blood_pressure mean std;
var mmhg;
output out=ttest01 mean=meanvalue std=sigma;

run;

* Calculate test statistic;
data ttest02;
set ttest01;
mu0=140; * Set mean value under the null hypothesis;
t=sqrt(55)*(meanvalue-mu0)/sigma;

run;

* Output results;
proc print;
var t;

run;

The output gives a t-value of −3.86927. The critical values t0.025,54 and t0.975,54 can be
calculated with the SAS function TINV, which returns the quantiles of a t-distribution.

data temp;
x=tinv(0.025,54);
run;

Here tinv(0.025,54) gives −2.004879 and tinv(0.975,54) returns
2.004879. Because the t-value −3.86927 calculated for the dataset is less than −2.004879
we reject the null hypothesis at the 5% level.
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The p-value is also not complicated to calculate. The probability distribution function
of the t-distribution in SAS is PROBT and 2*probt(-3.86927,54) gives a p-value of
0.0002961135.

To write a code for the same t-test in R is quite easy as well.

# Calculate sample mean and standard deviation
xbar<-mean(blood_pressure$mmhg)
sigma<-sd(blood_pressure$mmhg)

# Set mean value under the null hypothesis
mu0<-140

# Calculate test statistic
t<-sqrt(55)*(xbar-mu0)/sigma

# Output results
t

This R code returns the test statistic value of t = −3.869272. To calculate the bound-
aries of the critical regions the R function qt can be used, where qt(0.025,54) returns
−2.004879 and qt(0.975,54) returns 2.004879. The p-value is calculated as 2*pt
(-3.869272,54) with the function pt of the probability function of the t-distribution
and has a value of 0.0002961135.

The three typical hypotheses for a t-test are:

(A) H0 ∶ 𝜇 = 𝜇0 vs H1 ∶ 𝜇 ≠ 𝜇0

(B) H0 ∶ 𝜇 ≤ 𝜇0 vs H1 ∶ 𝜇 > 𝜇0

(C) H0 ∶ 𝜇 ≥ 𝜇0 vs H1 ∶ 𝜇 < 𝜇0

with 𝜇 the sample mean and 𝜇0 = 140 mmHg in our example. So far case (A) has been
treated. Let us now look at the t-tests for hypotheses (B) and (C) at the 5% significance
level.2 The significance level 𝛼 is no longer split between the lower and upper critical
regions. For hypothesis (B) the decision rule is: reject H0 if for the observed value t of
T it holds that t > t1−𝛼,n−1 and for hypothesis (C) reject H0 if for the observed value t of T
it holds that t < t𝛼,n−1. In our example with significance level 0.05 the boundaries for the
critical regions are 1.673565 for hypothesis (B) and −1.673565 for hypothesis (C). See
Figure 1.2 and Figure 1.3 for a graphical representation.

In SAS these values are computed astinv(0.95,54) for (B) andtinv(0.05,54)
for (C). In R these values are computed as qt(0.95,54) for (B) and qt(0.05,54)
for (C). Please note, both boundaries of the critical regions are the same except for the
algebraic sign as the t-distribution is a symmetric distribution. SAS and R do not report
the critical values, only p-values–as any statistical software we know. Some tables of
critical values for several distributions can be found in Appendix B.

The option sides=U of the procedure proc ttest forces SAS to test the one-
sided hypothesis were the alternative hypothesis is that the true mean is greater than 𝜇0.
The output is:

DF t Value Pr > t
54 -3.87 0.9999

2 For scientific correctness the significance level always needs to be decided upon before conducting the test.
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Figure 1.2 Lower critical region (shaded area) and critical value of a one-sided test with
significance level of 5% (t-distribution with 54 degrees of freedom).
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Figure 1.3 Upper critical region (shaded area) and critical value of a one-sided test with
significance level of 5% (t-distribution with 54 degrees of freedom).

The R code for this hypothesis is:

t.test(blood_pressure$mmhg,mu=140,alternative="greater")

and gives a similar output:

t = -3.8693, df = 54, p-value = 0.9999
alternative hypothesis: true mean is greater than 140

To test the hypothesis (C)H0 ∶ 𝜇 ≥ 𝜇0 vsH1 ∶ 𝜇 < 𝜇0 is not complicated at all. In SAS
the following code

proc ttest data=blood_pressure ho=140 sides=L;
var mmhg;

run;

yields the output.

DF t Value Pr < t
54 -3.87 0.0001
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Here the option sides=L forces SAS to test the one-sided hypothesis where the
alternative hypothesis is that the true mean is lower than 𝜇0. In R the tests is done with

t.test(blood_pressure$mmhg,mu=140,alternative="less")

and returns

t = -3.8693, df = 54, p-value = 0.0001481
alternative hypothesis: true mean is less than 140

1.2.3 Calculating p-values

Generally the calculation of a p-value is straightforward. In the case of the t-test the p-value
is either the area under the probability curve lower or greater than the calculated t-value,
that is, the p-value is P(T ≤ t) for hypothesis (C) and P(T ≥ t) for hypothesis (B), where
P(T ≥ t) = 1 − P(T ≤ t). The SAS function probt and the R function pt calculate the
probability that P(T ≤ t) for the t-distribution.

The p-value of hypothesis (A) is twice the minimum of the lowest p-value of the one-
sided tests, which is equal to 2 ∗ P(T ≤ −|t|). However, keep in mind that this is only
valid for symmetric distributions like the t- or Gaussian distribution. If the test statistic
is a non-symmetric distribution like the F-distribution it is necessary to work out if the
observed value is at the lower or upper tail of the distribution. For a two-sided test use
2 ∗ min[1 − P(X ≤ x),P(X ≤ x)]. This ensures the lowest two-sided p-value is obtained and
not, on occasion, a p-value above 1 [see Gallagher (2006) for further discussion].

It is usual to format p-values such that values between 0 and 0.0001 are printed as
<0.0001 and values above are restricted to four digits. In SAS procedures this is the case.
If calculating a p-value yourself you can us the SAS format pvalue.

Table 1.2 Some distribution functions in SAS.

SAS function Parameters Distribution Examples

probnorm(x) x: value of the test statistic Gaussian probnorm(1.96)
probt(x,df,nc) x: value of the test statistic t probt(12.71,1)

df: degrees of freedom
nc: noncentrality parameter
(optional)

probchi(x,df,nc) x: value of the test statistic 𝜒2 probchi(5.02,1)
df: degrees of freedom
nc: noncentrality parameter
(optional)

probf(x,ndf,ddf,nc) x: value of the test statistic F probf(647.80,1,1)
ndf: numerator degrees of freedom
ddf: denominator degrees of
freedom
nc: noncentrality parameter
(optional)

All functions calculate the probability that an observation of the specific distribution is ≤X
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data ttest;
format p_value pvalue.;
p_value=2*probt(-3.86927,54);

run;

This will result in a p-value of 0.0003.
Usually the p-value in R is not formatted in this way. The function format.pval can

be used to format it. But first with the R option scipen=3 the scientific notation should
be suppressed.

options(scipen=3)
format.pval(2*pt(-3.86927,54),1,eps=0.0001)

This R code will also give a p-value of 0.0003.
If necessary it is possible to derive quantiles, and thereby p-values and critical values,

by simulation. Let us stick to the assumed symmetric t-distribution. In SAS the code could
look as follows:

data random;
do i=1 to 100000;
r=rand('T',54);
output;
end;

run;

proc univariate data=random noprint;
var r;
output out=critical pctlpts=2.5 97.5 pctlpre=crit_;

run;

proc print data=critical;
run;

The rand(‘T’,54) function calculates a random number from a t-distribution with
54 degrees of freedom. This is repeated 100 000 times and the random numbers are stored.
The proc univariate procedure calculates the desired quantiles using the option
pctlpts=. The additional option pctlpre= is used to give a prefix to the variable names
of the calculated quantiles. The output is then for the 0.025-quantile and 0.975-quantile
calculated here

crit_2_5 crit_97_5
-2.01062 2.01350

In R we need only one line of code

quantile(rt(100000,54),c(0.025,0.975))

The quantile(.) function calculates quantiles and the rt(.) function calculates
100 000 random numbers of the desired t-distribution. The option c(0.025,0.975)
then calculates the 0.025-quantile and 0.975-quantile of these random numbers. We get the
output

2.5% 97.5%
-2.020038 2.014382
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Table 1.3 Some distribution functions in R.

R function Parameters Distribution Examples

pnorm(x) x: value of the test statistic Gaussian pnorm(1.96)
pt(x,df,ncp) x: value of the test statistic t pt(12.71,1)

df: degrees of freedom
ncp: noncentrality parameter (optional)

pchisq(x,df,nc) x: value of the test statistic 𝜒2 pchisq(5.02,1)
df: degrees of freedom
ncp: noncentrality parameter (optional)

pf(x,ndf,ddf,nc) x: value of the test statistic F pf(647.80,1,1)
df1: numerator degrees of freedom
df2: denominator degrees of freedom
ncp: noncentrality parameter (optional)

All listed functions calculating the probability that an observation of the specific distribution is ≤X

These numbers are different to those SAS returned and they will always vary if you try
it by yourself, because random numbers should differ from run to run. However, we see that
these values are very close to the critical values ±2.004879 that are given by the quantiles
of the t-distribution.

For some tests, for example, the Jarque–Bera test (see Test 11.2.2), these kinds ofMonte
Carlo simulation are needed to get the critical values. For some tests implemented in SAS
and R this Monte Carlo approach can be additionally requested.

Remember that in most cases the p-value is stated in the output of the applied pro-
cedure or function. If the statistical test you would like to apply is not implemented in
SAS or R you have to write it yourself (or use the code we provide in such situations).
Table 1.2 and Table 1.3 list some common distribution functions in SAS and R, respectively,
which are of interest in calculating p-values from parametric distributions. For nonpara-
metric tests or tests with distributions other than stated above or implemented in SAS
or R, p-value calculation is sometimes cumbersome. If necessary we provide code for
such problems.

1.3 Presentation of the statistical tests

In this section we use the single sample t-test again to describe the presentation of statistical
tests in this book. The layout follows a structured table.

First the name of the test is given

2.1.2 t-Test

A brief description of the test follows

Description: Tests if a population mean 𝜇 differs from a specific value 𝜇0.
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Assumptions of the test are listed

Assumptions: • Data are randomly sampled from a Gaussian distribution.

Different hypotheses are listed. In this case the non-directional hypothesis and the two
directional hypotheses can be tested with this test

Hypotheses: (A) H0 ∶ 𝜇 = 𝜇0vs H1 ∶ 𝜇 ≠ 𝜇0

(B) H0 ∶ 𝜇 ≤ 𝜇0vs H1 ∶ 𝜇 > 𝜇0

(C) H0 ∶ 𝜇 ≥ 𝜇0vs H1 ∶ 𝜇 < 𝜇0

The test statistic is displayed

Test statistic: T = X−𝜇0

s

√
n with s =

√
1

n−1

n∑
i=1

(Xi − X)2

Decision rules for each hypothesis are listed

Test decision: Reject H0 if for the observed value t of T
(A) t < t𝛼∕2,n−1or t > t1−𝛼∕2,n−1
(B) t > t1−𝛼,n−1
(C) t < t𝛼,n−1

Formulae of p-values for each hypothesis are given

p-value: (A) p = 2 P(T ≤ (−|t|))
(B) p = 1 − P(T ≤ t))
(C) p = P(T ≤ t))

Annotations of the test, such as the distribution of the test statistic, are pointed out

Annotations: • Test statistic T is t-distributed with n − 1degrees of freedom.

An explaining example on a dataset is introduced

Example: To test the hypothesis that the mean systolic blood pressure of a certain
population equals 140mmHg. The dataset at hand has measurements on 55 patients
(dataset in Table A.1).


