Molecular Mechanisms of Photosynthesis
I dedicate this book to the memory of my mother, whose early and constant encouragement started me down the road to a career in science.
Contents

Introduction to the second edition xi

Acknowledgements xiii

About the companion website xv

Chapter 1
The basic principles of photosynthetic energy storage 1

1.1 What is photosynthesis? 1
1.2 Photosynthesis is a solar energy storage process 2
1.3 Where photosynthesis takes place 4
1.4 The four phases of energy storage in photosynthesis 5
References 9

Chapter 2
Photosynthetic organisms and organelles 11

2.1 Introduction 11
2.2 Classification of life 12
2.3 Prokaryotes and eukaryotes 14
2.4 Metabolic patterns among living things 15
2.5 Phototrophic prokaryotes 15
2.6 Photosynthetic eukaryotes 21
References 24

Chapter 3
History and early development of photosynthesis 27

3.1 Van Helmont and the willow tree 27
3.2 Carl Scheele, Joseph Priestley, and the discovery of oxygen 27
3.3 Ingenhousz and the role of light in photosynthesis 28
3.4 Senebier and the role of carbon dioxide 29
3.5 De Saussure and the participation of water 29
3.6 The equation of photosynthesis 29
3.7 Early mechanistic ideas of photosynthesis 30
3.8 The Emerson and Arnold experiments 32
3.9 The controversy over the quantum requirement of photosynthesis 34
3.10 The red drop and the Emerson enhancement effect 35
3.11 Antagonistic effects 36
3.12 Early formulations of the Z scheme for photosynthesis 37
3.13 ATP formation 38
3.14 Carbon fixation 38
References 38
Chapter 4 Photosynthetic pigments: structure and spectroscopy

4.1 Chemical structures and distribution of chlorophylls and bacteriochlorophylls
4.2 Pheophytins and bacteriopheophytins
4.3 Chlorophyll biosynthesis
4.4 Spectroscopic properties of chlorophylls
4.5 Carotenoids
4.6 Bilins
References

Chapter 5 Antenna complexes and energy transfer processes

5.1 General concepts of antennas and a bit of history
5.2 Why antennas?
5.3 Classes of antennas
5.4 Physical principles of antenna function
5.5 Structure and function of selected antenna complexes
5.6 Regulation of antennas
References

Chapter 6 Reaction centers and electron transport pathways in anoxygenic phototrophs

6.1 Basic principles of reaction center structure and function
6.2 Development of the reaction center concept
6.3 Purple bacterial reaction centers
6.4 Theoretical analysis of biological electron transfer reactions
6.5 Quinone reductions, role of the Fe and pathways of proton uptake
6.6 Organization of electron transfer pathways
6.7 Completing the cycle – the cytochrome b_{c_1} complex
6.8 Membrane organization in purple bacteria
6.9 Electron transport in other anoxygenic phototrophic bacteria
References

Chapter 7 Reaction centers and electron transport pathways in oxygenic photosynthetic organisms

7.1 Spatial distribution of electron transport components in thylakoids of oxygenic photosynthetic organisms
7.2 Noncyclic electron flow in oxygenic organisms
7.3 Photosystem II structure and electron transfer pathway
7.4 Photosystem II forms a dimeric supercomplex in the thylakoid membrane
7.5 The oxygen-evolving complex and the mechanism of water oxidation by Photosystem II
7.6 The structure and function of the cytochrome $b_{6}f$ complex
7.7 Plastocyanin donates electrons to Photosystem I
7.8 Photosystem I structure and electron transfer pathway
7.9 Ferredoxin and ferredoxin-NADP reductase complete the noncyclic electron transport chain
References
Chapter 8 Chemiosmotic coupling and ATP synthesis
8.1 Chemical aspects of ATP and the phosphoanhydride bonds
8.2 Historical perspective on ATP synthesis
8.3 Quantitative formulation of proton motive force
8.4 Nomenclature and cellular location of ATP synthase
8.5 Structure of ATP synthase
8.6 The mechanism of chemiosmotic coupling
References
Chapter 9 Carbon metabolism
9.1 The Calvin–Benson cycle is the primary photosynthetic carbon fixation pathway
9.2 Photorespiration is a wasteful competitive process to carboxylation
9.3 The C4 carbon cycle minimizes photorespiration
9.4 Crassulacean acid metabolism avoids water loss in plants
9.5 Algae and cyanobacteria actively concentrate CO2
9.6 Sucrose and starch synthesis
9.7 Other carbon fixation pathways in anoxygenic phototrophs
References
Chapter 10 Genetics, assembly, and regulation of photosynthetic systems
10.1 Gene organization in anoxygenic photosynthetic bacteria
10.2 Gene expression and regulation of purple photosynthetic bacteria
10.3 Gene organization in cyanobacteria
10.4 Chloroplast genomes
10.5 Pathways and mechanisms of protein import and targeting in chloroplasts
10.6 Gene regulation and the assembly of photosynthetic complexes in cyanobacteria and chloroplasts
10.7 The regulation of oligomeric protein stoichiometry
References
Chapter 11 The use of chlorophyll fluorescence to probe photosynthesis
11.1 The time course of chlorophyll fluorescence
11.2 The use of fluorescence to determine the quantum yield of Photosystem II
11.3 Fluorescence detection of nonphotochemical quenching
11.4 The physical basis of variable fluorescence
References
Chapter 12 Origin and evolution of photosynthesis
12.1 Introduction
12.2 Early history of the Earth
12.3 Origin and early evolution of life
12.4 Geological evidence for life and photosynthesis
12.5 The nature of the earliest photosynthetic systems
References
12.6 The origin and evolution of metabolic pathways with special reference to chlorophyll biosynthesis 207
12.7 Evolutionary relationships among reaction centers and other electron transport components 212
12.8 Do all photosynthetic reaction centers derive from a common ancestor? 214
12.9 The origin of linked photosystems and oxygen evolution 215
12.10 Origin of the oxygen-evolving complex and the transition to oxygenic photosynthesis 218
12.11 Antennasystems have multiple evolutionary origins 221
12.12 Endosymbiosis and the origin of chloroplasts 223
12.13 Most types of algae are the result of secondary endosymbiosis 226
12.14 Following endosymbiosis, many genes were transferred to the nucleus, and proteins were reimported to the chloroplast 226
12.15 Evolution of carbon metabolism pathways 229
References 230

Chapter 13 Bioenergy applications and artificial photosynthesis 237
13.1 Introduction 237
13.2 Solar energy conversion 237
13.3 What is the efficiency of natural photosynthesis? 239
13.4 Calculation of the energy storage efficiency of oxygenic photosynthesis 241
13.5 Why is the efficiency of photosynthesis so low? 241
13.6 How might the efficiency of photosynthesis be improved? 242
13.7 Artificial photosynthesis 243
References 247

Appendix: Light, energy, and kinetics 249

Index 287
Introduction to the second edition

It is now more than ten years since the first edition of Molecular Mechanisms of Photosynthesis was published. In that time, the scientific understanding of how photosynthesis works has continued to progress. The success of the first edition has prompted numerous requests for a second edition, which I am pleased to provide. I have tried to update the text to reflect this new understanding. The overall organization of the second edition is similar to the first, except that the material in chapters 6 and 7 has been reorganized significantly to improve the presentation, and two new chapters have been added. One is on the use of chlorophyll fluorescence in photosynthesis, while the other is on artificial photosynthesis and bioenergy applications.

This book is an introduction to the basic concepts that underlie the process of photosynthesis as well as a description of the current understanding of the subject. Because it is such a complex process that requires some knowledge of many different fields of science to appreciate, it can be intimidating for a person who is not already conversant with the basics of all these fields. For this reason, a brief overview is provided in the first chapter, introducing and summarizing the main concepts. This chapter is then followed by a more in-depth treatment of each of the main themes in later chapters.

Photosynthesis is perhaps the best possible example of a scientific field that is intrinsically interdisciplinary. Our discussion of photosynthesis will span time scales from the cosmic to the unimaginably fast, from the origin of the Earth 4.5 billion years ago, to molecular processes that take only a few femtoseconds. This is a range of over 32 orders of magnitude. Appreciating this extraordinary scale will require us to learn a range of vocabularies and concepts that stretch from geology through physics and chemistry, to biochemistry, cell and molecular biology, and finally to evolutionary biology. Any person who wishes to appreciate the big picture of how photosynthesis works, and how it fits into the broad scope of scientific inquiry, needs to have at least a rudimentary understanding of all of these fields of science. This is an increasingly difficult task in this age of scientific specialization, because no one can truly be an expert in all areas. This book attempts to provide the starting point for a broadly based understanding of photosynthesis, incorporating key concepts from across the scientific spectrum. The emphasis throughout the book will be on molecular-scale mechanistic processes.

Many of the concepts that we will explore throughout the bulk of this book require an understanding of basic concepts of physical chemistry, including thermodynamics, kinetics, and quantum mechanics. It is beyond the scope of our broad, and therefore necessarily brief, treatment of photosynthesis to provide a comprehensive background in these areas that form the core of the mechanistic aspects of the subject. However, some modest understanding of these physical principles is essential to be able to appreciate the essence of the photosynthetic process. This is addressed in an appendix that introduces the physical basis of light and energy. This appendix can either be read as a preface to the bulk of the book or consulted as needed as a reference.

The book is aimed towards advanced undergraduates and beginning graduate students in a range of disciplines, including life sciences, chemistry, and physics. An understanding of basic principles of chemistry, physics, and biology is assumed.
Robert E. Blankenship
Acknowledgements

I thank my former advisors Ken Sauer and Bill Parson for initiating me into the fascinating world of photosynthesis. Their guidance, support, and friendship have been invaluable to me during the course of my career.

Much of this second edition was written while I was on sabbatical leave during the fall semester of 2012 in the United Kingdom. I thank my hosts, Richard Cogdell from the University of Glasgow and Neil Hunter from the University of Sheffield, for providing space for me to work and for their numerous discussions and insights about various topics.

I thank the many friends and colleagues from around the world for reading and commenting on some material, for helpful discussions on specialized topics, and for kindly providing figures for publication. These include (in alphabetical order) Noam Adir, John Allen, Carl Bauer, Egbert Boekema, Min Chen, Ford Doolittle, the family of Vince Franceschi, Gyozo Garab, Govindjee, Mark Hensen, Martin Hohmann-Marriott, Dewey Holten, Ken Hoober, Wolfgang Junge, Nancy Kiang, Werner Kuhlbrandt, Jonathan Lindsey, Haijun Liu, Michael Madigan, Tom Moore, Nathan Nelson, Jon Nield, Robby Roberson, Aleks Roszak, Bill Schopf, Jian-Ren Shen, and Aileen Taguchi.

The beautiful graphic that adorns the cover of the book is courtesy of Melih Sener and Klaus Schulten. This is an updated version of the graphic that was on the cover of the first edition.

Special thanks to my editor Rachel Wade for her patience and to Izzy Canning and Fiona Seymour from Wiley-Blackwell for help with the production.

Finally, I thank my wonderful family, Liz, Larissa, and Sam, for their constant love and support.
This book is accompanied by a companion website:

www.wiley.com/go/blankenship/molecularphotosynthesis

The website includes:

- Powerpoints of all figures from the book for downloading
- PDFs of all tables from the book for downloading
Chapter 1
The basic principles of photosynthetic energy storage

1.1 What is photosynthesis?

Photosynthesis is a biological process whereby the Sun’s energy is captured and stored by a series of events that convert the pure energy of light into the free energy needed to power life. This remarkable process provides the foundation for essentially all life and has over geologic time profoundly altered the Earth itself. It provides all our food and most of our energy resources.

Perhaps the best way to appreciate the importance of photosynthesis is to examine the consequences of its absence. The catastrophic event that caused the extinction of the dinosaurs and most other species 65 million years ago almost certainly exerted its major effect not from the force of the comet or asteroid impact itself, but from the massive quantities of dust ejected into the atmosphere. This dust blocked out the Sun and effectively shut down photosynthesis all over the Earth for a period of months or years. Even this relatively short interruption of photosynthesis, miniscule on the geological time scale, had catastrophic effects on the biosphere.

Photosynthesis means literally “synthesis with light.” As such, it might be construed to include any process that involved synthesis of a new chemical compound under the action of light. However, that very broad definition might include a number of unrelated processes that we do not wish to include, so we will adopt a somewhat narrower definition of photosynthesis:

Photosynthesis is a process in which light energy is captured and stored by an organism, and the stored energy is used to drive energy-requiring cellular processes.

This definition is still relatively broad, and includes the familiar chlorophyll-based form of photosynthesis that is the subject of this book, but also includes the very different form of photosynthesis carried out by some bacteria and archaea using proteins related to rhodopsin, or other unknown mechanisms in which an organism derives some of its cellular energy from light. Light-driven signaling processes, such as vision or phytochrome action, where light conveys information instead of energy, are excluded from our definition of photosynthesis, as well as all processes that do not normally take place in living organisms.

What constitutes a photosynthetic organism? Does the organism have to derive all its energy from light to be classified as photosynthetic? Here we will adopt a relatively generous definition, including...
as photosynthetic any organism capable of deriving some of its cellular energy from light. Higher plants, the photosynthetic organisms that we are all most familiar with, derive essentially all their cellular energy from light. However, there are many organisms that use light as only part of their energy source and, under certain conditions, they may not derive any energy from light. Under other conditions, they may use light as a significant or sole source of cellular energy. We adopt this broad definition because our interest is primarily in understanding the energy storage process itself. Organisms that use photosynthesis only part of the time may still have important things to teach us about how the process works and therefore deserve our attention, even though a purist might not classify them as true photosynthetic organisms. We will also use both of the terms “photosynthetic” and “phototrophic” when describing organisms that can carry out photosynthesis. We will usually use photosynthetic to describe higher plants, algae, and cyanobacteria that derive most or all of their energy needs from light, and phototrophic to describe bacteria or archaea that can do photosynthesis but often derive much of their energy needs from other sources.

The most common form of photosynthesis involves chlorophyll-type pigments, and operates using light-driven electron transfer processes. The organisms that we will discuss in detail in this book, including plants, algae, and cyanobacteria (collectively called oxygenic organisms because they produce oxygen during the course of doing photosynthesis) and several types of anoxygenic (non-oxygen-evolving) bacteria, all work in this same basic manner. All these organisms will be considered to carry out what we will term “chlorophyll-based photosynthesis.” The rhodopsin-based form of photosynthesis, while qualifying under our general definition, is mechanistically very different from chlorophyll-based photosynthesis, and will not be discussed in detail. It operates using cis–trans isomerization that is directly coupled to ion transport across a membrane (Lanyi, 2004). The ions that are pumped as the result of the action of light can be either H\(^{+}\) or Cl\(^{-}\) ions, depending on the class of the bacterial or Archaeal rhodopsin. The H\(^{+}\)-pumping complexes are called bacteriorhodopsins, and the Cl\(^{-}\)-pumping complexes are known as halorhodopsins. No light-driven electron transfer processes are known thus far in these systems.

For many years, the bacterial rhodopsin-type of photosynthesis was known only in extremely halophilic Archaea (formerly called archaeabacteria) bacteria, which are found in a restricted number of high-salt environments. Therefore, this form of photosynthesis seemed to be of minor importance in terms of global photosynthesis. However, a new form of bacterial rhodopsin, known as proteorhodopsin, was discovered in marine proteobacteria (the same major group of organisms that includes the purple phototrophic bacteria) (Béjà et al., 2000; Béjà and DeLong, 2010). The proteorhodopsin pumps H\(^{+}\), and has an amino acid sequence and protein secondary structure that are generally similar to bacteriorhodopsin. The proteobacteria that contain proteorhodopsin are widely distributed in the world’s oceans, so the rhodopsin-based form of photosynthesis may be of considerable importance.

As mankind pushes into space and searches for life on other worlds, we need to be able to recognize life that may be very different from what we know on Earth. Life always needs a source of energy, so it is reasonable to expect that some form of photosynthesis (using our general definition) will be found on most or possibly all worlds that harbor life. Photosynthesis on such a world need not necessarily contain chlorophylls and perform electron transfer. It might be based on isomerization such as bacteriorhodopsin, or possibly on some other light-driven process that we cannot yet imagine (Kiang et al. 2007a,b).

1.2 Photosynthesis is a solar energy storage process

Photosynthesis uses light from the Sun to drive a series of chemical reactions. The Sun, like all stars, produces a broad spectrum of radiation output that ranges from gamma rays to radio waves. The solar output is shown in Fig. 1.1, along with absorption spectra of some photosynthetic organisms. Only some of the emitted solar radiation is visible to our eyes, consisting of light with wavelengths from about
400 to 700 nanometers (nm). The entire visible range of light, and some wavelengths in the near infrared (700 to 1000 nm), are highly active in driving photosynthesis in certain organisms, although the most familiar chlorophyll a-containing organisms cannot use light with a wavelength longer than 700 nm. The spectral region from 400 to 700 nm is often called photosynthetically active radiation (PAR), although this is only strictly true for chlorophyll a-containing organisms.

The sunlight that reaches the surface of the Earth is reduced by scattering and by the absorption of molecules in the atmosphere. Water vapor and other molecules such as carbon dioxide absorb strongly in the infrared region, and ozone absorbs in the ultraviolet region. The ultraviolet light is a relatively small fraction of the total solar output, but much of it is very damaging because of the high energy content of these photons (see Appendix for a discussion of photons and the relationship of wavelength and energy content of light). The most damaging ultraviolet light is screened out by the ozone layer in the upper atmosphere and does not reach the Earth’s surface. Wavelengths less than 400 nm account for only about 8% of the total solar irradiance, while wavelengths less than 700 nm account for 47% of the solar irradiance (Thekaekara, 1973).

The infrared wavelength region includes a large amount of energy, and would seem to be a good source of photons to drive photosynthesis. However, no organism is known that can utilize light of wavelength longer than about 1000 nm for photosynthesis (1000 nm and longer wavelength light comprises 30% of the solar irradiance). This is almost certainly because infrared light has a very low energy content in each photon, so that large numbers of these low-energy photons would have to be used to drive the chemical reactions of photosynthesis. No known organism has evolved such a mechanism, which would in essence be a living heat engine. Infrared light is also absorbed by water, so aquatic organisms do not receive much light in this spectral region.

The distribution of light in certain environments can be very different from that shown in Fig. 1.1. The differing spectral content, or color, of light in different environments represents differences in light quality. In later chapters we will encounter some elegant control mechanisms that organisms use to adapt to changes in light quality. In a forest, the upper part of the canopy receives the full solar spectrum, but the forest floor receives only light that was not absorbed above. The spectral distribution of the filtered light that reaches the forest floor is therefore enriched in the green and far red regions and is almost completely lacking in the red and blue wavelengths.

In aquatic systems, the intensity of light rapidly decreases as one goes deeper down the water column, owing to several factors. This decrease is not uniform for all wavelengths. Water weakly absorbs light in the red portion of the spectrum, so that the red photons that are most efficient in driving photosynthesis rapidly become depleted. Water also scatters light, mainly because of effects of suspended particles. This scattering effect is most prevalent in the blue region of the spectrum, because scattering
by small particles is proportional to the frequency raised to the fourth power. The sky is blue because of this frequency-dependent scattering effect. At water depths of more than a few tens of meters, most of the available light is in the middle, greenish part of the spectrum, because the red light has been absorbed and the blue light scattered (Kirk, 1994; Falkowski and Raven, 2007). None of the types of chlorophylls absorb green light very well. However, other photosynthetic pigments, in particular some carotenoids (e.g., fucoxanthin, peridinin), have intense absorption in this region of the spectrum, and are present in large quantities in many aquatic photosynthetic organisms. At water depths greater than about 100 meters, the light intensity is too weak to drive photosynthesis.

1.3 Where photosynthesis takes place

Photosynthesis is carried out by a wide variety of organisms. In all cases, lipid bilayer membranes are critical to the early stages of energy storage, such that photosynthesis must be viewed as a process that is at heart membrane-based. The early processes of photosynthesis are carried out by pigment-containing proteins that are integrally associated with the membrane. Later stages of the process that occur on a slower (e.g., millisecond) time scale are mediated by proteins that are freely diffusible in the aqueous phase.

In eukaryotic photosynthetic cells, photosynthesis is localized in subcellular structures known as chloroplasts (Fig. 1.2). The chloroplast contains all the chlorophyll pigments and in most organisms carries out all the main phases of the process of photosynthesis. Synthesis of sucrose and some other carbon metabolism reactions require extrachloroplasmatic enzymes. Chloroplasts are about the size of bacteria, a few micrometers in diameter. In fact, chloroplasts were derived long ago from symbiotic bacteria that became integrated into the cell and eventually lost their independence, a process known as endosymbiosis (see Chapter 12). Even today, they retain traces of their bacterial heritage, including their own DNA, although much of the genetic information needed to build the photosynthetic apparatus now resides in DNA located in the nucleus.

An extensive membrane system is found within the chloroplast, and all the chlorophylls and other pigments are found associated with these membranes, which are known as thylakoids, or sometimes called lamellae. In typical higher plant
chloroplasts, most of the thylakoids are closely associated in stacks, and are known as **grana thylakoid membranes**, while those that are not stacked are known as **stroma thylakoid membranes**. The thylakoid membranes are the sites of light absorption and the early or primary reactions that first transform light energy into chemical energy. The non-membranous aqueous interior of the chloroplast is known as the **stroma**. The stroma contains soluble enzymes and is the site of the carbon metabolism reactions that ultimately give rise to products that can be exported from the chloroplast and used elsewhere in the plant to support other cellular processes.

In prokaryotic photosynthetic organisms, the early steps of photosynthesis take place on specialized membranes that are derived from the cell’s cytoplasmic membrane. In these organisms, the carbon metabolism reactions take place in the cell cytoplasm, along with all the other reactions that make up the cell’s metabolism.

1.4 The four phases of energy storage in photosynthesis

It is convenient to divide photosynthesis into four distinct phases, which together make up the complete process, beginning with photon absorption and ending with the export of stable carbon products from the chloroplast. The four phases are: (1) light absorption and energy delivery by antenna systems, (2) primary electron transfer in reaction centers, (3) energy stabilization by secondary processes, and (4) synthesis and export of stable products.

The terms **light reactions** and **dark reactions** have traditionally been used to describe different phases of photosynthetic energy storage. The first three phases that we have identified make up the light reactions, and the fourth encompasses the dark reactions. However, this nomenclature is somewhat misleading, in that all the reactions are ultimately driven by light, yet the only strictly light-dependent step is photon absorption. In addition, several enzymes involved in carbon metabolism are regulated by compounds produced by light-driven processes. We will now briefly explore each of the phases of photosynthetic energy storage, with the emphasis on the basic principles. Much more detail is given in the later chapters dedicated to each topic.

1.4.1 Antennas and energy transfer processes

For light energy to be stored by photosynthesis, it must first be absorbed by one of the pigments associated with the photosynthetic apparatus. Photon absorption creates an excited state that eventually leads to charge separation in the reaction center. Not every pigment carries out photochemistry; the vast majority function as antennas, collecting light and then delivering energy to the reaction center where the photochemistry takes place. The antenna system is conceptually similar to a satellite dish, collecting energy and concentrating it in a receiver, where the signal is converted into a different form (Fig. 1.3). Energy transfer in antenna systems is discussed in more detail in Chapter 5.

The antenna system does not do any chemistry; it works by an energy transfer process that involves the migration of electronic excited states from one molecule to another. This is a purely physical process, which depends on a weak energetic coupling of the antenna pigments. In almost all cases, the pigments are bound to proteins in highly specific associations. In addition to chlorophylls, common antenna pigments include carotenoids and open-chain tetrapyrrole bilin pigments found in phycobilisome antenna complexes.

Antenna systems often incorporate an energetic and spatial funneling mechanism, in which pigments that are on the periphery of the complex absorb at shorter wavelengths and therefore higher excitation energies than those at the core. As energy transfer takes place, the excitation energy moves from higher- to lower-energy pigments, at the same time heading towards the reaction center.

Antenna systems greatly increase the amount of energy that can be absorbed compared with a single pigment. Under most conditions this is an advantage, because sunlight is a relatively dilute energy source. Under some conditions, however, especially
normal conditions, the system is rapidly inactivated if some sort of photoprotection mechanism is not present. Antenna systems (as well as reaction centers) therefore have extensive and multifunctional regulation, protection, and repair mechanisms.

The number of antenna pigments associated with each reaction center complex varies widely, from a minimum of a few tens of pigments in some organisms to a maximum of several thousand pigments in other types of organisms. The pigment number and type largely reflect the photic environment that the organism lives in. Smaller antennas are found in organisms that live in high intensity conditions, while the large antennas are found in environments where light intensity is low.

1.4.2 Primary electron transfer in reaction centers

The transformation from the pure energy of excited states to chemical changes in molecules takes place in the photosynthetic reaction center. The reaction center is a multisubunit protein complex that is embedded in the photosynthetic membrane. It is a pigment–protein complex, incorporating chlorophyll or bacteriochlorophyll and carotenoid pigments as well as other cofactors such as quinones or iron sulfur centers, which are involved in electron transfer processes. The cofactors are bound to extremely hydrophobic polypeptides that thread back and forth across the nonpolar portion of the membrane multiple times.

The reaction center contains a special dimer of pigments that in most or all cases is the primary electron donor for the electron transfer cascade. These pigments are chemically identical (or nearly so) to the chlorophylls that are antenna pigments, but their environment in the reaction center protein gives them unique properties. The final step in the antenna system is the transfer of energy into this dimer, creating an excited dimer that has been electronically excited to a higher energy level.

The basic process that takes place in all reaction centers is described schematically in Fig. 1.4a. A chlorophyll-like pigment (P) is promoted to an excited electronic state, either by direct photon absorption or, more commonly, by energy transfer
Chapter 1 The basic principles of photosynthetic energy storage

1.4.3 Stabilization by secondary reactions

The essence of photosynthetic energy storage is the transfer of an electron from an excited chlorophyll-type pigment to an acceptor molecule in a pigment–protein complex called the reaction center. The initial, or primary, electron transfer event is followed by separation of the positive and negative charges by a very rapid series of secondary chemical reactions. This basic principle applies to all photosynthetic reaction centers, although the details of the process vary significantly from one system to the next.

In some organisms, one light-driven electron transfer and stabilization is sufficient to complete a cyclic electron transfer chain. This is shown schematically in Fig. 1.4b, in which the vertical arrow represents energy input to the system triggered by photon absorption, and the curved arrows represent spontaneous, or downhill, electron transfer processes that follow, eventually returning the electron to the primary electron donor. This cyclic electron transfer process is not in itself productive unless some of the energy of the photon can be stored. This takes place by the coupling of proton movement across the membrane with the electron transfer, so that the net result is a light-driven difference of pH and electrical potential, or

from the antenna system. The excited state of the pigment is chemically an extremely strong reducing species. It rapidly loses an electron to a nearby electron acceptor molecule (A), generating an ion-pair state P^+A^-. Secondary reactions separate the charges, by transfer of an electron from an electron donor (D) and from the initial acceptor A to a secondary acceptor (A'). This spatial separation prevents the recombination reaction. The terms fast, slow, and very fast are relative to each other. The vertical arrow signifies photon absorption: P represents the primary electron donor; D, A, and C represent secondary electron donors, acceptors, and carriers.
Electrochemical potential gradient across the two sides of the membrane. This electrochemical potential gradient, called a **protonmotive force**, is used to drive the synthesis of ATP.

The more familiar oxygen-evolving photosynthetic organisms have a different pattern of electron transfer. They have two photochemical reaction center complexes that work together in a **necyclic electron transfer chain**, as shown in Fig. 1.5. The two reaction center complexes are known as Photosystems I and II. Electrons are removed from water by Photosystem II, oxidizing it to molecular oxygen, which is released as a waste product. The electrons extracted from water are transported via a quinone and the cytochrome b$_{6}$f complex to Photosystem I and, after a second light-driven electron transfer step, eventually reduce an intermediate electron acceptor, NADP$^{+}$ to form NADPH.

Figure 1.5 Schematic diagram of the noncyclic electron transfer pathway found in oxygenic photosynthetic organisms. The upper diagram (a) is an energetic picture of the electron transport pathway, incorporating the major reactions of photosynthesis into what is called the Z-scheme of photosynthesis. The lower diagram (b) is a spatial picture, showing the major protein complexes whose energetics are shown in the Z-scheme, and how they are arranged in the photosynthetic membrane. Neither view alone gives a complete picture, but together they summarize much information about photosynthetic energy storage. (a) Source: Hohmann-Marriott and Blankenship (2011). Reproduced with permission of Annual Reviews, and (b) Source: Figure courtesy of Dr. Jonathan Nield.
Protons are also transported across the membrane and into the thylakoid lumen during the process of the noncyclic electron transfer, creating a proton motive force. The energy in this proton motive force is used to make ATP (see Chapter 8).

Reaction centers and electron transfer processes in anoxygenic bacteria are discussed in more detail in Chapter 6, while these processes in oxygenic photosynthetic organisms are discussed in more detail in Chapter 7.

1.4.4 Synthesis and export of stable products

The final phase of photosynthetic energy storage involves the production of stable high-energy molecules and their utilization to power a variety of cellular processes. This phase uses the intermediate reduced compound, NADPH, generated by Photosystem 1, along with the phosphate bond energy of ATP to reduce carbon dioxide to sugars. In eukaryotic photosynthetic organisms, phosphorylated sugars are then exported from the chloroplast. The carbon assimilation and reduction reactions are enzyme-catalyzed processes that take place in the chloroplast stroma. These reactions are discussed in more detail in Chapter 9.

References

Chapter 2

Photosynthetic organisms and organelles

2.1 Introduction

Green is all around us. The distinctive color of chlorophyll announces the presence of photosynthetic organisms, including trees, shrubs, grasses, mosses, cacti, ferns, and many other types of vegetation. But this is just the tip of the iceberg of photosynthetic life. In addition to these most visible organisms, there is a remarkable variety of microscopic life, including many types of algae and bacteria that carry out photosynthesis. This chapter will introduce the different types of photosynthetic and phototrophic organisms and will give some information about their cellular organization and structure.

All living things on Earth are related to each other. In some cases the relationships are obviously close, such as between a dog and a coyote, or an orange tree and a lemon tree, while in other cases the relationships are apparent only upon close examination, such as between a bacterium and a human or an amoeba and a fish. To establish these less obvious relationships, it is necessary to look at a deeper level of analysis, down to the cellular and even the molecular levels (Alberts et al., 2007; Nelson and Cox, 2013). At these levels of organization the unity of life is readily apparent. All organisms are organized in the same fundamental way, with DNA serving as the master copy of the information needed to construct the organism, RNA as the intermediate working copy, and proteins as the workhorses of the cell, carrying out almost all the chemical reactions that make up metabolism. This basic pattern of information flow and metabolic responsibilities is known as the central dogma of molecular biology. Although some exceptions are known, such as viruses that use RNA for information storage or RNA molecules that act as enzymes, the basic pattern applies to all life. The chemical structures of the building blocks of DNA, RNA, and proteins are exactly the same in bacteria and humans. The process of copying DNA into RNA is called transcription, and the translation of the nucleic acid code into proteins is called translation. This latter process takes place on large protein–RNA complexes called ribosomes.

Cells are surrounded by membranes, which function as permeability barriers and also carry out many important functions. Membranes are composed of lipids, which are amphipathic molecules with a polar head group and nonpolar tail. The lipids are arranged in a bilayer structure, with the polar head groups toward the outside and inside of the cell, and the nonpolar tails pointed into the center of the bilayer. There are many types of lipids, which form several classes. Two of the most important are...
Molecular mechanisms of photosynthesis

phospholipids and glycolipids. Phospholipids include a phosphate group that is esterified to a glycerol backbone. The most common type of lipids in chloroplasts are glycolipids, in which sugars are found in place of the phosphate groups. The nonpolar tails are long-chain fatty acids that are esterified to the glycerol groups. They almost always contain one or more double bonds, which increase the fluidity of the membranes of which they are the principal components. The cell membrane is often called the cytoplasmic membrane, while the space enclosed is called the cytoplasm. Additional membranes are found in photosynthetic organisms, in particular the thylakoid membrane, which is the site of photosynthesis in chloroplasts and cyanobacteria.

Membranes also contain proteins, either integral membrane proteins, which span the lipid bilayer, or peripheral membrane proteins, which are associated with one or other side of the membrane but do not cross the bilayer. Many of the proteins essential for photosynthesis are membrane proteins. All cells also contain a variety of carbohydrates, or sugars, as well as many other small molecules essential for proper cellular function. When viewed in this way, the similarities among the various classes of life far outweigh the differences.

Despite the fundamental similarities just pointed out, life nevertheless comes in a remarkable variety of shapes and sizes. These differences form the basis of our mechanisms of classification of living things.

2.2 Classification of life

There are many ways to organize and classify life. No one method is inherently superior to any other, as all such systematic organizations are ultimately only for our benefit. Classification methods are usually structured to accomplish a desired goal, such as rapid identification of organisms in the field or the laboratory. One of the most informative ways to classify organisms is based on evolutionary relationships. This evolutionary, or phylogenetic, approach has led to the recognition that there are three fundamental domains of living organisms: bacteria, archaea (formerly called archaebacteria), and eukarya. This division of the tree of life into the three domains is based on a classification of organisms according to the small subunit rRNA method introduced by Carl Woese (Fig. 2.1). This method relies on comparisons of the sequences of RNA molecules that are part of the ribosome, the protein-synthesizing particle. For bacteria and archaea, the RNA molecule that is used is known as 16S rRNA, while for eukaryotes it is a related molecule known as 18S rRNA. The S stands for Svedberg units, which derive from early methods of molecular weight determination using ultracentrifuges. The basis of this molecular evolution method is the fact that the positional order, or sequence, of building blocks of a biological macromolecule retains information about the evolutionary history of the organism.

Two organisms that are closely related will have macromolecules (DNA, RNA, or proteins) whose sequences are highly similar, while distantly related organisms will have sequences that have diverged in the long time interval since their common ancestor. The selection of the rRNA molecule as the molecular chronometer is based on the fact that this molecule is universally present in all organisms, has the same function in all organisms, and has an excellent dynamic range. Parts of the molecule change slowly and are therefore useful for establishing distant evolutionary relationships, while other parts change more rapidly and are therefore more useful for fine distinctions among more closely related organisms.

The rRNA molecules are thought to be a proxy for the evolutionary relationships of the entire organisms that are being compared. This view is somewhat of an oversimplification, because the method actually establishes only the evolutionary relationships of the rRNA molecule, which is part of the protein synthesis machinery of the cell. However, the rRNA molecules appear to be only very rarely transferred from one cell type to another, a process known as horizontal gene transfer. All these reasons make the rRNA molecules a good proxy for the evolutionary history of the organism as a whole. A tree of organismal evolutionary relationships is often called a species tree.

It is clear from analysis of complete genome sequences for many organisms that there has been significant horizontal transfer of genetic information among various bacteria and even between bacteria and eukaryotes (Gogarten and Townsend,