DANA G. GOSKI
JEFFREY D. SMITH

Proceedings of the
Unified International Technical Conference on Refractories
(UNITECR 2013)
13th Biennial Worldwide Congress on Refractories

The American Ceramic Society
WILEY
Proceedings of the Unified International Technical Conference on Refractories (UNITECR 2013)

A Collection of Papers Presented during the 13th Biennial Worldwide Congress on Refractories
September 10–13, 2013
Victoria, British Columbia, Canada

Edited by

Dana G. Goski
Allied Mineral Products, Inc., Columbus, Ohio, USA

Jeffrey D. Smith
Missouri University of Science and Technology, Rolla, MO, USA

The American Ceramic Society

WILEY
PREFACE

Advanced Installation Techniques and Equipment

DEVELOPMENT OF AUTOMATIC REPAIR TECHNOLOGY BY CONTINUOUS AND QUICK MIXING TECHNOLOGY
Junichi Tsukuda, Hiroyuki Itoh, Youichi Furuta, Kazunori Seki, Seiji Hanagiri, Takayuki Uchida, Satoru Itoh, Seiji Asoh, and Sakae Nakai

DEVELOPMENT OF CONTINUOUS QUICK MIXING & REPAIRING TECHNOLOGY
Satoru Itoh, Seiji Hanagiri, Takayuki Uchida, Hironori Takeuchi, Hisashi Nakamura, Seiji Asoh, Hiroyuki Itoh, Youichi Furuta, Kazunori Seki, Junichi Tsukuda, and Sakae Nakai

THE NEXT GENERATION OF MONOLITHIC INSTALLATION TECHNOLOGY: CONTINUOUS MIXING OF LOW CEMENT CASTABLES FOR WET SHOTCRETING APPLICATIONS
Josh Pelletier, Charles Alt, Chris Parr, Jim Farrell, and Tripp Farrell

TAPHOLES REPAIR ON CSN'S BLAST FURNACE 3: CORE & CAST AND CORE & PLUG*

GUNNING ROBOTS FOR THE HOT REPAIR
Christian Wolf

Advanced Testing of Refractories

CHARACTERIZATION METHODS OF ZIRCONIA AND THE IMPACT OF STABILIZING AGENTS ON ITS FUNCTIONALITY
C. Bauer, B. Rollinger, G. Krumpel, O. Hoad, J. Pascual, and N. Rogers

CHARACTERIZATION OF THE MECHANICAL BEHAVIOR OF MAGNESIA SPINEL REFRACTORIES USING IMAGE CORRELATION
Y. Belrhiti, A. Germanean, P. Doumalin, J.C. Dupré, O. Pop, M. Huger, and T. Chotard

TEMPERATURE DEPENDENT THERMO-MECHANICAL BEHAVIOR OF NOVEL ALUMINA BASED REFRACTORIES
A. Böhm, E. Skiera, C.G. Aneziris, S. Dudczig, and J. Malzbender

*NOTE: A bold title indicates that the paper was peer-reviewed.
THERMO-MECHANICAL CHARACTERISATION OF MAGNESIA-CARBON REFRACTORIES BY MEANS OF WEDGE SPLITTING TEST UNDER CONTROLLED ATMOSPHERE AT HIGH-TEMPERATURE
E. Brochen, C. Dannert, and P. Quirmbach

MATERIAL SPECIFIC PROPERTIES FOR THE EVALUATION OF THE THERMAL STRESS RESISTANCE OF REFRACTORY PRODUCTS—COMPENDIUM AND NEW INVESTIGATION METHODS
E. Brochen and C. Dannert

MEASUREMENT OF THE VOLUME EXPANSION OF SiC REFRACTORIES INDUCED BY MOLTEN SALT CORROSION
E. de Bilbao, P. Prigent, C. Mehdi-Souzani, M.L. Bouchetou, N. Schmitt, J. Poirier, and E. Blond

BASIC UNDERSTANDING OF PHYSICAL PROPERTIES OF CARBON BONDED REFRACTOR COMPOSITES
D. Dupuy, M. Huger, T. Chotard, S. Zhu, D. DeBastiani, P. Guillo, C. Durnazeau, and C. Peyratout

THERMAL SHOCK ON THE LOWER SLIDE GATE PLATE WHEN CLOSING: TEST DEVELOPMENT AND POST MORTEM INVESTIGATIONS
Renaud Grasset-Bourdrel, Javier Pascual, and Christian Manhart

CORROSION OF CORUNDUM-MULLITE REFRACTORIES IN GASEOUS HCl/H2O ATMOSPHERE AT ELEVATED TEMPERATURE
M.M. Jafari, M. Ghanbari, F. Golestanifard, and R. Naghizadeh

DEVELOPMENT OF A NEW SPALLING TEST METHOD FOR BOTTOM BLOWING TUYERES FOR BOFS
M. Kakihara, H. Yoshioka, M. Hashimoto, and K. Inoue

REFRACTORY INDUSTRY SUFFERS FINANCIAL DAMAGES THROUGH IMPRECISE TEST PROCEDURES FOR THE DETERMINATION OF THE CORESISTANCE OF REFRACTORY MATERIALS—TIME TO REVIEW ISO 12676 AND ASTM C 288
Olaf Krause, Christian Dannert, and Lisa Redecker

CURRENT SITUATION AND DEVELOPMENT OF CHINESE STANDARDS ON REFRACTOR PRODUCTS
Peng Xigao, Li Hongxia, and Wang Xiaoli

THE INFLUENCE OF IN-SITE FORMATION SPINEL ON THE FRACTURE ENERGY OF ALUMINA-MAGNESIA REFRACTOR CASTABLES
Hongbin Qin, Hongxia Li, Jiandong Wang, Guoqi Liu, and Wengang Yang

HIGH TEMPERATURE CHARACTERISTICS OF REFRACTOR CASTABLES FOR VACUUM INDUCTION MELTING
A. Quadling, L. Vandeperre, W.E. Lee, and P. Myers

CHARACTERIZATION OF MAGNESIA AND MAGNESIA-CHROMITE BRICKS BY THE USE OF DIFFERENT DESTRUCTIVE AND NON DESTRUCTIVE TESTING METHODS
A. Ressler, C. Manhart, and R. Neuboeck

INFLUENCE OF PROCESS CONDITIONS ON THE CRYSTALLIZATION OF CALCIUM SILICATES IN THE STIRRING AUTOCLAVE AND THEIR IMPACT ON THERMAL STABILITY
Benjamin Schickle, Thorsten Tonnesen, Rainer Telle, Ann Opsommer, and Oras Abdul-Kader

MICROSTRUCTURAL PROCESSES IN THE WAKE REGION OF THE CRACK IN CASTABLES CONTAINING EUTECTIC AGGREGATES
Jonas Schnieder, Nicolas Traon, Thorsten Tonnesen, and Rainer Telle

IMPLEMENTATION OF A STANDARD TEST METHOD FOR ABRASION RESISTANCE OF REFRACTOR MATERIALS FOR TESTING AT ELEVATED TEMPERATURES
Ralf Simmat, Christian Dannert, Olaf Krause, and Peter Quirmbach
Developments in Basic Refractories

STUDIES ON THE EFFECT OF NANO-CARBON IN MgO-C: A NEW GENERATION REFRACTORIES
M. Bag, R. Sarkar, A. S. Bal, R. P. Rana, S. Adak, and A. K. Chattopadhyay

REACTANT SIZE EFFECTS ON MgAl2O4 FORMATION EXPANSION
Flavia C. Duncan and Richard C. Bradt

MAGNESIA-CARBON BRICKS MADE IN EUROPE: CHALLENGES AND SOLUTIONS
G. Buchebner, A. Kronthaler, and W. Hammerer

MICROSTRUCTURAL AND PHYSICO-CHEMICAL EVOLUTION OF Al2O3 AND Fe2O3
NANOPARTICLES DOPED MAGNESIA (MgO) SINTERED AT 1600 °C
C. Gómez Rodríguez, T. K. Das Roy, S. Shaji, G.A Castillo Rodríguez, and L. García Quiñónez

EFFECTS OF Mg ADDITION ON PROPERTIES, PHASE COMPOSITION AND MICROSTRUCTURE OF
Al2O3-C MATERIAL
Xinhong Liu, Zhiwang Niu, Enxia Xu, Xiaoyan Zhu, Long Feng

EFFECT OF MAGNESIA DISSOLUTION IN NON-STOICHIOMETRIC CHROMIUM-FREE COMPLEX
SPINEL
Rahul Lodha, Carmen Oprea, Tom Troczynski, and George Oprea

SPINEL INVERSION AND LATTICE PARAMETERS IN CHROMIUM-FREE SPINEL SOLID SOLUTIONS
Rahul Lodha, George Oprea, and Tom Troczynski

DEVELOPMENT OF PLANAR AND CYLINDRICAL REFRACTORIES WITH GRADED
MICROSTRUCTURE
Uwe Scheithauer, Tim Slawik, Kristin Haderk, Tassilo Moritz, and Alexander Michaelis

DEVELOPMENT OF MAGNESIA REFRACTORIES WITH HIGHER SLAKING RESISTANCE
Koichi Shimizu, Yoshitaka Sadatomi, Tsubasa Nakamichi, and Jyouki Yoshitomi

THERMAL CYCLING RESISTANT MgO BASED MONOLITHIC LININGS
C. Dromain, P. Malkmus, and J. Soudier

ALUMINATES INFLUENCE ON EVOLUTION OF THE THERMOMECHANICAL PROPERTIES OF
REFRACTORY MATERIALS FROM THE CaO-MgO-Al2O3-ZrO2 SYSTEM

DEVELOPMENT OF MgO-C NANO-TECH REFRACTORIES OF 0 % GRAPHITE CONTENT
(NANO-TECH REFRACTORIES-12)
Shinichi Tamura, Tsunemi Ochiai, Shigeyuki Takanaga, Osamu Matsuura, Hiroki Yasumitsu, and Masami Hirashima

MICROSTRUCTURE AND PROPERTIES OF POROUS ZrO2 CERAMICS PREPARED BY FOAMING
COMBINED WITH GELCASTING METHODS
Wang Gang, Han Jianshen, Yuan Bo, and Li Hongxia

METASTABILITY IN THE MgAl2O4-Al2O3 SYSTEM
Kelley R. Wilkerson, Jeffrey D. Smith, and James G. Hemrick

THE EFFECT OF RARE EARTH OXIDES ON THE STRUCTURE AND PROPERTIES OF MgO-CaO
CERAMICS
Y. W. Yu and Y. X. Zhao

INFLUENCE OF SOLID SOLUTION FORMATION ON THE SOLID STATE SINTERING OF MgCr2O4
Hamidreza Zargar, George Oprea, and Tom Troczynski
Contents

Energy Savings Through Refractory Design

EVALUATION OF THERMAL CONDUCTIVITY OF REFRACTORY MONOLITHICS BY VARIOUS METHODS AND THE ISSUES THIS RAISES
Zena Carden, Andrew J. Brewster, Dr. David Bell, and Ian Whyman

EFFECT OF PARTICLE SIZE ON PROPERTIES OF NOVEL THERMAL INSULATION MATERIALS SYNTHESIZED BY MOLTEN SALT METHOD
Chengji Deng, Jun Ding, Xiaojun Zhang, Wenjie Yuan, and Hongxi Zhu

ROTARY KILNS—LINING DESIGN AND ENERGY SAVINGS
Niels I. Jacobsen and Leo F. Juhl

DEVELOPMENT OF A NEW CALCIUM SILICATE BOARD WITH SUPER INSULATING PROPERTIES
Volker Krasselt, Jürgen Rank, Ann Opsommer, and Xiao Wu

IMPROVEMENT OF THERMAL EFFICIENCY IN STEEL LADLES
Yong M. Lee, Sanjay Kumar, Jim Bradley, Lionel Rebouillat, and Norman Roy

ACHIEVEMENT OF THE REDUCING EROSION FOR THE INVESTIGATION OF TROUGH BOTTOM ANGLE IN THE SEMIPOOLING TYPE MAIN TROUGH
Hiroshi Fujiwara, Toshio Komatsu, Masaki Kajiwara, and Hideyuki Tasaki

ENERGY SAVING OF SLAB REHEATING FURNACES BY IMPROVEMENTS OF REFRACTORIES
Masaharu Sato, Takeuchi Tomohide, Kohno Kohji, and Shimpo Akihiro

NOVEL GENERATION OF KILN FURNITURE
U. Scheithauer, C. Freytag, K. Haderk, T. Moritz, M. Zins, and A. Michaelis

ENERGY SAVING IN WALKING BEAM FURNACES AT ARCELORMITTAL (BREMEN, GERMANY) BY A NEW CONCEPT FOR SKID PIPE INSULATION
Jens Heinlein, Helko Stefkas, Michael Springer, Frank Hügel, Andreas Buhr, and Rainer Kockegey-Lorenz

ENERGY SAVINGS AND IMPROVEMENT OF PRODUCTIVITY IN CONTINUOUS REHEATING FURNACES
Patrick Tassot, Jörg Fernau, and Hugues Lemaistre

NANOPOROUS REFRACTORY INSULATING: SOLUTION OR ILLUSION?
Diogo O. Vivaldini, Vânia R. Salvini, Amadeu A.C. Mourão, and Victor C. Pandolfelli

MATERIAL DESIGN FOR NEW INSULATING LINING CONCEPTS
Dale Zacherl, Dagmar Schmidtmeier, Rainer Kockegey-Lorenz, Andreas Buhr, Marion Schnabel, and Jerry Dutton

Global Education in Refractories

ENHANCING TECHNOLOGY TRANSFER CAPABILITIES—A GERMAN PERSPECTIVE
Anja Geigenmueller and Stefanie Lohmann

VISUALIZING THE INVISIBLE: HOW TO ATTRACT STUDENTS TO REFRACTORY ENGINEERING
Anja Geigenmueller

PROMOTING NATURAL SCIENCE AND ENGINEERING AT FREIBERG UNIVERSITY—SOME OUTSTANDING TOOLS AND RESULTS
Kathrin Haeussler

KOBLENZ UNIVERSITY OF APPLIED SCIENCE, DEPARTMENT OF MATERIALS ENGINEERING, GLASS AND CERAMICS PLAYING A KEY ROLE IN THE SCIENCE AND EDUCATION NETWORK FOR THE REFRACTORY INDUSTRY
Olaf Krause and Peter Quirinbach
INTEGRATING EDUCATION CONCEPTS—THE KOBLENZ REGION OFFERS A ONE-OF-A-KIND INFRASTRUCTURE TO IDENTIFY AND QUALIFY SPECIALISTS IN ORDER TO ENSURE RELIABLE AND CONTINUOUS PROVISION OF BEST-SKILLED EMPLOYEES TO THE REFRACTORY INDUSTRY

Peter Quirmbach and Olaf Krause

GRADUATE PROGRAMS IN REFRACTORY ENGINEERING: WHAT IS DULLY NEEDED?

Michel Rigaud

Iron and Steel Making Refractories—Blast Furnace Troughs

DEVELOPMENT AND APPLICATION OF TAPHOLE MUD FOR 5800 M³ LARGE SCALE BLAST FURNACE

Ping-Kun Chen and Nan-Hsien Lin

HIGH PERFORMING Al₂O₃-SiC-C MONOLITHIC REFRACTORIES RELEASING NO HYDROGEN FOR BF CASTHOUSE APPLICATIONS

Nicolas Duvauchelle and Jérôme Soudier

INVENTION REACTION BONDED ALUMINA BRICKS FOR BF CERAMIC CUP

Yun-Cheol Hong, Soon-Il Yoon, and Sang-Ahm Lee

INNOVATIVE GRAPHITIC CASTABLE UTILIZED AS BOTH A REPAIR AND REPLACEMENT MATERIAL FOR CARBONACEOUS REFRACTORY

Yuechu Ma, Dominic J. Loiacona, and Floris Van Laar

CHALLENGES TO IMPROVING THE ENVIRONMENTAL AND HEALTH SAFETY CHARACTERISTICS OF TAP HOLE CLAY

James W. Stendera, Ryan A. Hershey, and Glenn G. Biever

HOT STRENGTH IN RELATION WITH BINDING SYSTEM OF SiC AND Al₂O₃ BASED CASTABLES INCORPORATED WITH SILICON POWDERS AFTER NITRIDATION

Renhong Yu, Huifang Wang, and Ningsheng Zhou

Iron and Steel Making Refractories—BOF

PROPERTIES AND PERFORMANCE OF GUNNING AND PATCHING MATERIAL OF CONVERTER AT TATA STEEL

Goutam Ghosh, Amit Banerjee, Brijender Singh, Subir Biswas, and Atanu Ranjan Pal

IMPROVEMENT OF DURABILITY AND TAPPING TIME OF TAP HOLE SLEEVE BY COMPOSITION AND SHAPE CONTROL

Kye-sung Kim, In-kyoung Bae, Ji-eon Lee, and Kang-yong Lee

POST MORTEM ANALYSIS OF BOF TUYERES

S. K. Kubal, C. Pleydell-Pearce, J. R. Powson, and W. E. Lee

IMPROVEMENT OF BOF BOTTOM STIRRING AT RUUKKI, RAAHE STEEL WORKS

Heikki Pärkkä, Tuomas Meriläinen, Jukka Vatanen, Petri Tuominen, and Jaakko Kärjä

IMPROVEMENT OF THE REFRACTORY LINING CONCEPT AND OF THE INSTALLATION METHOD OF A BOF AT VOESTALPINE LINZ

Helge Jansen, Lutz Schade, Dr. Thomas Schemmel, and Reinhard Exenberger

Iron and Steel Making Refractories—Coke Ovens

PHYSICAL PROPERTIES OF USED BRICKS OF COKE OVENS

S. Hosohara, H. Matsunaga, and Y. Fushima
INFLUENCE OF THERMAL EXPANSION BEHAVIOR ON THE ADHESIVE STRENGTH OF SILICA MORTAR
Atsuya Kasai

EVALUATION OF COKE OVEN REGENERATOR CHECKERS AFTER 40 YEARS IN SERVICE
Silvia Camelli, M J Rimoldi, A Vázquez, and Darío Beltrán

DEVELOPMENT OF ZERO EXPANSION SILICA BRICKS FOR HOT REPAIR OF COKE OVEN
S. P. Das, S. Si, B. Prasad, J. K. Sahu, B. K. Panda, J. N. Tiwari, and N. Sahoo

Iron and Steel Making Refractories—Continuous Casting

EFFECTS OF VISCOSITY AND SURFACE TENSION OF FREE FLUORINE FLUXES ON THE WEAR MECHANISMS OF Al₂O₃-C NOZZLE
E. Benavidez, M.V. Peirani, M. Ávalos, and E. Brandaleze

DEVELOPMENT OF ALUMINOUS NOZZLES REINFORCED WITH SIALON
Clenice Moreira Galinari and Paula Regina Dutra

PROPERTIES OF SELF-GLAZING Al₂O₃-C-REFRACTORIES INFLUENCED BY THE GRAPHITE CONTENT AND NANOSCALED ADDITIVES
Susann Ludwig, Vasileios Roungos, and Christos G. Aneziris

Iron and Steel Making Refractories—General

DEVELOPMENT OF NEW BASIC WORKING LINING FOR TERNIUM SIDERAR TUNDISHES
Silvia Camelli, María Luján Dignani, and Marcelo Labadie

APPLICATION OF MULTI-HOLES STOPPER FOR MOLD LEVEL STABILITY
Sangbae Choi, Ikbae Lee, Domun Choi, Kwangchul Choi, Sangahm Lee, and Sik Sunwoo

NEW DEVELOPMENTS ON REFRACTORARY HOLLOWWARE MATERIALS FOR INGOT CASTING
Roberto de Paula Rettore, Erwan Guéguen, and Gilbert Zieba

CHALLENGES OF BLAST FURNACE CASTHOUSE: FAILURE ANALYSIS OF MAIN RUNNER REFRATORY CASTABLE

NOVEL DRY MIX TECHNOLOGY FOR TUNDISH REFRACTORARY LINING

DEVELOPMENT OF ACTIVE AND REACTIVE CARBON-BONDED FILTERS FOR STEEL MELT FILTRATION
M. Emmel and C. G. Aneziris

IMPROVING MAINTENANCE AT DIRECT-REDUCTION PLANTS USING INFRARED THERMOGRAPHY
Y. J. Girón, E. J. Estrada, and D. Gutiérrez-Campos

APPLICATION AND DEVELOPMENT OF HBS IN CHINA
Fuchao Li, Jiantao Li, Hongqin Dong, and Gengchen Sun

EFFECTS OF CORDIERITE ADDITION ON THE PROPERTIES OF MULLITE-ANDALUSITE-CORDIERITE BRICKS
Fuchao Li, Jiantao Li, Hongqin Dong, Gengchen Sun, Guolu Zhou, and Shijian Gao

TAPE CASTING OF COARSE-GRAINED OXIDE POWDERS FOR THE MANUFACTURE OF ADVANCED REFRACOTRY MULTILAYER COMPOSITES
D. Jakobsen, I. Götschel, and A. Roosen
DIFFERENT FABRICATION ROUTES FOR CARBON-BONDED Al₂O₃-C AND THEIR INFLUENCE ON THE PHYSICAL AND MECHANICAL PROPERTIES
Yvonne Klemm, Horst Biermann, and Christos Aneziris

DEVELOPMENT OF A MONOLITHIC REFRACTORY USING SPENT REFRACTORIES
Ryo Otake, Hitoshi Sawada, Koji Nakanishi, and Ko Kobayashi

EFFECTS OF B₄C ADDITION ON THERMO-MECHANICAL PROPERTIES OF Al-Si INCORPORATED LOW CARBON Al₂O₃-C SLIDE PLATE MATERIALS
Xinhong Liu, Yanna Wang, and Xiangchong Zhong

OPTIMUM QUANTITY OF GAS BLOWN INTO THE BORE OF TUNDISH UPPER NOZZLE
A. Mizobe, J. Kurisu, K. Furukawa, T. Tsuduki, M. Yamamoto, T. Oouchi, and K. Oki

IMPROVEMENT OF THE DURABILITY ON SG PLATE FOR STEEL LADLE
Zenta Ohmaru, Keiichiro Akamine, Katsumi Morikawa, and Jyouki Yoshitomi

DEVELOPMENT OF A METHOD TO MEASURE TORPEDO LADLE BRICK THICKNESS USING A COMMERCIAL 3D LASER SCANNER
Ryo Otake, Norio Sakaguchi, Koji Nakanishi, Ko Kobayashi, and Toshiya Ozato

HOW DO STEELMAKERS PICK REFRACTORIES? A SUPPLIER’S PERSPECTIVE
Ian D. Prendergast

STEEL CLEANLINESS & SEQUENCE LENGTH IMPROVEMENT THROUGH TUNDISH CONFIGURATION & BLACK REFRACTORIES QUALITY OPTIMIZATION AND BY INTRODUCING THE CONCEPT OF MANAGEMENT
Asis Sarkar

BENCHMARKING OF CAS-OB REFRACTORIES BELLS
S. Muthukumar and A. Kremer

REFRACTORY RESPONSE FOR PIG IRON REFINING WITH KR-PROCESS
Patrick Tassot, Jacky Wang, and Hugues Lemaistre

CHEMICAL WEAR OF Al₂O₃-MgO-C BRICKS BY AIR AND BASIC SLAGS
Leonardo Musante, Pablo G. Galliano, Elena Brandaleze, Vanesa Muñoz, and Analia G. Tomba Martinez

ANDALUSITE APPLIED IN EAF ROOF CASTABLES
Xiao-Yong Xiong, Zong-Sun Mu, Zhi-Jian Li, and Feng Hu

CALCIUM HEXALUMINATE DISTRIBUTION AND PROPERTIES OF CALCIUM ALUMINATE CEMENT BONDED CASTABLES WITH MAGNESIUM CHLORIDE ADDITION
Qingfeng Wang, Guotian Ye, Yajuan Wang, Chuanyin Zhang, Yunfei Zhang, and Aiping Hua

IMPROVEMENT OF REFRACTORY CASTABLES FOR KR DESULPHURIZATION IMPELLER
Shang-ru Yeh, Henry Chen, and Wei-tin Lin

STRENGTHENING MECHANISM OF GRAPHENE OXIDE NANOSHEETS FOR Al₂O₃-C REFRACTORIES
Qinghu Wang, Yawei Li, Ming Luo, Shaobai Sang, Tianbin Zhu, and Lei Zhao

Iron and Steel Making Refractories—Ladles

TROUBLESHOOTING IN STEEL LADLES WITH REFRACTORY SOLUTIONS
S. Bharati, S. Bose, B. Singh, and A. R. Pal
EFFECT OF MICROPOROUS AGGREGATE ON LIGHTWEIGHT ALUMINA-MAGNESIA CASTABLE FOR LADLE
H. Z. Gu, A. Huang, M. J. Zhang, B. Du, Z. K. Li, Q. Wang, and L. P. Fu 693

DEVELOPMENT OF ALTERNATIVE SOLUTIONS FOR IRON LADLE REFRACTORY LINING

INSULATION BOARD INVESTIGATION AND TRIALS IN 300 TONNE STEEL LADLES AT ARCELORMITTAL DOFASCO
Vanessa Mazzetti-Succi 703

STEEL LADLE LINING: A PROVEN TECHNIQUE TO ACHIEVE 3.0% PRODUCTIVITY IN TRANSPORTED VOLUME WHILE REDUCING REFRACTORY COST USING A SMART LINING
L.C. Simão, Paulo Osório R.C. Brant, and Robson A. Dettogne 709

ALUMINA-MAGNESIA-CARBON BRICKS FOR STEEL LADLE
Marcin Kiewski, Obezyńska Lucyna, and Sulkowski Michał 715

Iron and Steel Making Refractories—Magnesia-Carbon

IMPROVEMENT AND MAINTENANCE OF MgO-C BOTTOM-BLOWING TUYERE IN BOF CONVERTER FOR PROLONGING SERVICE LIFE
Li Lin, Peng Xiaoyan, Gao Fei, and Ding Hewei 721

INFLUENCE OF Zn ADDITION ON PROPERTIES OF METAL COMPOSITE LOW CARBON MgO-C REFRACTORIES
Chengliang Ma, Zhen Ren, Hua Ma, and Dongdong Meng 727

EFFECTS OF NANO BORON CARBIDE AS ADDITIVE FOR MgO-C FOR BOF
Carlos Pagliosa, Nestor Freire, Gabriel Cholodovskis, and Victor Carlos Pandolfelli 733

DEVELOPMENT OF Al2O3-MgAl2O4-C REFRACTORIES FOR STEEL LADLE: EFFECT OF MgO AND Al2O3 REACTIVITY
H. S. Tripathi and A. Ghosh 739

PROPERTIES OF MgO BASED REFRACTORIES WITH SYNTHETIC MgO-SiC-C POWDER
Yaowu Wei, Huawei Xu, Xinyan Li, Nan Li, Bing Wu, Luoxia Wang, and Lieying Ma 743

THE COMPREHENSIVE STUDIES OF MAGNESIA CARBON BRICK’S ANISOTROPY
Houliang Zhu, Hideo Asakura, Yasuo Mizota, Akira Yamaguchi, Zhongyang He, and Baikuan Liu 747

Iron and Steel Making Refractories—RH Snorkels

DEVELOPMENT OF DEGASSER SNORKEL REFRACTORIES AND THE EFFECT OF THE PROCESS PARAMETERS ON WEAR RATE
Y. Bi, I. A. Smith, and K. Andreev 755

THEORETICAL AND PRACTICAL TEMPERATURE GRADIENT OF THE REFRACTORY LINING OF THE RH SNORKEL
Z. Czapka, J. Szczeszyba, and W. Zelik 761

DEVELOPMENT OF HIGH-DURABILITY HOT REPAIR SPRAY AND NEW INSTALLATION METHOD FOR THE RH SNORKEL
Je-Ha Lee, Byung-Su, Kim, and Chang-Jung Um 767
Iron and Steel Making Refractories—Spinel Castables

EXPANSION UNDER CONSTRAINT AND ITS EFFECT ON HIGH-ALUMINA SPINEL-FORMING REFRATORY CASTABLES
M. A. L. Braulio, E. Y. Sako, and V.C. Pandolfelli

COMPARISON OF PROPERTIES AMONG SPINEL-CONTAINING CASTABLES FOR STEEL LADLE
Rak-Hee Kim, Seung-Jun Lee, Sung-Ryong Jung, and Seok-Keun Lee

THERMAL SHOCK RESISTANCE OF ALUMINA AND ALUMINA-RICH SPINEL REFRACTORY COMPOSITIONS CONTAINING ALUMINUM TITANATE
K. Moritz, S. Dudczig, C.G. Aneziris, D. Hesky, D. Veres, and N. Gerlach

DEVELOPMENT OF CaO FREE ALUMINA-MAGNESIA PRECAST BLOCKS
Masafumi Nishimura, Shigefumi Nishida, and Makoto Namba

Iron and Steel Making Refractories—Submerged Entry Nozzles

MAIN MECHANISMS OF SEN SLAG BAND CORROSION AS OBSERVED BY POST MORTEM INVESTIGATIONS
H. Harmuth, V. Kircher, N. Köblt, M. Antczak, and G. Xia

IMPROVEMENT OF THE THERMAL SHOCK RESISTANCE ON LOWER NOZZLE FOR TUNDISH AND LADLE
Kentaro Iwamoto, Hidetoshi Kamio, Katsumi Morikawa, and Jyouki Yoshitomi

CRITICAL EVALUATION AND OPTIMIZATION OF THE Li₂O-ZrO₂ AND Li₂O-ZrO₂-SiO₂ SYSTEMS
Wan-Yi Kim and In-Ho Jung

EVALUATION METHODS OF THE CORROSION RESISTANCE OF ZrO₂-C MATERIAL USED FOR SEN SLAG LINE
Koji Moriwaki, Kyohei Yamaguchi, and Masanori Ogata

STUDIES & OPTIMISATION OF VARIOUS TYPES OF ZIRCONIA TO MINIMISE CRACK PROPAGATION & IMPROVE CORROSION & EROSION RESISTANCE OF SLAG BAND OF SUBENTRY NOZZLE
Anupal Sen, B. Prasad, Dr. J.K. Sahu, and J. N. Tiwari

Modeling and Simulation of Refractories

THERMOMECHANICAL COMPUTATIONS OF REFRACTORY LININGS ACCOUNTING FOR SWELLING INDUCED BY CHEMICAL REACTION
Tarek Merzouki, Eric Blond, Nicolas Schmitt, Emmanuel de Bilbao, and Alain Gasser

SIMULATION OF THE STEEL LADLE PREHEATING PROCESS
Magdalena Drôzd-Ryé, Harald Harmuth, and Roman Rössier

MODELLING OF A COKE OVEN HEATING WALL COMBINING PERIODIC HOMOGENISATION AND SUBMODELLING
Nicolas Gallienne, Matthieu Landreau, Eric Blond, Alain Gasser, and Daniel Isler

INFLUENCE OF DIFFERENT MASONRY DESIGNS OF BOTTOM LININGS

MARANGONI CONVECTION AS A CONTRIBUTION TO REFRACTORY CORROSION—CFD SIMULATION AND ANALYTICAL APPROACHES
S. Vollmann and H. Harmuth
TOWARDS EFFICIENT MODELING ON SLAG CORROSION OF LIGHTWEIGHT CORUNDUM SPINEL CASTABLE FOR LADLE
Ao Huang, Gu Huazhi, and Zou Yang 863

DISSOLUTION RATES OF SOLID OXIDES INTO MOLTEN SLAGS
Fuxiang Huang, Nobuhiro Meruoka, Akira Ishikawa, Jiang Liu, and Shin-ya Kitamura 869

AN ANALYSIS OF REFRACATORY CONCRETE DRYING AND A MECHANISM FOR EXPLOSIVE SPALLING
Greg Palmer, Juan Cobos, James Millard, Tony Howes, and Edison Ge 875

MODELING CRACKING IN REFRACATORY MATERIALS DUE TO THERMAL CYCLING
A. A. Pandhari, P. V. Barr, D. Maijer, and S. Chiartano 881

THE LOAD-DISPLACEMENT CURVE OF STEADY CRACK PROPAGATION: AN INTERESTING SOURCE OF INFORMATION FOR PREDICTING THE THERMAL SHOCK DAMAGE OF REFRactories
Dan Yushin Miyaji, Caio Zuccolotto Ototaji, and José de Anchieta Rodrigues 887

ADECENCY CHECK OF REFRACATORY DESIGN BY FE MODELLING
Prasenjit Saha, Prasenjit Pal, Biswarup Sarkar, and PP Lahiri 893

GEOMETRY DEPENDENT EFFECTIVE HEAT CONDUCTIVITY OF OPEN-CELL FOAMS BASED ON KELVIN CELL MODELS
J. Storm, M. Abendroth, and M. Kuna 897

THERMAL STRESS DISTRIBUTION IN STOPPER BY FINITE ELEMENT ANALYSIS
Yang Wengang, Liu Guoqi, Li Hongxia, Ma Tianfei, Qian Fan, and Yu Jianbin 903

Monolithics

EFFECT OF SODIUM IMPURITIES ON PHASE AND MICROSTRUCTURE EVOLUTION IN CALCIUM ALUMINATE CEMENT BONDED CASTABLES AT HIGH TEMPERATURES
J. Alex, L. Vandeperrea, B. Touzob, C. Parrb, and W. E. Lee 911

THE EFFECT OF AGING OF BLAST FURNACE TROUGH CASTABLES DUE TO STORAGE CONDITIONS ON PERFORMANCE IN SERVICE
Samuel Bonsall and William Gavrish 917

RHEOLOGICAL & DISPERSION BEHAVIOUR OF CALCINED ALUMINAS WITH DEFLOCCULANTS
E. Chabas, C. Ulrich, A. Lafaurie, E. Papin, and D. Dumont 923

PRESENT TREND OF PRE-CAST SHAPE AND REFRACATORY CASTABLE USES IN VIZAG STEEL PLANT—CHALLENGES FACED AND SUCCESS STORIES
P. S. Paul and Atanu Datta 929

STUDY ON THE HYDRATION BEHAVIOR OF MgO POWDERS
Quanli Jia, Ran Wu, Tiezhu Ge, and Xiaoqai Sun 935

MIXING OPTIMIZATION OF AN ALUMINA BASED LC-CASTABLE BY APPLYING VARIABLE POWER INPUTS
J. Kasper and O. Krause 941

SETTING AGENT EVALUATION OF NON-CEMENT REFRACATORY CASTABLE
Aya Kusunoki, Kazuaki Haraguchi, and Yasuhiro Eguchi 947

RHEOLOGICAL BEHAVIOUR OF NEW ADDED VALUE REACTIVE ALUMINAS FOR REFRACTORY APPLICATIONS
A. Lafaurie, E. Chabas, F. Murgalé, and C. Ulrich 953
METHODS TO ASSESS THE DRYING ABILITY OF REFRACTORY CASTABLES
Pierre Meunier and Peter Ermtraud 959

CEMENT FREE MgO CASTABLES: PART I: FLOW, SETTING AND SLAKING
Bjorn Myhre, Hong Peng, and Luo Ming 965

CEMENT FREE MgO CASTABLES PART II: STRENGTH AND EXPLOSION RESISTANCE
Bjorn Myhre, Hong Peng, and Luo Ming 971

NO-CEMENT ALUMINA—MAGNESIA CASTABLES
Yasuhiro Ohba, Hirohide Okuno, Nobuyuki Takeuchi, and Makoto Ishikawa 977

SYNTHESIS OF NANO MgO FROM NATURAL RAW MAGNESITE AND ITS APPLICATION IN HIGH ALUMINA CASTABLE PRODUCTS
P. R. Rauta, N. Sahoo, L. N. Padhi, and J. N. Tiwari 983

ADVANCED UNDERSTANDING ON IN SITU SPINEL FORMATION AND CORROSION PERFORMANCE OF SPINEL-CONTAINING REFRACTORY CASTABLES
Eric Y. Sako, Mariana A. L. Braulio, and Victor C. Pandolfelli 989

CONTROL OF ALUMINA CEMENT PHASE BY PROCESS PARAMETERS
Saptarshi Sengupta, Tarun K. Roy, and N. Ramasubramanian 995

PRACTICAL EXPERIENCE OF TIME STABLE CALCIUM ALUMINATES IN LOW CEMENT CASTABLE APPLICATIONS
F. Simonin, J. Mahiaoui, O. Pawlig, and M. Szepizdyn 1001

TIME, ENERGY AND COST SAVING DURING MONOLITHIC REFRACTORY LINING INSTALLATION BY COMBINING QUICK DRY TECHNOLOGY AND GUNNING TECHNICS
Patrick Malkmus, Pierre Meunier, and Jérôme Soudier 1007

INFLUENCE OF MICROSILICA ON MECHANICAL PROPERTIES OF BASIC CASTABLES

NEXT GENERATION ALUMINA BINDER FOR CEMENT-FREE CASTABLES
V. A. Lifton, Ch. Tontrup, and T. von Rymon Lipinski 1019

INFLUENCE OF BONDING METHODS ON PROPERTIES OF ALUMINA BASED CASTABLES WITHOUT MICROSILICA ADDITION
Zhanmin Wang, Shouye Wang, Zi Li, Xiying Cao, and Lihong Zhou 1025

NOVEL CALCIUM MAGNESIUM ALUMINATE BONDED CASTABLES FOR STEEL AND FOUNDRY LADLES
C. Wöhrmeyer, J.M. Auvray, B. Li, H. Fryda, M. Szepizdyn, D. Pörzgen, N. Li, and W. Yan 1031

DEVELOPMENT OF LIGHTWEIGHT Al2O3-CaO-MgO CASTABLES USING MICROPOROUS CA6-MA AGGREGATES
Ningsheng Zhou, Weili Wang, and Yubao Bi 1037

PROPERTIES IMPROVEMENT OF LIGHTWEIGHT Al2O3-SiO2 CASTABLES BY ANDALUSITE ADDITION
Ningsheng Zhou, Shuhe Hu, Hongran Wang, Xiaoyong Xiong, and Xinyu Liu 1045

HIGH PERFORMANCE GUNNING MIX WITH CT10SG AS A PLASTICISER
Dale Zacheri, Bin Long, Zhoufu Wang, and Andreas Buhr 1051

CEMENT HYDRATION AND STRENGTH DEVELOPMENT—HOW CAN REPRODUCIBLE RESULTS BE ACHIEVED?—PART 1
Dagmar Schmidtmeier, Andreas Buhr, Geert Wams, Stefan Kuiper, Sebastian Klaus, Dale Zacheri and Jerry Dutton 1057
CEMENT HYDRATION AND STRENGTH DEVELOPMENT—HOW CAN REPRODUCIBLE RESULTS BE ACHIEVED?—PART 2
Dagmar Schmidtmeier, Andreas Buhr, Geert Wams, Stefan Kuiper, Sebastian Klaus, Dale Zacherl, and Jerry Dutton

Nonoxide Refractory Systems

WEAR OF GRAPHITE AND MICROPOROUS CARBON BY SYNTHETIC PGM MATTE
B. M. Thethwayo and A. M. Garbers-Craig

STRUCTURE EVOLUTION AND OXIDATION RESISTANCE OF PYROLYTIC CARBON DERIVED FROM Fe DOPED PHENOL RESIN
Boquan Zhu, Guoping Wei, Xiangchong Li, Lieying Ma, and Ying Wei

NITRIDE BONDED SILICON CARBIDE REFRACTORIES: STRUCTURE VARIATIONS AND CORROSION RESISTANCE
Andrey Yurkov, Oxana Danilova, and Alexey Dovgal

Petrochemical

AVOID COSMETIC REPAIR OF REFRACTORY LINING IN CRITICAL EQUIPMENTS
Eissa S. Al-Zahrani and Manabendra Maity

ENGINEERED REFRACTORY CASTABLES WITH IMPROVED THERMAL SHOCK RESISTANCE
A. P. Luz, T. Santos Jr., J. Medeiros, and V. C. Pandolffeli

SINTERING ADDITIVE ROLE ON THE PERFORMANCE OF ADVANCED REFRACTORY CASTABLES
A. P. Luz, T. Santos Jr., J. Medeiros, and V. C. Pandolffeli

DETERIORATION OF REFRACTORY CERAMIC FIBRE LINING IN AN ETHYLENE CRACKING FURNACE—A CASE STUDY
Manabendra Maity, Eissa Al-Zahrani, Majed Al-Thomali, and Mohammed Abdul Kareem

THE COKE EFFECT ON THE FRACTURE ENERGY OF A REFRACTORY CASTABLE FOR THE PETROCHEMICAL INDUSTRY
Dan Yushin Miyaji, Caio Zuccolotto Ototufi, Marcelo Dezena Cabrelon, Jorivaldo Medeiros, and José de Anchieta Rodrigues

ROLE OF DESIGN AND APPLICATION ON REFRUCTORY PERFORMANCE
Biswarup Sarkar, Prasenjit Pal, Prasenjit Saha, and PP Lahiri

POROUS CERAMICS IN THE Al2O3-Al(OH)3 SYSTEM
Rafael Salomão, Adriane D. Souza, Leandro Fernandes, Luciola L. Sousa, and Vera L. Arantes

Raw Materials

ANDALUSITE, AN UNDER-UTILIZED REFRACTORY RAW MATERIAL WITH UNDEVELOPED HIGH POTENTIAL
W. H. McCracken and C. A. De Ferrari

STUDIES ON SINTERING BEHAVIOUR AND MICRO STRUCTURAL CHARACTERISTICS OF INDIAN MAGNESITE IN PRESENCE OF ADDITIVE
Manas Kamal Haldar

PHASE TRANSFORMATION IMPACT ON THE IRON DIFFUSION IN OLIVINE RAW MATERIAL REFRUCTORY
R. Michel, M. R. Armar, P. Simon, and J. Poirier
FLAKE GRAPHITE: SEEKING CHINESE INDEPENDENCE DAY 1147
Simon Moores

HYDROTALCITE (Mg₆Al₂(OH)₁₆(CO₃)₄H₂O): A POTENTIALLY USEFUL RAW MATERIAL FOR REFRACTORIES 1151
Rafael Salomão, Isadora M.M. Dias, and Cezar C. Arruda

DEVELOPMENT AND APPLICATION OF BAXITE-BASED HOMOGENIZED GROGS 1157
Tiezhu Ge, Jiancheng An, and Shenrong Yang

RAW MATERIALS FOR REFRACTORIES: THE EUROPEAN PERSPECTIVE 1163
Astrid Volckaert

EFFECTS OF PARTICLE SIZE AND IMPURITIES ON MULLITIZATION OF ANDALUSITE 1167
Shuang Li, Guotian Ye, Yunfei Zhang, Yuan Zhang, Xiujuan Song, and Chuanyin Zhang

EFFECT OF SYNTHESIZED FORSTERITE ADDITION ON PROPERTIES OF MgO BASED CASTABLES 1173
Ningsheng Zhou, Lili Guo, Jiwei Li, and Kai Shi

THERMAL STABILITY AND OXIDATION RESISTANCE OF Ca-α/β-SIALON POWDERS PREPARED BY REACTION NITRIDATION METHOD 1179
Haijun Zhang, Shuang Du, Yingnan Cao, Lilin Lu, and Shaowei Zhang

THE INFLUENCE OF IRON IMPURITY ON THE PREPARATION OF MgAl₂O₄-SiC COMPOSITE POWDERS FROM FORSTERITE, ALUMINA AND CARBON BLACK 1185
Hongxi Zhu, Hongjuan Duan, Chengji Deng, and Wenjie Yuan

EFFECT OF PRECURSOR MILLING TREATMENT AND ADDITIVES ON THE MORPHOLOGY OF α-Al₂O₃ FROM COMMERCIAL γ-Al₂O₃ 1191
LingLing Zhu, Guotian Ye, QiaoHuan Cheng, and Ying Zhou

Refractories for Chemical Processes

MECHANISMS OF WEAR REDUCTION IN HIGH CHROME OXIDE REFRACTORIES CONTAINING PHOSPHATE ADDITIONS EXPOSED TO COAL SLAG 1199
James P. Bennett, Brent W. Riggs, Kyei Sing Kwong, and Jinichiro Nakano

CHEMICAL WEAR MECHANISMS OBSERVED IN BASIC BRICKS REMOVED FROM TWO HIGH-CARBON FERROCHROME FURNACES 1205
A.M. Garbers-Craig

SPINEL-BASED REFRACTORIES FOR IMPROVED PERFORMANCE IN COAL GASIFICATION ENVIRONMENTS 1211
James G. Hemrick, Beth Armstrong, Angela Rodrigues-Schroer, Dominick Colavito, Jeffrey D. Smith, and Kelley O’Hara

INVESTIGATION OF Y₂O₃-STABILIZED ZIRCONIA RAMMING MIX AFTER SERVICE IN CARBON BLACK REACTOR 1217
Vladimir V. Primachenko, Valeriy V. Martynenko, Irina G. Shuilik, Elena B. Protsak, Natalya G. Pryvalova, Vladimir I. Ivanovskiy, and Gennadiy V. Babich

STUDY ON EROSION MECHANISM OF Cr₂O₃-Al₂O₃-ZrO₂ BRICKS FOR COAL-WATER SLURRY PRESSURIZED GASIFIER 1223
Youqi Li, Changming Ke, Yucui Zhang, Yanfeng Zhang, Jizeng Zhao, and Guotian Ye

EFFECTS OF ZIRCONIA ON THE THERMAL SHOCK RESISTANCE OF HIGH CHROME REFRACTORIES FOR COAL SLURRY GASIFIER 1229
Youqi Li, Changming Ke, Song Gao, Yanfeng Zhang, Jizeng Zhao, and Guotian Ye
Refractories for Glass

UNDERSTANDING MICROSTRUCTURE/PROPERTIES RELATIONSHIPS RELATED TO THE THERMOMECHANICAL BEHAVIOUR OF HIGH ZIRCONIA REFRACTORIES
C. Patapy, F. Gouraud, M. Huger, R. Guinebretière, and T. Chotard

NEW MATERIALS AND IMPROVEMENTS FOR THE GLASS INDUSTRY
Silvio Cassavia Frasson, Marcelo Adriano Fernandes Guerra, Vladnilson Peter de Souza Ramos, Sergio Murilo Justus, and Eric Y. Sako

RESEARCH OF REFRACTORIES AFTER 88 MONTHS CAMPAIGN IN THE E-GLASS FIBER PRODUCTION FURNACE LINING
Vladimir V. Primachenko, Valeriy V. Martynenko, Pavlo P. Kryvoruchko, Yuliya E. Mishnyova, Natalya G. Pryvalova, Eleonora L. Kariakina, and Olena I. Synyukova

Refractories for Nonferrous Metallurgy

DEVELOPMENT OF HIGH PERFORMANCE ALUMINA-CHROME-ZIRCONIA BRICK FOR MULTIPLE APPLICATION

PROCESSING AND CHARACTERIZATION OF MgAl2O4—CALCIUM ALUMINATE REFRACTORIES BY REACTION SINTERING OF ALUMINA-DOLomite

MOLTEN ALUMINUM LONG-DISTANCE TRANSPORTATION: A REFRACTORY ISSUE!
M. A. L. Braulo, D. R. Oliveira, J. Gallo, and V.C. Pandolfelli

PHOSPHATE BONDED MONOLITHIC REFRACTORIES MATERIALS WITH IMPROVED MECHANICAL AND CHEMICAL RESISTANCE FOR APPLICATIONS IN THE ALUMINUM INDUSTRY
J. Decker

DEVELOPMENT AND APPLICATION OF IMPROVED SHOTCRETE REFRACTORY FOR ALUMINUM ROTARY FURNACE APPLICATION
James G. Hemrick, Angela Rodrigues-Schroer, Dominick Colavito, Jeffrey D. Smith, and Kelley O’Hara

ADVANCES IN NO CEMENT COLLOIDAL SILICA BONDED MONOLITHIC REFRACTORIES FOR ALUMINUM AND MAGNESIUM APPLICATIONS
M. W. Anderson, L.A. Hrenak, and D. A. Snyder

CHROMIUM-FREE COMPLEX SPINEL BONDED BASIC CASTABLES
Rahul Lodha, Hamidreza Zargar, Tom Troczynski, and George Oprea

CHROMIUM-FREE SPINEL BONDED CASTABLES VERSUS REBONDED FUSED GRAIN BASIC BRICKS
George Oprea, Hamidreza Zargar, Carmen Oprea, Rahul Lodha, Tom Troczynski, and Dominic Verhelst

CALCIUM ZIRCONATE REFRACTORIES FOR TITANIUM MELTS
S. Schafföner, B. Rotmann, H. Berek, B. Friedrich, and C.G. Aneziris

INFLUENCE OF CORROSIVE ATTACK BY AIMg5 ON THE HOT ABRASION RESISTANCE OF REFRACTORY MATERIALS FOR THE USE IN THE SECONDARY ALUMINUM INDUSTRY
Ralf Simmat and Christian Dannert

FUNCTIONAL COATINGS ON ALUMINA FOAM CERAMICS FOR ALUMINUM FILTRATION
C. Voigt and C. G. Aneziris
NANOSTRUCTURED SELF-FLOW REFRACTORY CASTABLE TO LONG-LIFE MELT ALUMINUM CONTACT LINING
F. L. Ziegler, F. A. de O. Valenzuela, F. Ziegler Jr. and F. Ziegler

Refactories for Waste to Energy Processing and Power

IMPROVEMENT TO Al₂O₃-Cr₂O₃ BRICKS FOR WASTE MELTING FURNACES
Hisanori Hoshizuki, Hiroyuki Tanida, Satoshi Ota, Yasutaka Yoshimi, and Yoshiki Tsuchiya

IMPROVED PHYSICAL PROPERTIES OF Al₂O₃-SiO₂ BRICKS USING SOL IMPRGNATION
G. Monsberger and K. Santowski

RECENT LINING CONCEPTS FOR THERMAL TREATMENT OF HAZARDOUS WASTES
D. Schweez and J. Sperber

VAPOUR PHASE AND MELT CORROSION OF REFRACTORY CASTABLES IN BIOMASS GASIFICATION AND INCINERATION PROCESSES
Thorsten Tonnesen and Rainer Telle

Safety, Environmental Issues, and Recycling

IS THERE A VIABLE ALTERNATIVE TO REFRACTORY CERAMIC FIBERS?
Chris Johnson and Steve Chernack

AN ATTEMPT TOWARDS THE DEVELOPMENT AND SUCCESSFUL USE OF ECO FRIENDLY BASIC REFRACTORY PRODUCT
Prasunjit Sengupta, Nitesh Gupta, Sandip Mondal, and Santanu Mondal,

THE ISSUE OF USE OF BASIC REFRACTORY SCRAP
Kiełski Andrzej, Obszynska Lucyna, Sulkowski Michał, Wyszomirski Piotr, and Blumenfeld Philippe

ANALYSIS OF CHEMICAL VALENCE OF CHROMIUM IN Cr₂O₃-CONTAINING REFRACTORIES USED IN DIFFERENT HIGH-TEMPERATURE FURNACES
Chenchen Yao, Guotian Ye, Yuandong Mu, Xiujuan Song, and Juan Ma

AUTHOR INDEX
This proceedings contains 231 manuscripts that were submitted and approved for the 13th biennial worldwide refractories congress recognized as the Unified International Technical Conference on Refractories (UNITECR), held September 10-13, 2013 in Victoria, British Columbia, Canada.

UNITECR has become the premier worldwide congress on refractories and is the most prominent international technical conference on refractories. This was the first time the conference was held in Canada. UNITECR 2013 was organized by current and previous members of the North American Executive Board of UNITECR comprised of Tom Vert, Rob Crolius, Jeff Smith, Dana Goski, Nancy Bunt, and Mike Alexander with the assistance of The American Ceramic Society (ACerS). The organizers want share a special thank you to Mark Stett, Lou Trostel, Jr. and Charlie Semler for their continuing support, providing both historical details of previous UNITECR meetings and offering new suggestions to continually advance the meeting to benefit attendees, authors and industry.

Two new communication opportunities were created for authors this UNITECR. Authors were provided the option to have manuscripts peer reviewed, a new approach for UNITECR that was implemented in the expectation to further elevate the quality of the congress and proceedings. Fifty manuscripts were peer reviewed and are identified in the table of contents with a bold title. The second new opportunity was to include a poster session. Over 30 authors presented their poster during this special session.

The editors want to thank the 34 symposia organizers listed in the table on the following page, the authors for their contributions, the manuscript reviewers and the publication staff at ACerS.

We were pleased that the congress advanced the understanding of refractory technology and promoted international exchanges in research, education and industrial practice. The editors envision that this proceedings volume will serve as a useful resource for research in a field which has limited global publications.

DR. DANA G. GOSKI
UNITECR 2013 Technical Program Chair

DR. JEFFREY D. SMITH
Chairman, North American UNITECR Executive Committee
<table>
<thead>
<tr>
<th>Topic</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Testing of Refractories</td>
<td>Len Krietz, Plibrico Company LLC, USA</td>
</tr>
<tr>
<td>Advanced Installation Techniques & Equipment</td>
<td>Nigel Longshaw, Ceram, UK</td>
</tr>
<tr>
<td>Monolithic Refractories</td>
<td>Jim Stendera, Vesuvius, USA</td>
</tr>
<tr>
<td>Iron & Steel Making Refractories</td>
<td>Hirohide Okuno, Taiko Refractories, Japan</td>
</tr>
<tr>
<td>Raw Material Developments & Global Raw Material Issues</td>
<td>Dale Zacherl, Almatis, USA</td>
</tr>
<tr>
<td>Refractories for Glass</td>
<td>Goutam Bhattacharya, Kerneos, India</td>
</tr>
<tr>
<td>Cement & Lime Refractories</td>
<td>Mike Alexander, Riverside Refractories, USA</td>
</tr>
<tr>
<td>Modeling and Simulation of Refractories</td>
<td>Patrick Tassot, Calderys, Germany</td>
</tr>
<tr>
<td>Petrochemical</td>
<td>Shane Bower, Christy Minerals, USA</td>
</tr>
<tr>
<td>Refractories for Glass</td>
<td>Phil Edwards, Imerys, France</td>
</tr>
<tr>
<td>Refactories for Glass</td>
<td>Dr. M.D. Patil, Corning, Inc., USA</td>
</tr>
<tr>
<td>Cement & Lime Refractories</td>
<td>Adam Willsey, Kopp Glass, USA</td>
</tr>
<tr>
<td>Modeling and Simulation of Refractories</td>
<td>Fielding Cloer, Spar Refractories, USA</td>
</tr>
<tr>
<td>Petrochemical</td>
<td>Dr. Swapan Das, Central Glass & Ceramic Research Institute, India</td>
</tr>
<tr>
<td>Refractory for Waste to Energy Processing & Power</td>
<td>Dr. Bill Headrick, MORCO, USA</td>
</tr>
<tr>
<td>Energy Savings through Refractory Design</td>
<td>Prof. Harald Harmuth, Montanuniversität Leoben, Austria</td>
</tr>
<tr>
<td>Nonoxide Refractory Systems</td>
<td>Don McIntyre, ANH, USA</td>
</tr>
<tr>
<td>Refractories for Chemical Processes</td>
<td>Ken Moody, Refractory System Solutions, USA</td>
</tr>
<tr>
<td>Developments in Basic Refractories</td>
<td>Ben Markel, Resco, USA</td>
</tr>
<tr>
<td>Energy Savings through Refractory Design</td>
<td>Dr. Andy Wynn, Morgan Engineered Materials, China</td>
</tr>
<tr>
<td>Refractories for Chemical Processes</td>
<td>Dr. James Hemrick, Oak Ridge National Laboratory, USA</td>
</tr>
<tr>
<td>Developments in Basic Refractories</td>
<td>Dr. Valeriy Martynenko, The Ukrainian Research Institute of Refractories, Ukraine</td>
</tr>
<tr>
<td>Nonoxide Refractory Systems</td>
<td>Dave Derwin, Superior Graphite, USA</td>
</tr>
<tr>
<td>Refractories for Chemical Processes</td>
<td>Marcus Vinicius Moraes Magliano, Morgan, Brazil</td>
</tr>
<tr>
<td>Developments in Basic Refractories</td>
<td>Dr. James Bennett, NETL, USA</td>
</tr>
<tr>
<td>Refractory for Waste to Energy Processing & Power</td>
<td>Matthias Rath, Rath, Austria</td>
</tr>
<tr>
<td>Energy Savings through Refractory Design</td>
<td>Prof. Andrie Garbers-Craig, University of Pretoria, South Africa</td>
</tr>
<tr>
<td>Nonoxide Refractory Systems</td>
<td>Dominick Colavito, Minerals Tech, USA</td>
</tr>
<tr>
<td>Global Education in Refractories</td>
<td>Prof. Yawei Li, Wuhan University of Science and Technology, China</td>
</tr>
<tr>
<td>Refactories for Nonferrous Metallurgy</td>
<td>Rick Volk, United Refractories, USA</td>
</tr>
<tr>
<td>Safety, Environmental Issues & Recycling Solutions for Refractories</td>
<td>Angela Rodrigues-Schroer. Wahl Refractories, USA</td>
</tr>
<tr>
<td>Safety, Environmental Issues & Recycling Solutions for Refractories</td>
<td>Jason Canon, Christy Refractories, USA</td>
</tr>
<tr>
<td>Safety, Environmental Issues & Recycling Solutions for Refractories</td>
<td>Dr. Leonardo Curimbaba Ferreira, US Electrofused Minerals/Electroabrasives LLC</td>
</tr>
</tbody>
</table>
Advanced Installation Techniques and Equipment
DEVELOPMENT OF AUTOMATIC REPAIR TECHNOLOGY BY CONTINUOUS AND QUICK MIXING TECHNOLOGY

Junichi Tsukuda*, Hiroyuki Itoh, Youichi Furuta, Kazunori Seki
Krosaki Harima Corporation, Japan
Seiji Hanagiri, Takayuki Uchida, Satoru Itoh, Seiji Asoh,
Nippon Steel & Sumitomo Metal Corporation, Japan
Sakae Nakai
NS engineering Corporation, Japan

ABSTRACT
In conventional wet-gunning it is not easy to decrease the amount of water in the gunning mix because the mix has to be pressurized and transported smoothly through hoses. An excessive amount of water in the mix often results in a poor durability of the body of gunned material. The newly developed method, Continuous Quick Mixing & Repairing Technology (QMS), does not require the gunning mix to be transported through hoses and therefore, the amount of water can be decreased. As a result the installed body, obtained by means of the QMS method, has a more excellent quality when compared to the wet-gunning method. Furthermore the cleaning job after the gunning repair is as easy and simple as that after dry-gunning. This paper describes the development of QMS and the improved durability of the gunned material.

1 PREFACE
The conventional gunning application of refractory materials has been performed in various ladles and furnaces and classified as dry-gunning and wet-gunning. The former is easier and simpler from the point of view of application, but a much greater amount of water is required in the gunning mix, which often results in poor durability of the gunned material body. The latter is effective to obtain a relatively dense gunned body, but gunning work is not simple due to the preliminary mixing and to the cleaning of equipment after work. Continuous Quick Mixing & Repairing Technology (QMS as the abbreviation of Quick Mixing Shot) is introduced in this paper. It provides both a simpler and easier gunning method equivalent to that in conventional dry-gunning and a more excellent quality of the gunned body which results in better durability than that obtained in conventional wet-gunning.

2 FEATURES OF THE GUNNING EQUIPMENT
2-1 Conventional gunning methods

Fig. 1 shows the typical conventional gunning methods: dry-gunning and wet-gunning. In dry-gunning dry refractory material is conveyed by air flow and gunning water is added at the tip of the nozzle to produce slurry which is subsequently applied.
In wet-gunning the material is mixed first with water to produce slurry which is pressurized and conveyed through hoses and mixed with binder at the tip of the nozzle in order to solidify the gunned body.

2-2 Features and advantages of the QMS method

1) The system of the QMS method

Fig. 2 shows the system of the QMS method, which consists of a material feeder, a water pump, a binder pump and the Continuous Quick Mixing & Repairing device. Refractory material is conveyed by air flow and water is sprayed\(^1\), as fine mist, into it just before the device. Next the mix of material and water is kneaded in the mixing chamber to obtain an excellent kneading effect.

After kneading, the gunning mix is flung to the targeted repair spot by a rotating projection disk. In the QMS method, the material after having been mixed with water is not conveyed through hoses. Therefore, the amount of water can be reduced considerably.

2) The Continuous Quick Mixing device

Fig. 3 shows the vertical section of the Continuous Quick Mixing device. In the fixed outer casing the inner rotor is installed and rotates with 800 rpm. The upper half of the rotor has many dispersion blades on its cylindrical surface, while the lower half is conical and has many kneading pins on its conical surface. The blades and pins are positioned along the spiral line on the rotor surface. The outer rotor, which covers the conical surface of the inner rotor, rotates with 150 rpm. Dry material is sprayed with water\(^1\) and fed horizontally close to the top of the outer casing. After having been mixed by the dispersion blades in the upper half of the inner rotor, the mix descends to the lower half and forms there the relatively dense retention layer due to the centrifugal force generated by the rotation of the outer rotor. As shown in Fig. 4, the retention layer is scratched by many kneading pins on the inner rotor. When scratched, the retention layer of the mix is subjected to shearing, compression and tensile forces and deformed and kneaded sufficiently. The scratching does not occur at the same height but on the different levels of each kneading pin, due to the spiral positioning of the kneading pins. The kneaded mix is gradually pushed downward along the inner
surface of the outer rotor to the projection disk.

Fig. 3. Mechanical structure of the continuous quick mixing device

Fig. 4. Principle of kneading

3) Principle and mechanical structure of the gunning device

The kneaded mix is conveyed and gunned to the targeted repair spot not by means of conventional compressed air but by centrifugal flinging force. As shown in Fig. 5, the gunning device consists of 1) the projection disk positioned at the lower exit of the outer rotor, 2) the belt wound around the disk (with one opening area) to drive it and 3) the reflector to direct and rectify the mix flow toward the spot of application. The adhesion of the kneaded mix on the targeted repair spot can be optimized by adjusting appropriately both the velocity of the mix flow and the thickness of the gunned material body.

Fig. 5. Plane view of the gunning device and isometric view of the projection disc

3 EVALUATION OF THE MIXING EFFECT

To evaluate the mixing effect, the QMS was compared with a common desk-top mixer in mixing for three minutes. After adding a specified amount of water, the material was mixed for three minutes with the continuous quick mixer and also with the desk-top mixer and the viscosity of the mixed material was measured in each case. The kneading ratio is defined as the value determined by dividing the viscosity of the material mixed by the QMS device with that mixed by the desk-top mixer. As shown in Fig. 6, the QMS device showed 89 % of kneading ratio under the mixing condition of a 15 mm gap between the kneading pins and the outer rotor. In general, the faster rotation of the inner rotor results in a better kneading ratio because it is guessed that both the shearing and the compressing force applied on the material increase as the rotation of the inner
rotor becomes faster. With the smaller gap of 10 mm, the kneading ratio of 93 % was obtained because of a similar reason. Fig. 7 shows the distance of the gap between the kneading pins and the outer rotor.

![Graph showing the influence of gap and rotation on kneading ratio](image)

Fig. 6. Influence of the gap between the kneading pins and the outer rotor and the rotation of the inner rotor on the kneading ratio

![Diagram showing the gap between the kneading pin and the outer rotor](image)

Fig. 7. Gap between the kneading pin and the outer rotor

4 FEATURES OF THE REFRACTORY MATERIALS FOR QMS

To obtain excellent durability of the applied material in hot service, the refractory materials for QMS have been developed pursuing the targets:
1) the application of a small amount of water and
2) a tight adhesion on the targeted spot.

Fig. 8 shows the quality map of the materials applied with the QMS method among various application methods of monolithic refractories. Table. I shows typical properties of the material for the QMS in comparison with the material for conventional wet-gunning.

![Quality map of applied materials](image)

Fig. 8. The quality map in the obtained apparent porosity comparing various application methods of monolithic refractory materials

Table. I. Typical properties of materials applied in QMS and wet-gunning

<table>
<thead>
<tr>
<th>Installation method</th>
<th>QMS</th>
<th>Wet-gunning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical composition/(%)</td>
<td>(Al_2O_3)</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>(MgO)</td>
<td>12</td>
</tr>
<tr>
<td>Apparent porosity/(%)</td>
<td>110°C*24h</td>
<td>21.4</td>
</tr>
<tr>
<td></td>
<td>1500°C*3h</td>
<td>26.0</td>
</tr>
<tr>
<td>Bulk density/(g/cm^3)</td>
<td>110°C*24h</td>
<td>2.93</td>
</tr>
<tr>
<td></td>
<td>1500°C*3h</td>
<td>2.74</td>
</tr>
<tr>
<td>Modulus of rupture/(MPa)</td>
<td>110°C*24h</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>1500°C*3h</td>
<td>25.0</td>
</tr>
<tr>
<td>Permanent linear change/(%)</td>
<td>1500°C*3h</td>
<td>+1.36</td>
</tr>
<tr>
<td></td>
<td>1500°C*12h</td>
<td>+1.38</td>
</tr>
<tr>
<td>Amount of water/(%)</td>
<td>7.7</td>
<td>8.8</td>
</tr>
</tbody>
</table>

There is generally a tight connection between the amount of water applied and the density of the gunned material. During application,