Edited by
Alexander Gromov and Ulrich Teipel

Metal Nanopowders
Related Titles

Koch, E.
Metal-Fluorocarbon Based Energetic Materials
2012
ISBN: 978-3-527-32920-5 (Also available in digital formats)

Agrawal, J.P.
High Energy Materials
Propellants, Explosives and Pyrotechnics
2010
ISBN: 978-3-527-32610-5 (Also available in digital formats)

Tjong, S.C.
Polymer Composites with Carbonaceous Nanofillers
Properties and Applications
2012
ISBN: 978-3-527-41080-4 (Also available in digital formats)

Teipel, U. (ed.)
Energetic Materials
Particle Processing and Characterization
2005
Print ISBN: 978-3-527-30240-6 (Also available in digital formats)
Edited by
Alexander Gromov and Ulrich Teipel

Metal Nanopowders

Production, Characterization, and Energetic Applications
Contents

Foreword XIII
List of Contributors XV
Introduction XIX

1 Estimation of Thermodynamic Data of Metallic Nanoparticles Based on Bulk Values 1
 Dieter Vollath and Franz Dieter Fischer
1.1 Introduction 1
1.2 Thermodynamic Background 2
1.3 Size-Dependent Materials Data of Nanoparticles 4
1.4 Comparison of Experimental and Calculated Melting Temperatures 8
1.5 Comparison with Data for the Entropy of Melting 16
1.6 Discussion of the Results 17
1.7 Conclusions 19
1.A Appendix: Zeros and Extrema of the Free Enthalpy of Melting \(G_{m-nano} \) 20
References 21

2 Numerical Simulation of Individual Metallic Nanoparticles 25
 D.S. Wen and P.X. Song
2.1 Introduction 25
2.2 Molecular Dynamics Simulation 27
2.2.1 Motion of Atoms 27
2.2.2 Temperature and Potential Energy 28
2.2.3 Ensembles 29
2.2.4 Energy Minimization 30
2.2.5 Force Field 30
2.2.6 Potential Truncation and Neighbor List 31
2.2.7 Simulation Program and Platform 32
2.3 Size-Dependent Properties 33
2.3.1 Introduction 33
2.3.2 Simulation Setting 34
2.3.3 Size-Dependent Melting Phenomenon 35
2.4 Sintering Study of Two Nanoparticles 38
2.4.1 Introduction 38
2.4.2 Simulation Setting 40
2.4.3 Sintering Process Characterization 40
2.5 Oxidation of Nanoparticles in the Presence of Oxygen 45
2.5.1 Introduction 45
2.5.2 Simulation Setting 47
2.5.3 Characterization of the Oxidation Process 48
2.6 Heating and Cooling of a Core–Shell Structured Particle 54
2.6.1 Simulation Method 54
2.6.2 Heating Simulation 56
2.6.2.1 Solidification Simulation 59
2.7 Chapter Summary 61

References 63

3 Electroexplosive Nanometals 67
Olga Nazarenko, Alexander Gromov, Alexander Il'in, Julia Pautova, and Dmitry Tikhonov
3.1 Introduction 67
3.2 Electrical Explosion of Wires Technology for Nanometals Production 67
3.2.1 The Physics of the Process of Electrical Explosion of Wires 68
3.2.2 Nonequilibrium State of EEW Products – Nanometals 70
3.2.3 The Equipment Design for nMe Production by Electrical Explosion of Wires Method 71
3.2.4 Comparative Characteristics of the Technology of Electrical Explosion of Wires 73
3.2.5 The Methods for the Regulation of the Properties of Nanometals Produced by Electrical Explosion of Wires 74
3.3 Conclusion 75
Acknowledgments 75
References 76

4 Metal Nanopowders Production 79
M. Lerner, A. Vorozhtsov, Sh. Guseinov, and P. Storozhenko
4.1 Introduction 79
4.2 EEW Method of Nanopowder Production 81
4.2.1 Electrical Explosion of Wires Phenomenon 81
4.2.2 Nanopowder Production Equipment 84
4.3 Recondensation NP-Producing Methods: Plasma-Based Technology 85
4.3.1 Fundamentals of Plasma-Chemical NP Production 89
4.3.2 Vortex-Stabilized Plasma Reactor 90
4.3.3 Starting Material Metering Device (Dispenser) 92
Contents

4.3.4 Disperse Material Trapping Devices (Cyclone Collectors and Filters) 93
4.3.5 NP Encapsulation Unit 94
4.4 Characteristics of Al Nanopowders 95
4.5 Nanopowder Chemical Passivation 97
4.6 Microencapsulation of Al Nanoparticles 99
4.7 The Process of Producing Nanopowders of Aluminum by Plasma-Based Technology 102
 4.7.1 Production of Aluminum Nanopowder 102
 4.7.2 Some Properties of Produced Nanopowders of Aluminum, Boron, Aluminum Boride, and Silicon 103

References 104

5 Characterization of Metallic Nanoparticle Agglomerates 107
 Alfred P. Weber
 5.1 Introduction 107
 5.2 Description of the Structure of Nanoparticle Agglomerates 108
 5.3 Experimental Techniques to Characterize the Agglomerate Structure 112
 5.3.1 TEM and 3-D TEM Tomography 113
 5.3.2 Scattering Techniques 115
 5.3.3 Direct Determination of Agglomerate Mass and Size 117
 5.4 Mechanical Stability 120
 5.5 Thermal Stability 124
 5.6 Rate-Limiting Steps: Gas Transport versus Reaction Velocity 126
 5.7 Conclusions 127
 Acknowledgments 128
 References 128

6 Passivation of Metal Nanopowders 133
 Alexander Gromov, Alexander Il’in, Ulrich Teipel, and Julia Pautova
 6.1 Introduction 133
 6.2 Theoretical and Experimental Background 136
 6.2.1 Chemical and Physical Processes in Aluminum Nanoparticles during Their Passivation by Slow Oxidation under Atmosphere (Ar + Air) 136
 6.2.2 Chemical Mechanism of Aluminum Nanopowder Passivation by Slow Air Oxidation 140
 6.3 Characteristics of the Passivated Particles 143
 6.3.1 Characteristics of Aluminum Nanopowders, Passivated by Gaseous and Solid Reagents (Samples No 1–6, Table 6.7) 148
 6.3.2 Characteristics of Aluminum Nanopowders, Passivated by Gaseous and Solid Reagents (Samples No 7–11, Table 6.7) 149
 6.4 Conclusion 150
Acknowledgments 150
References 150

7 Safety Aspects of Metal Nanopowders 153
M. Lerner, A. Vorozhtsov, and N. Eisenreich
7.1 Introduction 153
7.2 Some Basic Phenomena of Oxidation of Nanometal Particles in Air 154
7.3 Determination of Fire Hazards of Nanopowders 155
7.4 Sensitivity against Electrostatic Discharge 158
7.5 Ranking of Nanopowders According to Hazard Classification 159
7.6 Demands for Packing 160
References 161

8 Reaction of Aluminum Powders with Liquid Water and Steam 163
Larichev Mikhail Nikolaevich
8.1 Introduction 163
8.2 Experimental Technique for Studying Reaction Al Powders with Liquid and Gaseous Water 166
8.2.1 Oxidation of Aluminum Powder with Distilled Water 168
8.3 Oxidation of Aluminum Powder in Water Vapor Flow 174
8.4 Nanopowders Passivated with Coatings on the Base of Aluminum Carbide 175
8.5 Study of Al Powder/H2O Slurry Samples Heated Linear in “Open System” by STA 183
8.6 Ultrasound (US) and Chemical Activation of Metal Aluminum Oxidation in Liquid Water 184
8.7 Conclusion 194
Acknowledgments 195
References 195

9 Nanosized Cobalt Catalysts for Hydrogen Storage Systems Based on Ammonia Borane and Sodium Borohydride 199
Valentina I. Simagina, Oksana V. Komova, and Olga V. Netskina
9.1 Introduction 199
9.1.1 Experimental 200
9.1.2 Study of the Activity of Nanosized Cobalt Boride Catalysts Forming in the Reaction Medium of Sodium Borohydride and Ammonia Borane 202
9.2 A Study of Nanosized Cobalt Borides by Physicochemical Methods 204
9.2.1 A Study of the Crystallization of Amorphous Cobalt Borides Forming in the Medium of Sodium Borohydride and Ammonia Borane 208
9.2.2 The Effect of the Reaction Medium on the State of Cobalt Boride Catalysts 214
10 Reactive and Metastable Nanomaterials Prepared by Mechanical Milling 227
Edward L. Dreizin and Mirko Schoenitz

10.1 Introduction 227
10.2 Mechanical Milling Equipment 228
10.3 Process Parameters 229
10.4 Material Characterization 232
10.5 Ignition and Combustion Experiments 233
10.6 Starting Materials 235
10.7 Mechanically Alloyed and Metal–Metal Composite Powders 236
10.7.1 Preparation and Characterization 236
10.7.2 Thermal Analysis 242
10.7.3 Heated Filament Ignition 245
10.7.4 Constant Volume Explosion 249
10.7.5 Lifted Laminar Flame (LLF) Experiments 250
10.8 Reactive Nanocomposite Powders 254
10.8.1 Preparation and Characterization 256
10.8.2 Thermally Activated Reactions and their Mechanisms 257
10.8.3 Ignition 263
10.8.4 Particle Combustion Dynamics 267
10.8.5 Constant Volume Explosion 268
10.8.6 Consolidated Samples: Mechanical and Reactive Properties 271
10.9 Conclusions 273
References 274

11 Characterizing Metal Particle Combustion In Situ: Non-equilibrium Diagnostics 279
Michelle Pantoya, Keerti Kappagantula, and Cory Farley

11.1 Introduction 279
11.2 Ignition and Combustion of Solid Materials 281
11.2.1 Ignition 281
11.2.2 Propagation 282
11.2.3 Flame Speeds 286
11.3 Aluminum Reaction Mechanisms 287
11.4 The Flame Tube 289
11.5 Flame Temperature 292
11.5.1 Background 292
11.5.2 Radiometer Setup 294
11.5.3 Infrared Setup 295
11.5.4 Linking Radiometer and IR Data for a Spatial Distribution of Temperature 295
12 Characterization and Combustion of Aluminum Nanopowders in Energetic Systems 301
Luigi T. De Luca, Luciano Galfetti, Filippo Maggi, Giovanni Colombo, Christian Paravan, Alice Reina, Stefano Dossi, Marco Fassina, and Andrea Sossi

12.1 Fuels in Energetic Systems: Introduction and Literature Survey 301
12.1.1 An Overall Introduction to Energetic Systems 302
12.1.2 Experimental Investigations on Micro and Nano Energetic Additives 304
12.1.3 Theoretical/Numerical Investigations on Energetic Additives 305
12.1.4 Thermites 308
12.1.4.1 Nanocomposite Thermites 308
12.1.5 Explosives 311
12.1.6 A Short Historical Survey of SPLab Contributions 315
12.1.7 Concluding Remarks on Energetic Additives 319
12.2 Thermochemical Performance of Energetic Additives 319
12.2.1 Ideal Performance Analysis of Metal Fuels 319
12.2.2 Solid Propellant Optimal Formulations 320
12.2.3 Hybrid Rocket Performance Analysis 322
12.2.4 Oxidizing Species in Hybrid Rocket Nozzles 324
12.2.5 Active Aluminum Content and Performance Detriment 325
12.2.6 Two-Phase Losses 326
12.2.7 Concluding Remarks on Theoretical Performance 329
12.3 Nanosized Powder Characterization 330
12.3.1 Introduction 330
12.3.2 Facilities Used for Nanosized Powder Analyses 331
12.3.3 Tested nAl Powders: Production, Coating, and Properties 331
12.3.3.1 Production of nAl Particles 331
12.3.3.2 Coating of nAl Particles 332
12.3.3.3 Morphology and Internal Structure of nAl Particles 333
12.3.3.4 BET Area and Aluminum Content of nAl Particles 333
12.3.4 DSC/TGA Slow Heating Rate Reactivity 337
12.3.4.1 Nonisothermal Oxidation of 50 nm Powder 338
12.3.4.2 Nonisothermal Oxidation of 100 nm Powder 339
12.3.4.3 Passivation/Coating Efficiency 339
12.3.5 High Heating Rate Reactivity 341
12.3.5.1 nAl Powder Ignition Experimental Setup 341
12.3.5.2 nAl Powder Ignition Representative Results 342
12.3.6 CCP Collection by Strand Burner 344
12.3.6.1 Condensed Combustion Product Analysis 344
12.3.7 Concluding Remarks on Powder Characterization 350
12.4 Mechanical and Rheological Behavior with Nanopowders 350
12.4.1 Solid Propellants and Fuels: Mechanical and Rheological Behavior 350
12.4.2 Viscoelastic Behavior 352
12.4.3 Additive Dispersion 354
12.4.4 Rheology of Suspensions 355
12.4.5 Aging Effects 359
12.4.6 Experimental Results: Data Processing and Discussions 360
12.4.7 Tested Formulations 361
12.4.8 Uniaxial Tensile Stress–Strain Tests 362
12.4.9 Dynamic Mechanical Analysis 364
12.4.10 Rheological Tests 365
12.4.11 Concluding Remarks 367
12.5 Combustion of Nanopowders in Solid Propellants and Fuels 367
12.5.1 Solid Rocket Propellants 368
12.5.1.1 Particle Clustering Phenomena 368
12.5.1.2 Propellant Volume Microstructure 369
12.5.1.3 Steady Combustion Mechanisms of AP/HTPB-Based Composite Propellants 370
12.5.1.4 Transient Combustion Mechanisms 374
12.5.1.5 Concluding Remarks 379
12.5.2 Solid Rocket Fuels for Hybrid Propulsion 380
12.5.2.1 Tested Ingredients and Solid Fuel Formulations 380
12.5.2.2 Experimental Setup 381
12.5.2.3 Time-Resolved Regression Rate 383
12.5.2.4 Ballistic Characterization: Analyses of the Results 386
12.5.2.5 Concluding Remarks on Solid Fuel Burning 394
12.5.3 Chapter Summary 395
Nomenclature 396
References 400

Index 411
Foreword

Interest in studying the combustion of metal powders dramatically raised since Russian scientists Kondratyuk and Tsander suggested the use of metals as energetic additives to rocket fuels at the beginning of the twentieth century. Since that time, it is obvious that an increase in the dispersion of flammable substances participating in heterogeneous combustion processes leads to an increase in rate and heat of combustion. The major energy contribution belongs to the process of oxidation, which is also bound up with powder dispersion and purity. Burning of metal nanopowders is accompanied by new physical and chemical laws (such as high reactivity under heating, threshold phenomena, formation of nitrides in air), which allow to fully appreciate the advantages and disadvantages of nanopowders when used in fuel systems.

Widespread use of metal nanopowders is currently hampered by the lack of enough advanced technology for their preparation, certification, and standardization procedures, instability during storage, and subjective factors: the possible toxicity of nanopowders, investment risks, cost of nanotechnologies, and so on. Therefore, the main objective for the authors is to inform a wide readership of fundamental and applied studies on the processes of oxidation and combustion of metal nanopowders.

Prof. Dr.-Ing. George Manelis, Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka, Russia

Prof. Dr.-Ing. Hiltmar Schubert, Fraunhofer Institute of Chemical Technology, Pfinztal, Germany
List of Contributors

Giovanni Colombo
Dipartimento di Scienze e
Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Luigi T. De Luca
Dipartimento di Scienze e
Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Stefano Dossi
Dipartimento di Scienze e
Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Edward L. Dreizin
University Heights
Otto H. York Department of
Chemical, Biological, and
Pharmaceutical Engineering
New Jersey Institute of
Technology
138 Warren St
Newark
NJ 07102-1982
USA

N. Eisenreich
Institute of Problems of Chemical
and Energetic Technologies
Russian Academy of Science
Socialisticheskaya str., 1
659322 Byisk
Russia

Cory Farley
Texas Tech University
Mechanical Engineering
Department
Corner of 7th and Boston Ave.
Lubbock
TX 79409-1021
USA
Marco Fassina
Dipartimento di Scienze e Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Franz Dieter Fischer
Montanuniversität Leoben
Institute of Mechanics
Franz-Josef-Straße 18
A-8700 Leoben
Austria

Luciano Galfetti
Dipartimento di Scienze e Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Alexander Gromov
Tomsk Polytechnic University
Lenin prospekt, 30
634050 Tomsk
Russia

Keerti Kappagantula
Texas Tech University
Mechanical Engineering Department
Corner of 7th and Boston Ave.
Lubbock
TX 79409-1021
USA

Sh. Guseinov
State Research Institute for Chemistry and Technology of Organoelement Compounds (GNIIChTEOS)
Shosse Entuziastov str., 38
105118 Moscow
Russia

Alexander Il’in
Tomsk Polytechnic University
Lenin prospekt, 30
634050 Tomsk
Russia

Oksana V. Komova
Boreskov Institute of Catalysis SB RAS
Pr. Akademika Lavrentieva 5
630090 Novosibirsk
Russia

Larichev Mikhail Nikolaevich
V.L. Talrose Institute for Energy Problems of Chemical Physics
Russian Academy of Science
Leninsky prospect
bl. 38/2., 119334 Moscow
Russia
M. Lerner
Institute of Strength Physics and Material Science
Russian Academy of Science
8/2 Academicheskiy St.
634021 Tomsk
Russia

Filippo Maggi
Dipartimento di Scienze e Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Olga Nazarenko
Tomsk Polytechnic University
Lenin prospekt, 30
634050 Tomsk
Russia

Olga V. Netskina
Boreskov Institute of Catalysis SB RAS
Pr. Akademika Lavrentieva 5
630090 Novosibirsk
Russia

Michelle Pantoya
Texas Tech University
Mechanical Engineering Department
Corner of 7th and Boston Ave.
Lubbock
TX 79409-1021
USA

Christian Paravan
Dipartimento di Scienze e Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Julia Pautova
Tomsk Polytechnic University
Lenin prospekt, 30
634050 Tomsk
Russia

Alice Reina
Dipartimento di Scienze e Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

Mirko Schoenitz
University Heights
Otto H. York Department of Chemical, Biological, and Pharmaceutical Engineering
New Jersey Institute of Technology
138 Warren St
Newark
NJ, 07102-1982
USA

Valentina I. Simagina
Boreskov Institute of Catalysis SB RAS
Pr. Akademika Lavrentieva 5
630090 Novosibirsk
Russia
List of Contributors

P.X. Song
Institute of Particle Science and Engineering
University of Leeds
Leeds, LS2 9JU UK
National Institute of Clean-and-Low-Carbon Energy
Future Science & Technology Park
Changping District
Beijing 102209
China

Andrea Sossi
Dipartimento di Scienze e Tecnologie Aerospaziali, SPLab
Politecnico di Milano Campus
Bovisa Sud
34 Via La Masa
I-20156 Milan
Italy

P. Storozhenko
State Research institute for Chemistry and Technology of Organoelement Compounds (GNIIChTEOS)
Shosse Entuziastov str., 38
105118 Moscow
Russia

Ulrich Teipel
George Simon Ohm University of Applied Sciences
Processing Department
Wassertorstr. 10
90489 Nürnberg
Germany

Dmitry Tikhonov
Tomsk Polytechnic University
Lenin prospekt, 30
634050 Tomsk
Russia

Dieter Vollath
Nano Consulting
Primelweg 3
D-76297 Stutensee
Germany

A. Vorozhtsov
Tomsk State University
Lenin str., 36
634050 Tomsk
Russia
and
Institute of Problems of Chemical and Energetic Technologies
Russian Academy of Science
Socialisticskaya str., 1
659322 Byisk
Russia

Alfred P. Weber
Technical University of Clausthal
Institute of Particle Technology
Leibnizstrasse 19
D-38678 Clausthal-Zellerfeld
Germany

D.S. Wen
Institute of Particle Science and Engineering
University of Leeds
Leeds, LS2 9JU UK
National Institute of Clean-and-Low-Carbon Energy
Future Science & Technology Park
Changping District
Beijing 102209
China
Introduction

Stabilization of low-dimension structures, especially nanosized ones, and their use in the heterogeneous chemical reactions as nanopowders allow considering high specific surface as an independent thermodynamic parameter along with the temperature, pressure, concentration of reactants, and so on. New characteristics of 2D nanomaterials are well known – the thermal conductivity of graphene \((5000 \text{ W (m K)}^{-1})\) with \(1000 \text{ m}^2 \text{ g}^{-1}\) specific surface exceeds those for metals in a factor \(10\) \([1]\). The use of the advantages of high specific surface of 3D nanostructures – nanopowders in catalysis, oxidation, and combustion results in high rates of heterogeneous reactions and reduction in activation energies of ignition due to the small size of solid reactants. The laws of classical chemistry and physics are little applicable to the analysis of processes with metal nanopowders. An example of such a system is the burning of the composition nanoAl/nanoMoO\(_3\) at the rate of about \(1 \text{ km s}^{-1}\) \([2]\).

In USSR, metal ultrafine (in fact, nano-) powders with reproducible properties were first obtained during World War II. In the 1960s and 1970s, numerous works were carried out on metal nanopowder production by electrical explosion of wires \([3]\), evaporation-and-condensation method \([4]\), and the technologies of metal nanopowder application for nuclear synthesis in the USSR and the US. In 1977, the result of these works was published in Morokhov’s book \([5]\), where the methods for metal nanopowder production by thermal decomposition of salts were viewed. In Western Europe and the US, the term nanocrystalline material appeared and spinned off after the Gleiter’s publication in 1980 \([6]\).

Since the discovery by Yu. Kondratyuk and F. Tsander in 1910 \([7]\), the possibilities of powdery metal being used as an additive in energetic materials and as the reagents for self-propagating high-temperature synthesis \([8]\) were intensively studied. Several books (e.g., the work of Pokhil et al. \([9]\) and Sammerfield \([10]\)) were published, where the laws of combustion of micron-sized metal powders (5–500 \(\mu\)m) in high-temperature oxidizing environments were discussed. The study of the laws of combustion of powderized metals was done mainly for Al, Be, Mg, Ti, Zr, and B. The lack of micron-sized metal powders were detected during the first test of metallized fuels in the 1940s: an agglomeration of particles (especially for aluminum and magnesium) in the heating zone of energetic material, a low degree of metal
reaction in the vapor phase (incomplete combustion), significant biphasic loss of a specific impulse (15% or more for the compositions containing 20–25 wt% Al) [9].

In the 1970s, Zeldovich and Leipunsky et al. [11] showed one of the approaches to reduce this lack by using low-sized metallic particles for fuels and combustion catalysts, in particular, metal nanopowders. This book summarizes the efforts of several teams over the world to realize those ideas.

The revitalization of the use of metal nanopowders in materials science and engineering became further possible in the 1990s, when the technologies for the large-scale production of those materials became available. Nowadays, tons of rather inexpensive metal nanopowders are produced in several countries for different technological applications, while the problems of their standardization, storage, handling, toxicity, correct application, and so on, are still unsolved.

The idea of this book is also to show the true picture of the properties of metal nanopowders and, correspondingly, their application avenues. The “romantic atmosphere” around nanomaterials and metal nanopowders accordingly should be left in the twentieth century forever. Nanoparticles and, especially, metal nanoparticles are very “capricious” technological raw materials with metastable physical and chemical properties in many cases, because nanometals (in addition to small particle size) show very high reducing properties: nanoCu react similarly to bulk Zn – release the hydrogen from acids, nanoAl show the properties of bulky alkali metals – react with water under room temperature, and so on.

Special scientific and engineering interests represent the new fundamental laws of combustion for the metal nanopowders, analysis of the combustion regimes, and intermediate and final burning products reported in this book. Excited by the experimental works of Ivanov and Tepper [12], scientists worked in the direction of nanometals application in energetic materials intensively during the past decade and the most valuable results are presented in this book.

In conclusion, we want to underline that the study of industrially available metal nanopowders allowed opening previously unknown laws and they will open the significant application prospects in science and technology of the twenty-first century.

Alexander Gromov
Ulrich Teipel

References

1

Estimation of Thermodynamic Data of Metallic Nanoparticles Based on Bulk Values

Dieter Vollath and Franz Dieter Fischer

1.1

Introduction

It is a well-accepted fact: the temperature of phase transformation is particle-size dependent. In general, this dependency is described as

\[T_{\text{trans-nano}} = T_{\text{trans-bulk}} - \frac{\alpha}{d} \]

(1.1)

In Equation 1.1, the quantities \(T_{\text{trans-nano}} \) and \(T_{\text{trans-bulk}} \) stand for the transformation temperature of nanoparticles and the bulk material, respectively, \(d \) for the particle diameter, and \(\alpha \) is a constant value depending on the entropy of transformation and the difference of the surface energy in both phases [1]. The same description, as proved for phase transformations, was found to be valid for the enthalpy of phase transformations. As typical examples, experimental results obtained for aluminum particles were given by Eckert [2], for tin particles by Lai et al. [3], or by Suresh and Mayo [4, 5] on yttrium-doped zirconia particles.

The range of particle sizes where Equation 1.1 is valid is limited. In the case of larger particles, Coombes [6] has shown that these have a surface layer of about 3 nm, where melting starts. As long as this surface layer dominates the behavior of the particles, Equation 1.1 cannot be applied. The existence of such a surface layer was also shown by Chang and Johnson [7] by theoretical considerations, concluding that this surface layer is less ordered than the center of the particles. As it was shown by Kaptay [8], the thickness of this premelting layer can be estimated by the rules of classical thermodynamics. Therefore, the assumption of a surface layer where melting starts is well justified. Now, one may ask if there is also a lower limit of particle sizes, below which Equation 1.1 is not applicable. Experimental results suggest this. Figure 1.1 displays the melting temperature of gold nanoparticles according to Castro et al. [9]. In this graph, the melting temperature is plotted versus the inverse particle size. According to Equation 1.1, one has to expect a linear relation.

The experimental data of Castro et al. may be separated into two ranges: Range I, which follows Equation 1.1 and a separated Range II, which is far off from the expected value. A linear fit of the experimental data in both ranges delivers an
1 Estimation of Thermodynamic Data of Metallic Nanoparticles Based on Bulk Values

Figure 1.1 Experimental data for the melting temperature of gold nanoparticles, according to Castro et al. [9], together with linear fits plotted versus the inverse particle size. This graph shows clearly two separated ranges of the melting temperature: at larger particles, a range following Equation 1.1 (Range I) and a second range with particle-size-independent temperature (Range II).

intersection at an inverse particle size of 0.62 nm\(^{-1}\), which is equivalent to a particle size of 1.6 nm. Obviously, for particle sizes below this intersection, Equation 1.1 is no longer valid. Such a phenomenon or similar ones are quite often described; as, for example, in the case of sodium particles [10]. Well in line with the above-described phenomenon, found for gold and sodium particles, are experimental results of Shvartsburg and Jarrold [11] on small tin particles consisting of 19–31 atoms, exhibiting melting points significantly higher than those of the bulk material. Besides a reduction of the melting temperature, close to melting or crystallization, additional phenomena are observed. Oshima and Takayanagi [12] found in 6 nm tin particles crystalline embryos with sizes around 1.5 nm. It is remarkable that this size is in the range of the limitation of Equation 1.1, as was found in the case of the melting of gold particles.

1.2 Thermodynamic Background

A general analysis of these phenomena needs detailed quantum mechanical studies. However, in most cases, one is interested in just a first approach using thermodynamic data of metallic nanoparticles. It is the aim of this chapter to show a simplified approach in this direction. The most important tool for any analysis of this kind is classical thermodynamics. Certainly, as this tool describes continuous systems, such an approximation cannot deliver phenomena depending on the quantum nature of the cohesion energy of small particles, or, in other words, magic particle sizes, superatoms, or jellium shell concepts cannot be expected as the result. These phenomena are excluded.
To analyze phase transformations, a detailed knowledge of the thermodynamic data of the materials in question is necessary. In addition, in the case of nanoparticles, knowledge of the surface energy in both phases is of great importance. As typical and well-studied examples for a phase transformation, melting, and crystallization were selected. In the following considerations, for reasons of simplicity, the minor changes of geometry and density are neglected. Generally, in the proximity of the melting point, the difference of the free enthalpy

\[G_{m-nano} = G_{\text{liquid-nano}} - G_{\text{solid-nano}} \]

at the temperature \(T \) are

\[G_{m-bulk} = G_{\text{liquid-bulk}} - G_{\text{solid-bulk}} \] (1.2a)

The quantity \(H_m \) is the enthalpy and \(S_m \) the entropy of melting, both with the additional subscript “nano” or “bulk.” The term \(\Delta \gamma \) stands for the difference in the surface energy in the liquid and solid states. The quantity \(A \) represents the surface area per mol of nanoparticles. It is important to note that the quantities in Equations 1.2 are the differences of the thermodynamic quantities observed during the melting process.

\[H_m = H_{\text{liquid}} - H_{\text{solid}} > 0 \]

\[S_m = S_{\text{liquid}} - S_{\text{solid}} > 0 \]

\[\Delta \gamma = \gamma_{\text{liquid}} - \gamma_{\text{solid}} < 0 \] (1.3)

In the case of bulk materials, the surface energy term \(\Delta \gamma A \) of Equation 1.2b is generally neglected but it is of relevance in the case of nanoparticles.

For lack of better data, in most cases, the material data of the bulk material \(H_{m-bulk} \) and \(S_{m-bulk} \) are used for nanoparticles, too, yielding

\[G_{m-nano} = H_{m-bulk} - T S_{m-bulk} + \Delta \gamma A \] (1.4)

Setting \(G_{m-nano} = 0 \) leads to the well-known reduction in the melting point of nanoparticles \(T_{m-nano} \) in comparison with the one of the bulk material, \(T_{m-bulk} \), as was described for the first time more than a hundred years ago by Pawlow [13] using \(G_{m-bulk} = 0, H_{m-bulk} = T_{m-bulk} S_{m-bulk} \), and neglecting \(\Delta \gamma A \) for the bulk material, and more recently in [14–16] as

\[\frac{T_{m-nano}}{T_{m-bulk}} = 1 + \frac{\Delta \gamma A}{T_{m-bulk} S_{m-bulk}} = 1 - \left| \frac{\Delta \gamma A}{T_{m-bulk} S_{m-bulk}} \right| \]

\[= 1 - \left| \frac{\Delta \gamma}{T_{m-bulk} S_{m-bulk}} \right| \frac{6M}{\rho d} = 1 - \left| \frac{\Delta \gamma}{H_{m-bulk}} \right| \frac{6M}{\rho d} \] (1.5)

In Equation 1.5, \(M \) stands for the molecular weight and \(\rho \) for the density of the particles. To visualize the general trend in the reduction of the melting temperature with decreasing particle size, the use of the absolute value of the fraction \(|\Delta \gamma / H_{m-bulk}| \) is the only correct way in the case of melting and crystallization.
As already mentioned, the derivations leading to Equation 1.5 assume that it is allowed to use bulk data for nanomaterials: however, this is problematic in the case of nanoparticles. The following gives a series of indications.

In a review on the melting of solids, Mei and Lu [17] devote a whole chapter to abnormal size effects on melting. Most interesting in this context are experimental findings of Shvartsburg and Jarrold [11] reporting that tin clusters consisting of 19–31 atoms exhibit melting points significantly above that of the bulk material. Molecular dynamic (MD) simulations for clusters of Cₙ, Siₙ, Geₙ, and Snₙ clusters for n ≤ 13 by Lu et al. [18] also revealed melting points significantly above that of the bulk materials.

- The material data of nanoparticles differ from those in bulk materials. For example, Vollath et al. [19] found drastic changes in the thermodynamic data of phase transformations in nanoparticulate zirconia, leading in the case of small particles to a change in the phase sequence with respect to temperature being reversed. An analogous phenomenon was found by Ushakov et al. [20] for pure and La-doped zirconia and hafnia nanoparticles with a diameter of 5–6 nm, where, at room temperature, the amorphous phase was more stable than the tetragonal one, in contrast to the general opinion that amorphous particles are the least stable ones.

- Even more dramatic is the influence on surface energy. There are experimental indications for a six times larger surface energy for nanoparticles of gold [21] and silver [22] compared to the bulk values. However, the model leading to such an evaluation of these experiments is seriously questioned [23, 24]. An increase in the surface energy by a factor of roughly two for aluminum nanoparticles was predicted in a theoretical study by Medasani and Vasiliev [25]. Both results contradict theoretical estimates that find a reduction in the surface energy with decreasing particle size [23, 24].

To estimate the thermal behavior of nanoparticles, knowledge of thermodynamic quantities and surface energy is essential. Therefore, it is the goal of this contribution to present proper and reliable approaches to estimate the thermodynamics of nanoparticles based on bulk data.

1.3
Size-Dependent Materials Data of Nanoparticles

For quite some time, there have been approaches to estimate the thermodynamic data of nanoparticles as a function of their size. Tolman [26, 27] presented such a relation for the surface energy as

\[\gamma_{\text{nano}} = \frac{\gamma_{\text{bulk}}}{(1 + (4\delta/d))} \]

(1.6)
The quantity δ is the so-called Tolman length. Das and Binder [28] generalized the Tolman relation to a wider applicable equation of type

$$\gamma_{\text{nano}} = \frac{\gamma_{\text{bulk}}}{(1 + 8(\tilde{l}/d)^2)^{1/4}}$$ \hfill (1.7)

In Equation 1.7, the quantity \tilde{l} is again a characteristic length. However, Equation 1.7 was developed not for a free surface but an interface between two coexisting phases. A further relation, appraised as a “universal” relation, was reported by Guisbiers [29] in the form of

$$\xi_{\text{nano}} = \xi_{\text{bulk}} \left(1 - \left(\frac{\alpha}{d}\right)^{1/2}\right)^{1/2}$$ \hfill (1.8)

Guisbiers argues that this relation is valid for the material property ξ, which may be the melting temperature, Debye temperature, superconducting temperature, Curie temperature, cohesive energy, activation energy of diffusion, or vacancy formation energy. The quantity α is a material constant with the dimension of a length, and s is a positive number depending on the material property. For $s = 1/2$ and $\alpha/d \ll 1$ Equation 1.6 and Equation 1.8 are practically equivalent. Furthermore, Equation 1.5 for the melting temperature obeys relation 1.8 with $s = 1/2$.

A more sophisticated relation for γ_{nano} compared to Equation 1.8, based on the cohesive energy of nanocrystals, was reported by Lu and Jiang [23, 24] and Ouyang et al. [30], as

$$\gamma_{\text{nano}} = \gamma_{\text{bulk}} \left(1 - \frac{d_0}{d - d_0}\right) \exp\left(-\frac{d_0}{d - d_0}\right)$$ \hfill (1.9a)

The quantity d_0 is the “smallest size” of d if this equation is valid. For $d/d_0 \gg 1$, Equation 1.9a can be rewritten as

$$\gamma_{\text{nano}} \approx \gamma_{\text{bulk}} \left(1 - \frac{d_0}{d - d_0}\right)^2$$ \hfill (1.9b)

and as a further approximation as

$$\gamma_{\text{nano}} \approx \gamma_{\text{bulk}} \left(1 - \frac{d_0}{d}\right)^2$$ \hfill (1.9c)

Equation 1.9c agrees again with Equation 1.8 for $s = 1/4$.

A different physical approach was reported by Li [31], using a layer-by-layer structure of the reference crystal from which the nanoparticle is cut out. This concept leads to an extremely complicated relation, which yields for $d_0/d \ll 1$ the same approximation as Equation 1.9c.

With respect to the melting point of nanomaterials T_m^{nano}, the thermodynamic approach of Letellier et al. [15, 16] should be noted. These authors have concluded the same tendency as shown in this chapter (Equation 1.5)

$$\frac{T_m^{\text{nano}}}{T_m^{\text{bulk}}} = 1 - c \left(\frac{d_0}{d}\right)^{1/2}$$ \hfill (1.9d)
However, they introduce also as a conceptual extension a positive exponent \(s \) to the quantity \(1/d \) as \((d_0/d)^s\) with \(d_0 \) being a reference quantity and \(c \), a positive constant factor. They report a value of \(s = 0.79 \) for lead nanoparticles and \(1.20 \) for tin nanoparticles.

Safaei and Attarian Shandiz [32] published a model for the melting entropy of metallic nanoparticles, based on the methods of statistical physics. It is important to emphasize that their final formulae for the entropy of melting and the melting temperature confirm the earlier work by Jiang and Shi [33, 34], who developed, on the basis of Mott’s equation for the melting entropy, a model for size-dependent melting temperature and entropy. Using an earlier approach to calculate the melting temperature of nanoparticles [35], Attarian Shandiz and Safaei [36] derived the same relations as Jiang and Shi [33, 34] for the melting temperature of metallic nanoparticles. The special feature of these derivations may be found in the fact that the final formulae depend on the thermodynamics and the crystal structure of the bulk material only. Furthermore, this approach inherently incorporates the influence of the surface energy. Therefore, this term no longer appears explicitly in the further equations.

Neglecting the electronic contribution, according to Attarian Shandiz and Safaei [32, 36], the ratio of melting temperatures is given by

\[
\frac{T_{m\text{-nano}}}{T_{m\text{-bulk}}} = 1 - (1 - q) \frac{2d_0}{d + d_0}
\]

(1.10)

In Equation 1.10, \(d_0 \) stands for a critical particle size, where the particle consists of surface atoms only. It is important to point out that, from its derivation, Equation 1.10 already contains the influence of the difference of the surface energy. From its definition, \(d_0 \) depends on the crystal structure of the particle. Attarian Shandiz and Safaei [36] give a table of this quantity for different lattices, for example, for the fcc structure \(d_0 = 2.45 \cdot \delta \), where \(\delta \) stands for the diameter of one atom in the metallic environment. It is obvious that a table as in [36] for \(d_0 \) is applicable only in exceptional cases where the structure of the smallest particle is identical to the bulk structure. This assumption is not necessarily correct; for example, for gold, see Tian et al. [37]. Therefore, in many cases, it may be necessary to fit the parameter \(d_0 \) with experimental data. The quantity \(q = Z_S/Z_V \) is the ratio of the coordination numbers at the surface, \(Z_S \), and in the volume, \(Z_V \), of the bulk material. For bulk materials and larger particles, \(q = 0.5 \) is valid. Comparing calculated values with different results from the literature led Attarian Shandiz and Safaei [35, 36] to the conclusion that in the case of very small particles, a value \(q = 0.25 \) is more appropriate. This finding is well in line with a study on coordination numbers as a function of particle size and structure by Montejano et al. [38]. Therefore, a fit function was developed, which gives for the bulk material a value \(0.5 \) and which decreases to \(0.25 \) for the particle size \(d_0 \). Hence, it may be appropriate to select an expression such as

\[
q = 0.5 \frac{d}{d + d_0}
\]

(1.11)